JPS59155145A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS59155145A
JPS59155145A JP2851883A JP2851883A JPS59155145A JP S59155145 A JPS59155145 A JP S59155145A JP 2851883 A JP2851883 A JP 2851883A JP 2851883 A JP2851883 A JP 2851883A JP S59155145 A JPS59155145 A JP S59155145A
Authority
JP
Japan
Prior art keywords
chip
integrated circuit
circuit device
wiring
element region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2851883A
Other languages
Japanese (ja)
Inventor
Tamotsu Hiwatari
樋渡 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2851883A priority Critical patent/JPS59155145A/en
Publication of JPS59155145A publication Critical patent/JPS59155145A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits

Abstract

PURPOSE:To obtain a large-scale integrated circuit device according to a master slice system by a method wherein fundamental cell rows, in which longitudinally arranged fundamental cells have been rotated at a right angle, are individually provided at the upper and lower parts of the element region in a gate array type large-scale integrated circuit. CONSTITUTION:Fundamental cell rows 1a and 1b, in which longitudinally arranged fundamental cells have been rotated at a right angle, are provided on the upside and downside of the element region and wirings between each of the input and output terminals on the upside and downside of the chip and the element region are performed, centering around the 1a and the 1b. In brief, the fundamental cells to be connected to the input and output terminals on the upside and downside of the chip are arranged as close as possible to the 1a and the 1b. Fundamental cell rows 1 other than the above-mentioned fundamental cell rows are arranged at regular intervals in the lateral direction. According to such the arrangement and constitution of the element region, the area of the wiring regions between each of the upside and downside of the chip and the element region can be reduced.

Description

【発明の詳細な説明】 〔発明の属する技術分野“〕 本発明は半導体集積回路装置゛に係り、特にマスタース
ライス方式を採用した装置に関わるものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a semiconductor integrated circuit device, and particularly to a device employing a master slice method.

〔従来技術とその問題点〕[Prior art and its problems]

マスタースライス方式の半導体集積回路装置は、予め複
数の素子からなる基本セル!半導体基板に多数作り込ん
でおき、配線層並びに接続穴を変更することにより所望
の回路動作を得ようとするもので、新たな機能の回路の
要望に対し、比較的簡単に対処出来る特徴を有している
A master slice type semiconductor integrated circuit device is a basic cell consisting of multiple elements in advance! It attempts to obtain the desired circuit operation by fabricating a large number of circuits on a semiconductor substrate and changing the wiring layers and connection holes, and has the feature that it can relatively easily respond to requests for circuits with new functions. are doing.

すなわち、金属配線を形成する以前の工程により作成さ
れる半導体チップは、全ての機能回路に共通であるため
、上記方式を採用すると、開発期間の短縮、製造コスト
の低減が図れ、多品種少量・生産を可能とする。
In other words, since the semiconductor chip created by the process before forming metal wiring is common to all functional circuits, adopting the above method shortens the development period, reduces manufacturing costs, and allows for high-mix, low-volume production. enable production.

マスタースライス方式によるゲートアレイ型大規模集積
回路装置の一般的な例を弟′1図に示す。
A general example of a gate array type large-scale integrated circuit device using the master slice method is shown in Figure 1.

すなわち、この半導体集積回路装置は半導体チップ上が
、素子領域1、配線領域2、入出力端子並びに入出力回
路領域3に分けられている。また、配線は通常2層金属
配線で行なわれ、横方向(水平方向)と縦方向(垂直方
向)の配線に、各々別の層が割り当てられる。さらに、
素子領域は、基本セルを縦方向に並べたものを単位とし
て、それを何列か横方向に等間隔(二装置して構成され
ている。
That is, in this semiconductor integrated circuit device, the semiconductor chip is divided into an element region 1, a wiring region 2, input/output terminals, and an input/output circuit region 3. Further, the wiring is usually performed using two-layer metal wiring, and separate layers are assigned to horizontal (horizontal) and vertical (vertical) directions, respectively. moreover,
The element region is composed of several rows of basic cells arranged in the vertical direction at equal intervals (two units) in the horizontal direction.

しかし、この方式では大規模化に伴って、素子領域と入
出力端子との配線本数が多くなると、配線領域の面積が
増大し、チップの集積度の低下を招く不都合があった。
However, in this method, when the number of wires between the element region and the input/output terminal increases as the scale increases, the area of the wire region increases, resulting in a reduction in the degree of integration of the chip.

特に、素子領域とチップの上辺および下辺の入出力端子
との配線を実施する時に、配線領域は上記の配線にも、
また素子領域間の配線にも使用されるため、必然的に配
線領域の面積は増大し、同時に配線の混雑度も上昇する
In particular, when wiring between the element area and the input/output terminals on the top and bottom sides of the chip, the wiring area is also used for the above wiring.
Furthermore, since it is also used for wiring between element regions, the area of the wiring region inevitably increases, and at the same time, the degree of congestion of the wiring also increases.

さらに、第2図に示すようにチップを幾つかの矩形ブロ
ックに分割して、いわゆる階層的な配置、配線を実施す
る際に、上下に隣接する矩形ブロックの横方向の境界で
は、配線領域は上下の矩形ブロック間の配線に使用され
るので、その縦方向のトラック数が増大する難点があっ
た。
Furthermore, when a chip is divided into several rectangular blocks as shown in Fig. 2 and so-called hierarchical placement and wiring are performed, the wiring area is Since it is used for wiring between upper and lower rectangular blocks, there is a problem in that the number of tracks in the vertical direction increases.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情を考慮してなされたもので、マスタ
ースライス方式によるゲートアレイ型入規模V!積回路
装置を提供することを目的としてし)る。
The present invention has been made in consideration of the above circumstances, and has a gate array type input scale V! The purpose is to provide integrated circuit devices).

〔発明の概要〕[Summary of the invention]

本発明の骨子は、基本セルを縦方向(=並べたものを直
角に回転させた基本セル列を設け、それを第1図に示す
ゲートアレイ型大規模集積回路の素子領域の上部と下部
に各1つずつ配置して、素子領域を配置構成することで
ある。
The gist of the present invention is to provide basic cell rows in which basic cells are arranged vertically (i.e., rotated at right angles), and to place them above and below the element area of the gate array type large-scale integrated circuit shown in FIG. The device region is arranged and configured by arranging one of each.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の素子領域の配置構成(二比べ、
下記の効果が得られる。すなわち、基本セル薔縦方向に
並べたものを直角1;回転させた基本セル列を、素子領
域の上下に各1つずつ配置することにより、チップの上
辺およびF辺の入出力端子と素子領域との配線が、縦方
向のトラックを効果的に使用して実施出来る。
According to the present invention, the arrangement configuration of the conventional element region (compared with two
The following effects can be obtained. In other words, by arranging the basic cells arranged vertically at right angles and rotating the basic cell rows, one each on the top and bottom of the element area, the input/output terminals and the element area on the top side and F side of the chip are arranged. This can be done by effectively using vertical tracks.

例えば、第3図に示すような、入出力端子と素子領域と
の配線は、本発明によれば、第4図のように実施されて
、横方向の配線は無くなり、また縦方向の配線の混雑度
も減少する。その結果、配線領域の面積が減少し、チッ
プの集積度の上昇を可能にする。さらに、チップを幾つ
かの矩形ブロックに分割した時(−1上下に隣接する矩
JT6ブロツクの境界に、前記の基本セル列を回かl、
s合わせて配置することにより、矩形ブロック間の配線
(二おいて、縦方向のトラック数を大幅C二減少させる
ことが可能となり、その結果、配線領域の面積、混雑度
が共に減少する。
For example, according to the present invention, the wiring between the input/output terminals and the element area as shown in FIG. 3 is implemented as shown in FIG. 4, eliminating horizontal wiring and vertical wiring. The level of congestion will also decrease. As a result, the area of the wiring region is reduced, making it possible to increase the degree of integration of the chip. Furthermore, when the chip is divided into several rectangular blocks (-1), the basic cell rows described above are placed on the boundaries of the vertically adjacent rectangular JT6 blocks.
By arranging them together, it is possible to significantly reduce the number of tracks in the vertical direction between rectangular blocks by C2, and as a result, both the area and the degree of congestion of the wiring area are reduced.

〔発明の実施例〕[Embodiments of the invention]

第5図および第6図に本発明を適用したゲートアレイ型
大規模集積回路の例を示す。基本上ノーは例えば複数個
の能動素子からなる0MO8型とする。
FIGS. 5 and 6 show examples of gate array type large-scale integrated circuits to which the present invention is applied. Basically, it is assumed to be of 0MO8 type consisting of a plurality of active elements, for example.

第5図では、基本セルを縦方向に並べたものを直角に回
転させた基本セル列1 a * 1 bを素子領域の上
辺と下辺に設けてあり、チップの上辺および下辺の入出
力端子(パッド)と素子領域との配線をla、lbを中
心に実施する。すなわち、チップの上辺および下辺の入
出力端子C二接続する基本セルを、可能な限り1 a 
t 1 bに配置する。それ以外は図示する如く基本セ
ル列lは等間隔(二横方向に並べられている。このよう
に、素子領域を配置構成することにより、第1図のそれ
と比べて、チップの上辺、下辺と素子領域の間の配線領
域の面積は減少する。
In FIG. 5, basic cell rows 1a*1b, which are basic cells arranged vertically and rotated at right angles, are provided on the upper and lower sides of the element area, and the input/output terminals ( The wiring between the (pad) and the element area is performed mainly on la and lb. In other words, the basic cells that connect the input/output terminals C on the top and bottom sides of the chip are connected as much as possible.
Place it at t 1 b. Otherwise, as shown in the figure, the basic cell rows l are arranged at equal intervals (two horizontally). By arranging and configuring the element regions in this way, the upper and lower sides of the chip are The area of wiring regions between device regions is reduced.

また、第6図はテップA、B、C,Dの4つの矩形ブロ
ックに分割し、各ブロックの上辺および下辺に前記の基
本セル列Ai、Bi、Ci、Di (i = 1.2)
を設けた素子領域の配置構成を示している。ここで、A
とCの間の配線は、接続関係にある基本セルを、可能な
限りA2とCIに配置して、A2と01の間の配線領域
を使用して実施する。BとDの間の配線も同様に実施す
る。これによって各ブロックの縦方向のトラック数の減
少が可能となり、配線領域の面積、混雑度が共C二減少
する。
In addition, FIG. 6 is divided into four rectangular blocks of steps A, B, C, and D, and the above-mentioned basic cell rows Ai, Bi, Ci, Di (i = 1.2) are placed on the upper and lower sides of each block.
The arrangement of the element region is shown. Here, A
The wiring between and C is implemented using the wiring area between A2 and 01 by arranging basic cells in a connection relationship between A2 and CI as much as possible. Wiring between B and D is also carried out in the same way. This makes it possible to reduce the number of tracks in the vertical direction of each block, and the area and degree of congestion of the wiring area are both reduced by C2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマスタースライス方式によるゲ−ドアレ
イ型大規模集積回路装置の構成例を示す平面図、第2図
は同じ〈従来のゲートアレイ型大規模集積回路装置を幾
つかの矩形ブロックに分割したものの構成例を示す平面
図、第3図および第4図は、本発明の詳細な説明する平
面図、第5図および886図は本発明の実施例に係る半
導体集積回路装置の構成を示す平面図である。 代理人 弁理士 則 近 憲 佑 (ほか1名) 第1図 々 第2図 第3図 第4図
Figure 1 is a plan view showing an example of the configuration of a gate array type large-scale integrated circuit device using the conventional master slice method, and Figure 2 is the same. 3 and 4 are plan views showing detailed explanations of the present invention, and FIGS. 5 and 886 are plan views showing configuration examples of a semiconductor integrated circuit device according to an embodiment of the present invention. FIG. Agent: Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板に基本セルを複数個配列し集積してな
るチップに必要に応じた配線パターンを施して所望の回
路動作を実現するマスタースライス方式の半導体集積回
路装置において、基本セルを縦に並べたセル列、および
それを、直角に回転させたセル列を設け、後者のセル列
を少なくともチップの素子領域の上部、下部に各1つず
つ配置すると共に前者のセル列をそれ以外の素子領域に
横方向に配置して素子領域を構成したことを特徴とする
半導体集積回路装置。
(1) In a master slice type semiconductor integrated circuit device, in which a chip is made by arranging and integrating a plurality of basic cells on a semiconductor substrate, the basic cells are arranged vertically, and a desired circuit operation is realized by applying wiring patterns as necessary. A row of cells arranged side by side and a row of cells rotated at right angles are provided, and the latter cell row is arranged at least one each at the top and bottom of the element area of the chip, and the former cell row is arranged in the area of other elements. 1. A semiconductor integrated circuit device, characterized in that an element region is arranged horizontally in a region.
(2)  チップ内を矩形ブロックに分割し、階層的な
配置、配線を実施する際に、各上下のブロックの隣接領
域にも回転セル列を設けたことを特徴とする特許 回路装置。
(2) A patented circuit device characterized in that when a chip is divided into rectangular blocks and hierarchical arrangement and wiring are performed, rotating cell rows are also provided in adjacent areas of each upper and lower block.
JP2851883A 1983-02-24 1983-02-24 Semiconductor integrated circuit device Pending JPS59155145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2851883A JPS59155145A (en) 1983-02-24 1983-02-24 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2851883A JPS59155145A (en) 1983-02-24 1983-02-24 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS59155145A true JPS59155145A (en) 1984-09-04

Family

ID=12250900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2851883A Pending JPS59155145A (en) 1983-02-24 1983-02-24 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS59155145A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167318A (en) * 1984-09-11 1986-04-07 Fujitsu Ltd Integrated circuit of matrix switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167318A (en) * 1984-09-11 1986-04-07 Fujitsu Ltd Integrated circuit of matrix switch
JPH0515324B2 (en) * 1984-09-11 1993-03-01 Fujitsu Ltd

Similar Documents

Publication Publication Date Title
KR900003832B1 (en) Wiring method for semiconductor intergrated circuit device
JP2580301B2 (en) Semiconductor integrated circuit device
JP3466064B2 (en) Semiconductor integrated circuit device
JPS59155145A (en) Semiconductor integrated circuit device
JPH0348669B2 (en)
JPS58197747A (en) Master slice lsi
JPS60247943A (en) Semiconductor integrated circuit device
JPH0475665B2 (en)
JPS61139044A (en) Semiconductor integrated circuit device
JPS61240652A (en) Semiconductor integrated circuit device
JPH0534833B2 (en)
JP2555774B2 (en) Semiconductor integrated circuit
JPS6074548A (en) Semiconductor integrated circuit
JPH03116868A (en) Semiconductor integrated circuit device
JPH02187050A (en) Semiconductor integrated circuit device
JPS601844A (en) Semiconductor integrated circuit device
JPH04280471A (en) Semiconductor integrated circuit based on master slice system
JPS5824950B2 (en) semiconductor logic circuit device
JPS63150934A (en) Semiconductor integrated circuit device
JPS6260235A (en) Semiconductor integrated circuit device
JPH03255665A (en) Semiconductor integrated circuit device
JPS6115346A (en) Semiconductor logic ic device
JPH03185730A (en) Semiconductor device
JPS62266850A (en) Master slice lsi
JPH04147645A (en) Semiconductor integrated circuit device