JPH01283770A - Manufacture of lithium cell - Google Patents

Manufacture of lithium cell

Info

Publication number
JPH01283770A
JPH01283770A JP63113918A JP11391888A JPH01283770A JP H01283770 A JPH01283770 A JP H01283770A JP 63113918 A JP63113918 A JP 63113918A JP 11391888 A JP11391888 A JP 11391888A JP H01283770 A JPH01283770 A JP H01283770A
Authority
JP
Japan
Prior art keywords
lithium
cell
discharge
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63113918A
Other languages
Japanese (ja)
Inventor
Kaoru Murakami
薫 村上
Kiyoto Watanabe
清人 渡辺
Tadashi Sawai
忠 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63113918A priority Critical patent/JPH01283770A/en
Publication of JPH01283770A publication Critical patent/JPH01283770A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To reduce the pre-discharge time and to decrease the loss of the cell capacity so as to make it possible to obtain a high capacity lithium cell by pre-discharging the cell through a metallic lithium foil or porous lithium placed between the separator and the positive electrode mixture. CONSTITUTION:A separator 5 is inserted in an aperture sealing plate 2 press contacted with lithium, and metallic lithium 7, positive electrode mixture 3 and a positive electrode can 1 are piled up successively on the separator 5, and after sealing the cell airtightly aging and pre-discharge processes are carried out. Thereby the quantity of electricity in the pre-discharge and the time required for the discharge needed for respective cell systems (BR system, CR system) can be reduced to less than 1/10, and the simplification of the manufacture of the cell is made possible. And even when the pre-discharge treating time is reduced to 1/12 of the conventional time, a cell of stabilized open-circuit voltage and internal resistance can be obtained to minimize the capacity loss of the cell due to the pre-discharge and to increase the cell capacity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は有機電解質電池であるリチウム電池の製造法の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in the manufacturing method of lithium batteries, which are organic electrolyte batteries.

従来の技術 有機電解液を用いたリチウム電池は、アルカリ系電池に
比べ自己放電率、耐漏液性等が良く長期信頼性に優れた
電池である。
BACKGROUND OF THE INVENTION A lithium battery using an organic electrolyte has a better self-discharge rate, leakage resistance, etc. than an alkaline battery, and has excellent long-term reliability.

この種のリチウム電池は、現在3v系が多く開発されて
おり、正極活物質にフッ化黒鉛や2酸化マンガンを使用
したBR系電池、OR系電池がある。
Currently, many 3V type lithium batteries have been developed as this type of lithium battery, and there are BR type batteries and OR type batteries that use fluorinated graphite or manganese dioxide as a positive electrode active material.

通常上記BR系電池、OR系電池は、電池密封後に定電
流で一定電気量放電を行なう予備放電を実施することに
より、電池の開路電圧−1作動電圧。
Normally, the above-mentioned BR type batteries and OR type batteries are used to reduce the open circuit voltage of the battery by 1 operating voltage by performing a preliminary discharge in which a constant amount of electricity is discharged at a constant current after the battery is sealed.

内部抵抗の安定化と耐保存特性の向上をはかり、かかる
リチウム電池の長期信頼性を確保している。
The long-term reliability of such lithium batteries is ensured by stabilizing internal resistance and improving storage characteristics.

予備放電の技術的効果はBR系電池とOR系電池では若
干ことなり、予備放電をしなかった場合、BR系電池で
は間欠的なハイレート放電時の維持電圧性能(CaW)
が悪くなる。又、OR系電池ではローレート放電時の初
期作動電圧が高すぎ使用機器の液晶表示かにじむこと及
び高温保存において電池が膨れそρ結果内部抵抗が上昇
するといった問題が発生する。両電池系共に現状では予
備放電は不可欠な工程であるが、リチウム電池の場合、
大電流値で短時間に処理せんとすると電池が転極し、有
機電解液が分解してしまうためにこの方法を採用するこ
とができず、従って予備放電時間がかかるという不都合
及び予備放電により必然的に電池容量を損失する不都合
を有している。
The technical effects of pre-discharging are slightly different between BR and OR batteries; without pre-discharging, BR batteries have a lower maintenance voltage performance (CaW) during intermittent high-rate discharge.
becomes worse. Further, in OR type batteries, problems occur such that the initial operating voltage during low-rate discharge is too high, causing smudges on the liquid crystal display of the equipment used, and the battery swells during high-temperature storage, resulting in an increase in internal resistance. Pre-discharge is currently an essential process for both battery types, but in the case of lithium batteries,
This method cannot be used because if it is not processed in a short time with a large current value, the battery will reverse polarity and the organic electrolyte will decompose. This has the disadvantage of causing a loss of battery capacity.

発明が解決しようとする課題 このように従来の電池製造法では、′8[池を密封した
後の予備放電処理に時間を要すること、および電池の容
量を3〜10%損失する問題があった。
Problems to be Solved by the Invention As described above, in the conventional battery manufacturing method, there were problems in that the preliminary discharge treatment after sealing the cell required time and that the battery capacity was lost by 3 to 10%. .

従って本発明は従来のリチウム電池の製造法のかかる問
題点を解決することにあり、予備放電時間の短縮、電池
容量の損失減少を計り、高容量のリチウム電池製造法を
提供することにある。
Therefore, the present invention aims to solve the problems of the conventional lithium battery manufacturing method, and to provide a high capacity lithium battery manufacturing method that shortens the pre-discharge time and reduces the loss of battery capacity.

課題を解決するだめの手段 本発明はリチウムからなる負極と、正極合剤。A means to solve problems The present invention relates to a negative electrode made of lithium and a positive electrode mixture.

セパレータおよび有機電解液を使用したリチウム電池の
製造法において、上記セパレータと正極合剤との間に金
属リチウム箔又は多孔体を介在させて予備放電させるリ
チウム電池の製造法にある。
In a method for manufacturing a lithium battery using a separator and an organic electrolyte, a metal lithium foil or a porous body is interposed between the separator and the positive electrode mixture, and the lithium battery is pre-discharged.

本発明のリチウム電池の製造において使用する負極、正
極体を構成する正極合剤および正極缶、有機電解液は従
来のリチウム電池に使用されているものを使用できる。
As the negative electrode, the positive electrode mixture and positive electrode can constituting the positive electrode body, and the organic electrolyte used in the production of the lithium battery of the present invention, those used in conventional lithium batteries can be used.

本発明において、セパレータと正極合剤の間に介在させ
るリチウム金属は、箔又は多孔体であり、正極合剤表面
の一部又に全面に接触するように構成する。
In the present invention, the lithium metal interposed between the separator and the positive electrode mixture is a foil or a porous body, and is configured to be in contact with a part or the entire surface of the positive electrode mixture.

作用 上述した製造法を採用することにより、各電池系(BR
系、OR系)において必要としていた予備放電電気量お
よび放電に要する時間を、殉以下にすることができ、電
池製造の簡素化を可能にする。
Effect By adopting the manufacturing method described above, each battery system (BR
The amount of electricity required for pre-discharge and the time required for discharging, which were required in the conventional system and OR system, can be reduced to less than 100%, and battery manufacturing can be simplified.

実施例 以下図面全参照して本発明を説明する。Example The present invention will be explained below with reference to all the drawings.

第1図は本発明のリチウム電池の製造工程を示す説明図
であり、封口板2の内底面に金属リチウム4を圧着固定
した部品にフラット状セパレータ6′を絞り加工し、6
の肌状態で挿入する(第1図国参照)。このセパレータ
に必要量の電解液を注入し、この電解液を保持したセパ
レータ内底面に所定寸法に打ち抜いたリチウム板7をそ
のほぼ中央部に載置しく第1図国参照)、その上に予め
成形、乾燥した正極合剤3を置き、最後に正極缶1で封
目板を覆い1次に封口金型で密封する(第2図参照)。
FIG. 1 is an explanatory diagram showing the manufacturing process of the lithium battery of the present invention, in which a flat separator 6' is drawn on a component in which metallic lithium 4 is crimped and fixed to the inner bottom surface of a sealing plate 2, and
Insert it in the same skin condition (see country in Figure 1). Inject the necessary amount of electrolyte into this separator, place a lithium plate 7 punched out to a predetermined size approximately in the center of the inner bottom of the separator holding this electrolyte (see Figure 1), and place the lithium plate 7 on top of it in advance. The molded and dried positive electrode mixture 3 is placed, and finally the sealing plate is covered with the positive electrode can 1 and then sealed with a sealing mold (see FIG. 2).

電池密封後しばらくは第2図に示す構造を取るが、正極
合剤3とリチウム板7とが反応しく極部電池を構成)、
リチウムが正極合剤3tl−還元する。
After the battery is sealed, the structure shown in FIG. 2 is assumed for a while, but the positive electrode mixture 3 and the lithium plate 7 react to form an electrode battery).
Lithium is reduced to 3 tl of the positive electrode mixture.

この反応が完了した時点の電池構造は第3図であり、見
掛上従来の電池構造と変わらない。しかし。
The battery structure when this reaction is completed is shown in FIG. 3, which is apparently the same as the conventional battery structure. but.

電池の開路電圧は通常の予備放電を行なったものと同じ
で2.9〜3.1vを示し、定電流で短時間の予備放電
を行なうことでより保存性の良好な電池を製造する。
The open-circuit voltage of the battery is 2.9 to 3.1 V, which is the same as that obtained by normal pre-discharge, and a battery with better shelf life is produced by performing a short-time pre-discharge at a constant current.

第2図は本発明のリチウムマンガン電池の縦断面図を示
すもので、1は8US430よりなる正極缶、2は5t
IS403よりなる封口板%3は焼成2酸化マンガン粉
末97重量部とケッチエンブラック3重量部の混合合剤
1 oooyVcs弗化プロピレンと4弗化エチレンの
共重合体(ネオフロン)のディスバージョン120gと
純水460XIIlを加え攪拌混練したものを乾燥し、
この乾燥合剤0.369を直径161RM、厚さ0.7
211Hのヘレットに加圧成形した正極、4は封口板の
内面に圧着固定されたリチウム負極、5は合成繊維不織
布からなるセパレータ、6はプロピレンのガスケットで
このガスケットを介して正極缶1と封口板2とを圧接密
閉している。7は0.08 Jllのリチウム箔を直径
8m1に打ち抜いたリチウムである。このリチウム電池
の最大外径は20Jl’l、最大総高は1.6MMであ
った。
Figure 2 shows a longitudinal cross-sectional view of the lithium manganese battery of the present invention, in which 1 is a positive electrode can made of 8US430, and 2 is a 5t
The sealing plate %3 made of IS403 is a mixture of 97 parts by weight of calcined manganese dioxide powder and 3 parts by weight of Ketchen Black. Add 460XIIl of water, stir and knead and dry.
This dry mixture 0.369 is 161RM in diameter and 0.7 in thickness.
4 is a lithium negative electrode crimped and fixed to the inner surface of the sealing plate, 5 is a separator made of synthetic fiber nonwoven fabric, and 6 is a propylene gasket, which connects the cathode can 1 and the sealing plate through this gasket. 2 are pressure-welded and sealed. 7 is lithium made by punching 0.08 Jll lithium foil into a diameter of 8 m1. The maximum outer diameter of this lithium battery was 20 Jl'l, and the maximum total height was 1.6 MM.

上記構成のリチウム電池’i)16mAで1分間予備放
電した電池をムとする。
A lithium battery having the above configuration 'i) A battery pre-discharged for 1 minute at 16 mA is referred to as 'mu'.

比較のため、上述したリチウム箔7を使用しないで15
iIIムで12分間予備放電した電池をBとする。
For comparison, 15 without using the lithium foil 7 mentioned above.
A battery that has been pre-discharged for 12 minutes in an III mode is designated as B.

これらのリチウム電池人、Bの初期開路電圧。The initial open circuit voltage of these lithium batteries.

内部抵抗および電池容量を調査した。その結果を第1表
に示す。
Internal resistance and battery capacity were investigated. The results are shown in Table 1.

第1表 上記データは各60個の平均値である。なお、゛電池容
量は15にΩの放電結果より算出した。
The above data in Table 1 are the average values of 60 samples each. Note that the battery capacity was calculated from the discharge results at 15Ω.

発明の効果 以上のように本発明によれば、リチウム電池の予備放電
処理時間を従来の1712にしても開路電圧、内部抵抗
の安定した電池が得られ、予備放電による電池の容量損
失を最少限にすることが可能であり、結果的に電池容量
をアブプする優れた効果を有する。
Effects of the Invention As described above, according to the present invention, a battery with stable open circuit voltage and internal resistance can be obtained even if the pre-discharge treatment time of a lithium battery is set to 1712, which is the conventional value, and the capacity loss of the battery due to pre-discharge can be minimized. As a result, it has an excellent effect of increasing battery capacity.

なお、実施例はマンガンリチウム電池で述べたが、フッ
化黒鉛リチウム電池でも同様な効果が得られることか確
認されている。
Although the examples have been described using a manganese lithium battery, it has been confirmed that similar effects can be obtained with a fluorinated graphite lithium battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のリチウム電池の製造工程を示す説明図
、第2図は本発明によるリチウム電池の一実施例の縦断
面図、第3図は本発明一実施例の最終的な電池構成を示
す縦断面図である。 1・・・・・・正極缶、2・・・・・・封口板、3・・
・・・・正極、4・・・・・・負極、6・・・・・・セ
パレータ、6・・・・・・ガスケット、7・・・・・・
リチウム。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名イー
−一正み働乞。 2−一一爵0械 5−一−ぜ八”し−夕 C・−力1又ケシド ア°−−9′テウ4 第3図
FIG. 1 is an explanatory diagram showing the manufacturing process of a lithium battery according to the present invention, FIG. 2 is a longitudinal cross-sectional view of an embodiment of a lithium battery according to the present invention, and FIG. 3 is a final battery configuration of an embodiment of the present invention. FIG. 1...Positive electrode can, 2...Sealing plate, 3...
...Positive electrode, 4...Negative electrode, 6...Separator, 6...Gasket, 7...
lithium. Agent's name: Patent attorney Toshio Nakao and one other person: I-Kazumasa, a laborer. Figure 3

Claims (1)

【特許請求の範囲】[Claims]  リチウムからなる負極と、正極合剤および有機電解質
を使用したリチウム電池の製造法であって、リチウムを
圧着した封口板2にセパレータ5を挿入し、次にリチウ
ム金属7、正極合剤3、正極缶1を順に積み重ね、電池
を密封した後、エージングして予備放電を行なうことを
特徴とするリチウム電池の製造法。
A method for manufacturing a lithium battery using a negative electrode made of lithium, a positive electrode mixture, and an organic electrolyte, in which a separator 5 is inserted into a sealing plate 2 to which lithium is crimped, and then a lithium metal 7, a positive electrode mixture 3, and a positive electrode are inserted. A method for manufacturing a lithium battery, which comprises stacking cans 1 one after the other, sealing the battery, and then aging and performing preliminary discharge.
JP63113918A 1988-05-11 1988-05-11 Manufacture of lithium cell Pending JPH01283770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63113918A JPH01283770A (en) 1988-05-11 1988-05-11 Manufacture of lithium cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63113918A JPH01283770A (en) 1988-05-11 1988-05-11 Manufacture of lithium cell

Publications (1)

Publication Number Publication Date
JPH01283770A true JPH01283770A (en) 1989-11-15

Family

ID=14624450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63113918A Pending JPH01283770A (en) 1988-05-11 1988-05-11 Manufacture of lithium cell

Country Status (1)

Country Link
JP (1) JPH01283770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237956A (en) * 1991-01-22 1992-08-26 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912568A (en) * 1982-07-09 1984-01-23 Hitachi Maxell Ltd Manufacture of organic electrolyte battery
JPS6261270A (en) * 1985-09-11 1987-03-17 Sanyo Electric Co Ltd Manufacture of nonaqueous electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912568A (en) * 1982-07-09 1984-01-23 Hitachi Maxell Ltd Manufacture of organic electrolyte battery
JPS6261270A (en) * 1985-09-11 1987-03-17 Sanyo Electric Co Ltd Manufacture of nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237956A (en) * 1991-01-22 1992-08-26 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
JPS6435872A (en) Electrochemical cell
JPH01283770A (en) Manufacture of lithium cell
JPH1092421A (en) Sealed lead-acid battery
JPS6381762A (en) Button type alkaline battery
JPH06283194A (en) Sealed alkaline zinc storage battery
JP2874529B2 (en) Lithium battery
JPS635866B2 (en)
JPH0554890A (en) Sealed lead-acid battery
JPS6142868A (en) Nonaqueous electrolyte battery
JPH0232750B2 (en)
JPS59157961A (en) Lead-acid battery
JPS62154561A (en) Lithium battery
JPH0714604A (en) Sealed alkaline zinc secondary battery
JPS5916274A (en) Button type alkaline manganese battery
JPS59171470A (en) Nonaqueous solvent battery
JPS61248359A (en) Manufacture of enclosed type lead storage battery
JPS603859A (en) Manufacture of cadmium electrode for secondary battery
JPH01307169A (en) Manufacture of organic solvent battery
JPS601763A (en) Manufacture of silver peroxide cell
JPS5999661A (en) Silver (ii) oxide cell
JPS58186164A (en) Manufacture of negative electrode for alkaline battery
JPS63200464A (en) Organic electrolyte battery
JPS61264667A (en) Manufacture of organic electrolyte battery
JPS61232561A (en) Button type alkaline battery
JPH03744B2 (en)