JPS5916274A - Button type alkaline manganese battery - Google Patents

Button type alkaline manganese battery

Info

Publication number
JPS5916274A
JPS5916274A JP57124643A JP12464382A JPS5916274A JP S5916274 A JPS5916274 A JP S5916274A JP 57124643 A JP57124643 A JP 57124643A JP 12464382 A JP12464382 A JP 12464382A JP S5916274 A JPS5916274 A JP S5916274A
Authority
JP
Japan
Prior art keywords
positive electrode
graphite
specific surface
surface area
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57124643A
Other languages
Japanese (ja)
Inventor
Tsukasa Ohira
大平 司
Kanji Takada
寛治 高田
Akira Miura
三浦 晃
Yasuyuki Kumano
熊野 泰之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57124643A priority Critical patent/JPS5916274A/en
Publication of JPS5916274A publication Critical patent/JPS5916274A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a button type alkaline manganese battery which assures stable storage perfomance, excellent sudden discharge characteristic and low discharge rate capacitance by selecting adequate specific surface area and a rate of addition of artificial graphite to be used as a positive conductive material. CONSTITUTION:A positive electrode in use includes an artificial graphite having the specific surface area of 8-12m<2>/g added in the rate of 4-6wt%. A positive electrode 1 molded with a depolarizing mix obtained by mixing manganese dioxide and graphite powder is placed closely in contact with a nickel clad iron reservoir 2. A translucent separator 4 made of cellophane is also placed closely in contact with the upper surface of positive electrode 1. A liquid containing material 5 on the negative side is composed of a nylon nonwoven fabric. A battery is also provided with a gelated negative electrode 6 formed by kneading hardening zinc powder, polyacryrlic acid soda of 100-200 meshes and electrolyte, a sealing plate 7 which is also used as a negative terminal and a nylon gasket 8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、二酸化マンガンに導電材として、黒鉛粉末を
混合したアルカリマンガン電池、特にボタン形電池に関
するもので、電池の保存性能の安定化と低温での間欠急
放電特性および一般の低率放電容量を改良するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an alkaline manganese battery, in particular a button type battery, which is a mixture of manganese dioxide and graphite powder as a conductive material. This improves intermittent rapid discharge characteristics and general low rate discharge capacity.

従来例の構成とその問題点 二酸化マンガンは、電池の正極活物質として安価である
ことから広く使用されている。最近では、電子機器の消
費電流が次第に小さくなってきていることもあり、これ
まで酸化銀電池を使用していた用途にもボタン形アルカ
リマンガン電池が適用されるようになってきた。
Conventional Structures and Problems Manganese dioxide is widely used as a positive electrode active material for batteries because it is inexpensive. Recently, as the current consumption of electronic devices has become smaller and smaller, button-type alkaline manganese batteries have come to be used in applications that previously used silver oxide batteries.

これ壕でのアルカリマンガン電池は、正極合剤として天
然黒鉛を10〜15.mt%混ばしたものを加圧成形し
て使用していた。このように黒鉛添加量が多い場合は、
合剤の成形性は良くなるが、種々のキ害が生じていた。
The alkaline manganese battery in this trench uses natural graphite as the positive electrode mixture at a rate of 10 to 15%. A mixture of mt% was press-molded and used. When the amount of graphite added is large like this,
Although the moldability of the mixture was improved, various damage occurred.

すなわち、天然黒鉛の場合、不純物として重金属例えば
F e 、 Cr、 Mgなどを含有する灰分が1重量
%以上あり、窒素吸着法による通常の測定法での比表面
積が14m2/y以上であった。このため、二酸化マン
ガンと混合し、成形後、電池に組み込んだ場合、二酸化
マンガン粒子との接触面が増えることと、不純物の影響
でアルカリ電解液中で局部電池作用による自己放電が促
進され、その結果、保存中の開路電圧が低下する不都合
があった。この現象は、黒鉛の添加量に比例して大きく
なる。また、天然黒鉛の場合は、不純物の灰分を0.5
重量%以下に除去することは不可能であるし、比表面積
をより小さくすることは歩留シなと工程的に問題がある
とされている。
That is, in the case of natural graphite, the ash content containing heavy metals such as Fe, Cr, Mg, etc. as impurities was 1% by weight or more, and the specific surface area was 14 m2/y or more as measured by a normal measurement method using nitrogen adsorption. Therefore, when mixed with manganese dioxide and incorporated into a battery after molding, the contact surface with manganese dioxide particles increases and impurities promote self-discharge due to local battery action in the alkaline electrolyte. As a result, there was an inconvenience that the open circuit voltage decreased during storage. This phenomenon increases in proportion to the amount of graphite added. In addition, in the case of natural graphite, the ash content of impurities is reduced to 0.5
It is said that it is impossible to remove it to less than % by weight, and that reducing the specific surface area is problematic in terms of yield and process.

最近、ピッチコークスや、タールコークスを原料とした
人造黒鉛が開発されてきている。この人造黒鉛は、純度
が高く灰分が0.2重量%以下で、比表面積も比較的容
易に調整できることから、二酸化マンガ、ンと混合する
導電材として極めて好都合である。
Recently, artificial graphite made from pitch coke and tar coke has been developed. This artificial graphite has a high purity with an ash content of 0.2% by weight or less, and its specific surface area can be adjusted relatively easily, so it is extremely suitable as a conductive material to be mixed with manganese dioxide.

一般に、導電材として加える黒鉛粉末の比表面積が大き
くなると、二酸化マンガンに対する分散は均一になりや
すく、成形性もよくなるが、揮発分である吸着ガスや水
分を含みやすくなり、自己放電の原因となって保存後の
性能が悪くなる。又逆に比表面積が小さくなると、二酸
化マンガンに対する分散が不均一になシやすく、成形性
が悪くなって成形の歩留りが落ちる欠点がある。
In general, when the specific surface area of graphite powder added as a conductive material increases, it tends to be more uniformly dispersed in manganese dioxide and has better formability, but it also tends to contain adsorbed gases and moisture, which are volatile components, which can cause self-discharge. performance will deteriorate after storage. On the other hand, if the specific surface area is small, the dispersion of manganese dioxide tends to be uneven, resulting in poor moldability and low molding yield.

一方、正極における黒鉛粉末の添加割合が大きいと、電
圧特性及び急放電特性にすぐれるが、低率での放電容量
が小さくなる。
On the other hand, if the proportion of graphite powder added in the positive electrode is high, the voltage characteristics and rapid discharge characteristics will be excellent, but the discharge capacity at low rates will be small.

以上のように高純度の人造黒鉛を導電材として用いる場
合においても、その比表面積添加割合について改良すべ
き点が多い。
As described above, even when using high-purity artificial graphite as a conductive material, there are many points to be improved regarding the specific surface area addition ratio.

発明の目的 本発明は、正極の導電材として用いる人造黒鉛の比表面
積及び添加割合を適切にすることによって、保存性能が
安定で、急放電特性にすぐれ、低率放電容量の大きいボ
タン形アルカリマンガン電池を提供することを目的とす
る。
Purpose of the Invention The present invention provides a button-shaped alkali manganese which has stable storage performance, excellent rapid discharge characteristics, and large low rate discharge capacity by optimizing the specific surface area and addition ratio of artificial graphite used as a conductive material for the positive electrode. The purpose is to provide batteries.

発明の構成 本発明は比表面積8〜12 m”/ gの人造黒鉛を4
〜6重量%の割合で加えた正極を用いることを実施例の
説明 まず、比表面積の異なる黒鉛の成形性についての比較結
果を示す。
Structure of the Invention The present invention utilizes artificial graphite having a specific surface area of 8 to 12 m"/g.
Description of Examples Using a Positive Electrode Added at a Ratio of ~6% by Weight First, comparative results regarding the formability of graphite having different specific surface areas will be shown.

人造黒鉛粉末2りを断面積2cTlのシリンダーに入れ
、万能試験機で100 Ky / t#fの圧力を加え
て成形したときの成形体の高さを第1表に示す。また、
電解二酸化マンガン粉末95重量部と黒鉛粉末5M量部
とを混合した合剤10りを上記と同様にして1oo o
Ky / cnfの圧力で成形したときの成形体の高さ
の比較を第2表に示す。
Table 1 shows the height of the molded product when 2 ml of artificial graphite powder was placed in a cylinder with a cross-sectional area of 2 cTl and molded by applying a pressure of 100 Ky/t#f using a universal testing machine. Also,
10 parts of a mixture of 95 parts by weight of electrolytic manganese dioxide powder and 5 M parts of graphite powder were mixed in the same manner as above to make 10 o o
Table 2 shows a comparison of the heights of molded bodies when molded at a pressure of Ky/cnf.

第1表 第2表 上述の成形体の高さは、低いほど成形性がよいことにな
るが、比表面積が7 m2/ y以下のものを用いると
明らかに成形性が落ちる。
Table 1 Table 2 As for the height of the above-mentioned molded bodies, the lower the height, the better the moldability, but if one with a specific surface area of 7 m2/y or less is used, the moldability clearly deteriorates.

次に、黒鉛の比表面積と電池の開路電圧との関係を説明
する。
Next, the relationship between the specific surface area of graphite and the open circuit voltage of the battery will be explained.

電解二酸化マンガン95重量部と灰分。、2重量%以下
の人造黒鉛5重量部を混合した合剤を用いて、後述のよ
うなLR44型のボタン形電池を各100個試作し、6
0cで40日間保存後、20Cで測定しグζ開路電圧の
度数分布金弟3表に示す。
95 parts by weight of electrolytic manganese dioxide and ash. Using a mixture containing 5 parts by weight of artificial graphite of 2% by weight or less, 100 LR44 type button batteries as described below were prototyped.
After storage at 0C for 40 days, it was measured at 20C and the frequency distribution of open circuit voltage is shown in Table 3.

第3表 第3表より、黒鉛の比表面積が13m’/y以上の場合
、開路電圧の点で不満足であることが明らかである。
From Table 3, it is clear that when the specific surface area of graphite is 13 m'/y or more, the open circuit voltage is unsatisfactory.

次に電池について各種性能を比較した結果を説明する。Next, the results of comparing various performances of batteries will be explained.

第1図はLR44型アルマンガン電池を示す。FIG. 1 shows an LR44 type almanganese battery.

1は二酸化マンガンと黒鉛粉末を混合した合剤を成形し
た正極で、ニッケルメッキした鉄製容器2に密接されて
いる。3は正極集電リングである。
Reference numeral 1 denotes a positive electrode formed from a mixture of manganese dioxide and graphite powder, which is closely attached to a nickel-plated iron container 2. 3 is a positive electrode current collecting ring.

4はセロハンよシなる牛透膜のセパレータで、正極1の
上面に密接している。5は負極側の含液材で、ナイロン
不織布からなる。6は氷化亜鉛粉末と1oo〜200メ
ツシユのポリアクリル酸ソーダと電解液を練合したゲル
状負極である。7は負極端子を兼ねる封口板、8はナイ
ロン製のガスケツ トである。
4 is a separator made of a bovine permeable membrane such as cellophane, which is in close contact with the upper surface of the positive electrode 1. 5 is a liquid-containing material on the negative electrode side, which is made of nylon nonwoven fabric. 6 is a gel-like negative electrode prepared by kneading frozen zinc powder, 100 to 200 meshes of sodium polyacrylate, and an electrolyte. 7 is a sealing plate that also serves as a negative electrode terminal, and 8 is a nylon gasket.

この電池は、直径11−611a +高さ5.4Mで、
公称容量1oomAh である。なお、電解液には、が
性カリの40重量%水溶液にZnOを飽和近く溶解した
ものを用いた。
This battery has a diameter of 11-611a + a height of 5.4M,
The nominal capacity is 1oomAh. The electrolytic solution used was a 40% by weight aqueous solution of bulky potash in which ZnO was dissolved to near saturation.

第4表はここに用いた黒鉛の純度(灰分)と比表面積を
示す。
Table 4 shows the purity (ash content) and specific surface area of the graphite used here.

それぞれの黒鉛を用いて、二酸化マンガンに対する混合
割合が2〜10重量%の合剤を作シ、上述の電池を試作
した。
Using each graphite, a mixture with a mixing ratio of 2 to 10% by weight with respect to manganese dioxide was prepared, and the above-mentioned battery was prototyped.

第4表 その後45Cで約1印間熟成し、セパレータ層及び正負
極界面に電解液をバランスよく保持させかつ負極封口板
内面に対し均一な水化現象を促進させた。
Table 4: After that, it was aged at 45C for about 1 hour to maintain a well-balanced electrolyte on the separator layer and the interface between the positive and negative electrodes, and to promote uniform hydration on the inner surface of the negative electrode sealing plate.

この様にして試作した電池について、−200において
、26Ωの抵抗を負荷とし、2秒間放電し、1秒間休止
する間欠急放電(パルス放電)をして、電池電圧が0.
75Vに達するまでの時間を調べた。又、15にΩの抵
抗を負荷として連続放電を行い、放電作動電圧が1.3
ovに達するまでの低率放電時間も調べた。
The battery prototyped in this way was subjected to intermittent rapid discharge (pulse discharge) with a 26Ω resistor as a load at -200℃, discharging for 2 seconds and resting for 1 second, until the battery voltage reached 0.
The time required to reach 75V was investigated. In addition, continuous discharge was performed with a resistance of 15Ω as a load, and the discharge operating voltage was 1.3.
The low rate discharge time until reaching ov was also investigated.

第2図は正極の黒鉛含量と一20Cでの間欠急放電時間
の関係を示す。この図で、実線はすべて試作直後の放電
時間を示し、点線は60Cで4゜日間保存後の放電時間
を示す。
FIG. 2 shows the relationship between the graphite content of the positive electrode and the intermittent rapid discharge time at -20C. In this figure, all solid lines indicate the discharge time immediately after trial production, and dotted lines indicate the discharge time after storage at 60C for 4 days.

又、第5表は、代表的な黒鉛含有割合(低温での保存後
の間欠急放電時間の最大値を示す領域)の部分にしぼっ
て直後およびeocで40日間保存後について、開路電
圧と15にΩ連続放電時間を示した。
Furthermore, Table 5 shows the open circuit voltage and 15 shows the Ω continuous discharge time.

第6表 今後における間欠急放電時間の最大値がある。この領域
では黒鉛の含量が大きいため、正極の理論充填容量が減
り、低率15にΩ負荷放電ではその放電時間が初期より
著しく短くなり、保存後の劣化も著しい。この原因は黒
鉛中の不純物(灰分)によるもので、開路電圧の低下が
促進されている。
Table 6 shows the maximum value of intermittent sudden discharge time in the future. In this region, since the content of graphite is large, the theoretical filling capacity of the positive electrode is reduced, and in the case of low rate 15Ω load discharge, the discharge time is significantly shorter than the initial stage, and the deterioration after storage is also significant. This is caused by impurities (ash) in graphite, which accelerates the decrease in open circuit voltage.

一方1人造黒鉛Bは、比表面積が11.3m’/9で灰
分もo、1s %と低く、保存後における低温の間欠急
放電時間の最大値が、添加率4〜5重量%にある。そし
て開路電圧、低率放電時間をも考慮すると4〜6重量%
が最適範囲である。この様に黒鉛Bはその添加率が小さ
くて良いため、正極の理論充填容量が増え低率放電時間
が長くなると共に開路電圧も直後1.60Vと最も高く
、保存後においても劣化の小さい安定した性能を示して
いる。
On the other hand, artificial graphite B has a specific surface area of 11.3 m'/9 and an ash content as low as 0.1 s%, and the maximum value of the low-temperature rapid discharge time after storage is at an addition rate of 4 to 5% by weight. And considering the open circuit voltage and low rate discharge time, it is 4 to 6% by weight.
is the optimal range. In this way, since graphite B can be added at a small addition rate, the theoretical filling capacity of the positive electrode increases, the low rate discharge time becomes longer, and the open circuit voltage is the highest at 1.60V immediately after storage, resulting in a stable product with little deterioration even after storage. shows performance.

同じ人造黒鉛でもCの場合は、比表面積が18.1m’
 / yと大きいため、二酸化マンガンとの混合でその
接触面積が多くなることと、比表面が大きくなると揮発
分である吸着ガスや水分などが必然的に増し、これらが
一種の不純物として働き、自己放電の促進があるため、
開路電圧の低下が同じ人造黒鉛であるBより大きく低率
放電時間も短くなっている。
Even with the same artificial graphite, in the case of C, the specific surface area is 18.1 m'
/ y, the contact area increases when mixed with manganese dioxide, and as the specific surface increases, adsorbed gases and moisture, which are volatile components, inevitably increase, and these act as a type of impurity, causing self-destruction. Due to the acceleration of discharge,
The drop in open circuit voltage is greater than that of B, which is the same artificial graphite, and the low rate discharge time is also shorter.

発明の効果 以上のように、本発明によれば保存性能が安定で狗裁電
特性の陵れた高容量のボタン形アルカリマンガン電池が
得られる。
Effects of the Invention As described above, according to the present invention, a high-capacity button-shaped alkaline manganese battery with stable storage performance and excellent electrical discharge characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例のボタン形電池の要部′を断面した側面
図、第2図は正極の各種黒鉛含有割合と低温での間欠急
放電時間の関係を示す。 1・・・・・・正極、4・・・・・・セパレータ、5・
・・・・・含液材、6・・・・・負極。 代理人の氏名 弁理士 中 尾 敏男 ほか1名第1図
FIG. 1 is a cross-sectional side view of a main part of a button-shaped battery according to an example, and FIG. 2 shows the relationship between various graphite content ratios in the positive electrode and intermittent rapid discharge time at low temperatures. 1...Positive electrode, 4...Separator, 5...
...Liquid-containing material, 6...Negative electrode. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1

Claims (1)

【特許請求の範囲】[Claims] 二酸化マンガンを活物質とし導電材として 黒鉛を含む
正極を備え、前記黒鉛が比表面積8〜12m” / 9
の人造黒鉛であり、正極の黒鉛含量が4〜6重量%であ
るボタン形アルカリマンガン電池。
A positive electrode containing manganese dioxide as an active material and graphite as a conductive material is provided, and the graphite has a specific surface area of 8 to 12 m''/9.
A button-type alkaline manganese battery which is made of artificial graphite and has a positive electrode graphite content of 4 to 6% by weight.
JP57124643A 1982-07-16 1982-07-16 Button type alkaline manganese battery Pending JPS5916274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124643A JPS5916274A (en) 1982-07-16 1982-07-16 Button type alkaline manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124643A JPS5916274A (en) 1982-07-16 1982-07-16 Button type alkaline manganese battery

Publications (1)

Publication Number Publication Date
JPS5916274A true JPS5916274A (en) 1984-01-27

Family

ID=14890477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124643A Pending JPS5916274A (en) 1982-07-16 1982-07-16 Button type alkaline manganese battery

Country Status (1)

Country Link
JP (1) JPS5916274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017391A (en) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017391A (en) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP2002231247A (en) Control valve-type lead-acid battery
JPS5916274A (en) Button type alkaline manganese battery
JPH0737609A (en) Alkaline storage battery
JP3261417B2 (en) Sealed lead-acid battery
JPS5914269A (en) Alkali manganese cell
JPH0729595A (en) Retainer type sealed lead-acid battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH0770315B2 (en) Non-aqueous electrolyte battery
JPS60254564A (en) Nickel positive electrode for alkaline storage battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP2878294B2 (en) Lithium battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPH04284369A (en) Nickel-metal hydride storage battery
JPH01283770A (en) Manufacture of lithium cell
JPS61104563A (en) Silver oxide battery
JPS6158165A (en) Gelled negative electrode of nommercury sealed alkaline battery
JPS59224058A (en) Alkaline battery
JPS6178064A (en) Silver oxide battery
JPH05314981A (en) Alkaline storage battery and manufacture thereof
JPS63126153A (en) Organic electrolyte cell
JPS59205156A (en) Alkaline manganese battery
JPH09199160A (en) Sealed alkaline storage battery