JPS59161071A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59161071A
JPS59161071A JP3455183A JP3455183A JPS59161071A JP S59161071 A JPS59161071 A JP S59161071A JP 3455183 A JP3455183 A JP 3455183A JP 3455183 A JP3455183 A JP 3455183A JP S59161071 A JPS59161071 A JP S59161071A
Authority
JP
Japan
Prior art keywords
film
gate
silicon
oxide film
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3455183A
Other languages
Japanese (ja)
Inventor
Yukio Tanigaki
谷垣 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3455183A priority Critical patent/JPS59161071A/en
Publication of JPS59161071A publication Critical patent/JPS59161071A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain a metallic film, which is not directly in contact with a gate oxide film, and to increase the speed of an element while improving reliability by selectively oxidizing the side surface of a gate and forming the metallic film on the upper surface of the gate through selective CVD. CONSTITUTION:A field silicon oxide film 11 is formed in a selective region in a P type silicon base body 10, and a thin gate oxide film 12 is shaped to the main surface of an active region. A polycrystalline silicon film 13 is formed on the whole surface through a CVD method, and the resistance of the polycrystalline silicon film 13 is reduced through a doping of an impurity. A thin silicon nitride film 14 is formed on the whole surface through the CVD method. The polycrystalline silicon film 13 and the silicon nitride film 14 are etched up to predetermined pattern shapes, and a gate electrode 15 is shaped on the gate oxide film 12. Impurity ions are implanted, an ion implantation layer is formed in the active region, and the implanted impurity is activated electrically through heat treatment in an inert gas atmosphere, thus forming a source region 16 and a drain region 17.

Description

【発明の詳細な説明】 、〔技術分野〕 本発明は高信頼性及び高速性を有する半導体装置の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method of manufacturing a semiconductor device having high reliability and high speed.

〔背景技術〕[Background technology]

一般にメモリ回路や論理回路に利用される電界効果トラ
ンジスタは近年益々その高速性が要求されるようになシ
、ゲート電極やその配線の低抵抗化が進められている。
In recent years, field effect transistors generally used in memory circuits and logic circuits are increasingly required to be faster, and efforts are being made to reduce the resistance of gate electrodes and their wiring.

このため、ゲート電極をシリコンとメタルとの多層構造
とし、メタルの低抵抗特性を利用して前述の目的解決を
図る試みがなされている。例えば、第7図に示すMO8
型電界効果トランジスタ(MOSFET)は、本発明者
によって考案されたものであり、半導体基板1のアクテ
ィブ餉域に形成したゲート酸化膜2上に多結晶シリコン
のゲート3を形成し、更にこのゲート3上にモリブデン
(MO)やタングステン(W)等の高融点メタル膜4を
覆うように形成したものである。5.6はソース、トノ
インの各領域を示す。
For this reason, attempts have been made to solve the above-mentioned objective by making the gate electrode a multilayer structure of silicon and metal and utilizing the low resistance characteristics of metal. For example, MO8 shown in FIG.
A type field effect transistor (MOSFET) was devised by the present inventor, and consists of forming a polycrystalline silicon gate 3 on a gate oxide film 2 formed in an active region of a semiconductor substrate 1, and It is formed so as to cover a high melting point metal film 4 such as molybdenum (MO) or tungsten (W) thereon. 5.6 shows the source and tonoin regions.

この構成によれば、高融点メタル膜4の低抵抗特性によ
シ高速化が達成される。しかしながら、この構成では多
結晶シリコンのゲート3を高融点メタル膜4にて被覆す
れば、この高融点メタル膜40両端4aは必然的にゲー
ト酸化膜2に直接接触される。このため、メタルがゲー
ト酸化膜2、更には半導体基板1に向かって拡散する等
して所謂汚染が生じることになり、しきい値電圧■th
の変動を生ずる等素子の特性を不安定々ものにして信頼
性を低下させるという問題点が生ずることが本発明渚に
よってあきらかとされfc。
According to this configuration, high-speed operation can be achieved due to the low resistance property of the high melting point metal film 4. However, in this configuration, if the polycrystalline silicon gate 3 is covered with the high melting point metal film 4, both ends 4a of the high melting point metal film 40 will inevitably come into direct contact with the gate oxide film 2. For this reason, metal diffuses toward the gate oxide film 2 and further toward the semiconductor substrate 1, resulting in so-called contamination, and the threshold voltage
It has been clarified by the present inventor Nagisa that fc causes a problem in that the characteristics of the elements become unstable and the reliability deteriorates due to fluctuations in fc.

〔発明の目的〕[Purpose of the invention]

本発明の目的はゲート酸化膜するメタル膜がゲート酸化
膜に直接接触することを防止し、これFCよりメタル汚
染の防止を図って素子特性全安定化しかつその信頼性を
向上することができる半導体装置の製造方法を提供する
ことにある。
The purpose of the present invention is to prevent the metal film forming the gate oxide film from coming into direct contact with the gate oxide film, thereby preventing metal contamination from FC, thereby stabilizing the device characteristics and improving the reliability of the semiconductor. An object of the present invention is to provide a method for manufacturing a device.

また、本発明の他の目的は少ガい工程数でゲート上にメ
タル膜を形成し、その製造の容易化全達成することがで
きる半導体装置の製造方法を提供することにある。
Another object of the present invention is to provide a method for manufacturing a semiconductor device, which can form a metal film on a gate with a small number of steps and facilitate the manufacturing process.

本発明の前記ならびにそのほかの目的と新規な%徴は、
本明細省の配達および添付図面からあきらかに力るであ
ろう。
The above and other objects and novel characteristics of the present invention are as follows:
The disclosure of the present specification and the accompanying drawings will be clearly understood.

〔発明の栃要〕[Keystone of invention]

本願において開示される発明のうち代表的なもののw要
”i簡単に説明すれば、下記のとおりである。
A brief description of representative inventions disclosed in this application is as follows.

す力わち、ゲートの側面を透析酸化した上で、ゲートの
上面にメタル膜を選択CVD法により形成することによ
り、ゲート酸化膜に直接接触することのないメタを膜を
得ることができ、これにより素子の高速化と共に信頼性
の向上全達成するものである。・ 〔実施例〕 第1図乃至第6図は本発明′kNチャネルMO8型電界
効果トランジスタ(MOSFET )に適用した実施例
の製造工程を示すものである。
In other words, by performing dialysis oxidation on the side surfaces of the gate and then forming a metal film on the top surface of the gate by selective CVD, it is possible to obtain a metal film that does not come into direct contact with the gate oxide film. This makes it possible to increase the speed of the device and improve its reliability. - [Embodiment] FIGS. 1 to 6 show the manufacturing process of an embodiment applied to a kN-channel MO8 type field effect transistor (MOSFET) of the present invention.

先ず第1図のようにP型シリコン基板10の選択的な領
域に常法の選択酸化法でフィールド酸化シリコン膜11
全形成し、東にアクティブ傾城主面に薄いゲート酸化膜
12を形成する。次いでCVD法(気相化学反応法)に
より全面に多結晶シリコン膜13を形成し、しかる後燐
(P、)などの不純物をドープして多結晶シリコン膜1
3’に低抵抗化する。力お、不純物がドープされた多結
晶シリコン膜ic!VD法により成長させてもよい。続
いてCVD法によシ全面に薄くシリコンナイトライド(
EiisN4)膜141に形成する。
First, as shown in FIG. 1, a field silicon oxide film 11 is formed on selective areas of a P-type silicon substrate 10 by a conventional selective oxidation method.
A thin gate oxide film 12 is formed on the main surface of the active slope on the east side. Next, a polycrystalline silicon film 13 is formed on the entire surface by a CVD method (vapor phase chemical reaction method), and then an impurity such as phosphorus (P) is doped to form a polycrystalline silicon film 1.
The resistance is lowered to 3'. Powerful, impurity-doped polycrystalline silicon film IC! It may be grown by the VD method. Next, a thin layer of silicon nitride (
EiisN4) is formed on the film 141.

次に第2図のように常法のホト13ソグラフイ技術金用
いて前記多結晶シリコン膜13とシリコンナイトライド
膜1.1所定のパターン形状に工、。
Next, as shown in FIG. 2, the polycrystalline silicon film 13 and silicon nitride film 1.1 are patterned into a predetermined pattern using a conventional photolithography technique.

チングし、前記ゲート酸化膜12上にゲート電極15を
形成する。
A gate electrode 15 is formed on the gate oxide film 12 by etching.

次いで、第3図に示すように全面にA8、P等の不純物
をイオン打込みし、アクティブ頭載にイオン打込層を形
成しかつ不活性ガス雰囲気(Ar。
Next, as shown in FIG. 3, impurities such as A8 and P are ion-implanted over the entire surface to form an ion-implanted layer on top of the active, and an inert gas atmosphere (Ar) is formed.

N2  )中で例えば1000℃30分の熱処理を行な
って前記打込み不純物の電気的活性化を図如、これによ
りソーヌ領星16、ドレイン頭載17を形成する。その
土で、高温酸素雰囲気におくことにより、多結晶シリコ
ン膜13の露呈された側面にシリコン酸化膜18に形成
し、多結晶シ1)コン膜13會被覆する。
A heat treatment is performed at, for example, 1000° C. for 30 minutes in N2) to electrically activate the implanted impurities, thereby forming the Saone dome 16 and the drain head 17. By placing the soil in a high-temperature oxygen atmosphere, a silicon oxide film 18 is formed on the exposed side surface of the polycrystalline silicon film 13 to cover the polycrystalline silicon film 13.

次に第4図に示すように熱燐酸等を用いて多結晶シリコ
ン膜13上のシリコンナイトライド膜14を剥離して多
結晶シリコン膜13の上面を露呈させる。そして、これ
に例えばフ、、化モ1)ブデンガスと水素ガス雰囲気に
おける温圧CVD法を施すことにより、所謂選択cvp
が行なわれ、第5図のように多結晶シリコン膜13上に
のみモ1】ブデン膜19が形成される。この選択CVD
法は、5olid −Eltate Technolo
gy / Dec L’980にタングステンを選FC
VDする例として開示されている。
Next, as shown in FIG. 4, the silicon nitride film 14 on the polycrystalline silicon film 13 is peeled off using hot phosphoric acid or the like to expose the upper surface of the polycrystalline silicon film 13. Then, by subjecting this to a hot pressure CVD method in an atmosphere of buden gas and hydrogen gas, for example, the so-called selective CVP
is carried out, and a molybdenum film 19 is formed only on the polycrystalline silicon film 13 as shown in FIG. This selection CVD
The law is 5 solid -Eltate Technolo
gy/Dec L'980 select tungsten FC
This is disclosed as an example of VD.

そして、第6図に示すように全面に層間絶縁膜、例えば
CVD法によりリンシリケートガラス(P8G)膜20
會形成し、これt熱処理してデンシファイする。更に常
法通りソース頒域16、ト°レイン領域17上にコンタ
クトホール21.22)r形成し、かつ真空落着法によ
るアルミニウム膜の形成とホトリソグラフィ技術とに′
よりアルミ配線23.24i形成する。その士にファイ
ナルバ。
Then, as shown in FIG. 6, an interlayer insulating film, for example, a phosphosilicate glass (P8G) film 20 is formed on the entire surface by CVD.
This is then heat treated and densified. Furthermore, contact holes 21 and 22) are formed on the source region 16 and the train region 17 as usual, and an aluminum film is formed by vacuum deposition and photolithography.
Aluminum wiring lines 23 and 24i are then formed. Final Ba for that person.

シベーション膜25全形成すれば半導体装置が完成寧れ
る。
Once the scivation film 25 is completely formed, the semiconductor device is completed.

9士の構成によれば、ゲート電極15は多結晶シリコン
膜13とメタル、即ちモリブデン膜19との2層構造と
されているので、モリブデンl1g19の低抵抗特性に
より素子の高速性全向上できることは言う丑でもない。
According to the structure of 9th graders, since the gate electrode 15 has a two-layer structure consisting of the polycrystalline silicon film 13 and the metal, that is, the molybdenum film 19, it is possible to completely improve the high-speed performance of the device due to the low resistance characteristics of molybdenum l1g19. It's not even a bad thing.

−力、前記、モリブデン膜19は多結晶シリコン膜13
の上面にのみ形成されておシ、多結晶シリコン膜13の
側面には形成されていないので、モリブデン膜19が内
接ゲート酸化膜に接触されることはかい。これしCより
、モリブデン膜19からゲート酸化膜12更にはヅリコ
ン基板10へのメタル(モリブデン)の拡散が防止でき
、vthの変動を防止して素子の安に性の向上および信
頼性の向上を図ることかできる。
- As mentioned above, the molybdenum film 19 is the polycrystalline silicon film 13.
Since the molybdenum film 19 is formed only on the upper surface of the polycrystalline silicon film 13 and not on the side surfaces of the polycrystalline silicon film 13, it is impossible for the molybdenum film 19 to come into contact with the internal gate oxide film. By doing this, diffusion of metal (molybdenum) from the molybdenum film 19 to the gate oxide film 12 and further to the silicon substrate 10 can be prevented, and fluctuations in vth can be prevented, improving the cost and reliability of the device. I can try something.

〔効果〕〔effect〕

(1)多結晶シリコン膜の上面にモリブデン膜ケ形成し
たゲート構造としているので、モリブデン膜の低抵抗特
性V(より素子の高速性の向上を達成できる。
(1) Since the gate structure has a molybdenum film formed on the upper surface of the polycrystalline silicon film, the low resistance characteristic V of the molybdenum film (higher speed of the device can be achieved).

(2)多結晶シリコン膜の側面にはモリブデン膜を形成
していないので、モリブデン膜が直接ゲート酸化膜に接
触することはなく、モリブデンの拡散を防止して素子の
信頼性を向上することができる。
(2) Since no molybdenum film is formed on the side surfaces of the polycrystalline silicon film, the molybdenum film does not come into direct contact with the gate oxide film, which prevents molybdenum diffusion and improves device reliability. can.

(3)所謂選択CvDによりモリブデン膜を形成してい
るので、ホトレジスト會使用したホトリソグラフィ工程
を利用しなくともシリコン膜上にのみモリブデン膜を形
成することができ、ゲート電極の2層構造を極めて簡単
に構成することができる。
(3) Since the molybdenum film is formed by so-called selective CVD, the molybdenum film can be formed only on the silicon film without using a photolithography process using a photoresist, and the two-layer structure of the gate electrode can be extremely improved. Can be easily configured.

以上本発明者によってなされ反発間を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。たとえば、モリブデン
膜の代りにタングステン膜あるいは他の高融点メタルを
使用してもよい。また、ソース領域やドレイン領域の形
成工程を多少後工程にずらせてもよい。
Although the repulsion mechanism made by the present inventor has been specifically explained based on examples, it goes without saying that the present invention is not limited to the above-mentioned examples, and can be modified in various ways without departing from the gist thereof. Nor. For example, a tungsten film or other high melting point metal may be used instead of a molybdenum film. Further, the process for forming the source region and the drain region may be delayed to a later stage.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってなされ次発開
音その背景とηっ大別用分野であるMXS型奉界効果ト
ランジスタの製造方法に適用しに場合について説明した
が、それに限定されるものではなく、他の半導体装置で
メタル層を備えるもの一般に適用することができる。
The above explanation has mainly been about the background of the next development developed by the present inventor and its application to the manufacturing method of MXS-type field effect transistors, which is a broad field of application, but the invention is not limited thereto. However, the present invention can be generally applied to other semiconductor devices including metal layers.

【図面の簡単な説明】 第1図乃至第6図は本発明の製造工程を示すための断面
工程図、 第7図は本発明者によってなされた先行技術の断面図で
ある。 10・・・ンリコン基板、11・・・フィールド酸化膜
、12・・・ゲート酸化膜、13・・・多結晶ノリコン
膜、14・・・シリコンナイトライド膜、15・・・ゲ
ート′電極、16・・ソース領域、17・・・ドレイン
領域、18・・・酸化膜、19・・・モリブデン膜、2
0・・PSGl 23.24 ・At配線、25・・フ
ァイナルハ7シベーション膜。 第  1  図 第  2 図 第  3  図 第  5  図 第  6  図 第7図
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 6 are cross-sectional process diagrams showing the manufacturing process of the present invention, and FIG. 7 is a cross-sectional diagram of a prior art made by the present inventor. DESCRIPTION OF SYMBOLS 10... Silicon substrate, 11... Field oxide film, 12... Gate oxide film, 13... Polycrystalline silicon film, 14... Silicon nitride film, 15... Gate' electrode, 16 ... Source region, 17... Drain region, 18... Oxide film, 19... Molybdenum film, 2
0...PSGl 23.24 ・At wiring, 25...Final ha7scivation film. Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、ゲート1!極全シリコン膜と、その上層に形成した
メタル膜とで構成するに際し、シリコン膜の側面に予め
酸化膜全形成しておき、露呈したシリコン膜の上面に選
択CVD法によシメタル膜を形成することを特徴とする
半導体装置の製造方法。 2、 シリコン膜上にシリコンナイトライド膜を形成し
た上でこれを所定のパターン形状に工、7チングし、シ
リコン膜の露呈された側面を酸化した後に前記シリコン
ナイトライド膜を除去し、露呈されたシリコン上面にメ
タル膜を選択CVD法によシ形成してなる特許請求の範
囲第1項記載の半導体装置の製造方法。 3、 メタル膜はモリブデン、タングステン等の高融点
メタルである特許請求の範囲第1項又は第2頌記載の半
導体装置の製造方法。
[Claims] 1. Gate 1! When constructing an extremely full silicon film and a metal film formed on the top layer, an oxide film is completely formed on the side surface of the silicon film in advance, and a metal film is formed on the exposed top surface of the silicon film by selective CVD. A method for manufacturing a semiconductor device, characterized in that: 2. After forming a silicon nitride film on the silicon film, it is processed into a predetermined pattern shape and etched, and after oxidizing the exposed side surface of the silicon film, the silicon nitride film is removed and the exposed side surface is removed. 2. The method of manufacturing a semiconductor device according to claim 1, wherein a metal film is formed on the upper surface of the silicon by selective CVD. 3. The method for manufacturing a semiconductor device according to claim 1 or 2, wherein the metal film is a high melting point metal such as molybdenum or tungsten.
JP3455183A 1983-03-04 1983-03-04 Manufacture of semiconductor device Pending JPS59161071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3455183A JPS59161071A (en) 1983-03-04 1983-03-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3455183A JPS59161071A (en) 1983-03-04 1983-03-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59161071A true JPS59161071A (en) 1984-09-11

Family

ID=12417439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3455183A Pending JPS59161071A (en) 1983-03-04 1983-03-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59161071A (en)

Similar Documents

Publication Publication Date Title
JPS59161071A (en) Manufacture of semiconductor device
JPS6138858B2 (en)
JPS5923468B2 (en) Manufacturing method of semiconductor device
JPH09162392A (en) Semiconductor device
JPS59161072A (en) Semiconductor device
JPS62290178A (en) Semiconductor device
JP3371169B2 (en) Method for manufacturing semiconductor device
JPS58142573A (en) Semiconductor integrated circuit and preparation thereof
JPH0441510B2 (en)
JPH11145425A (en) Manufacture of semiconductor element and semiconductor device
JPH0778833A (en) Bipolar transistor and its manufacture
JPS5889869A (en) Manufacture of semiconductor device
JPS6150385B2 (en)
JPS62200747A (en) Manufacture of semiconductor device
JPS60195972A (en) Manufacture of semiconductor device
JPH0231467A (en) Manufacture of non-volatile semiconductor memory device
JPH04278587A (en) Manufacture of semiconductor memory
JPS63306658A (en) Semiconductor device and manufacture thereof
JPS62118577A (en) Semiconductor device
JPH0621059A (en) Semiconductor device and manufacture thereof
JPS6230364A (en) Manufacture of mis semiconductor device
JPS61179575A (en) Manufacture of semiconductor device
JPH1083995A (en) Semiconductor device and manufacturing method thereof
JPS621266A (en) Semiconductor device and manufacture thereof
JPH025411A (en) Manufacture of semiconductor device