JPS61139044A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS61139044A
JPS61139044A JP26068184A JP26068184A JPS61139044A JP S61139044 A JPS61139044 A JP S61139044A JP 26068184 A JP26068184 A JP 26068184A JP 26068184 A JP26068184 A JP 26068184A JP S61139044 A JPS61139044 A JP S61139044A
Authority
JP
Japan
Prior art keywords
wiring
chip
cell
basic
basic cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26068184A
Other languages
Japanese (ja)
Inventor
Tamotsu Hiwatari
樋渡 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26068184A priority Critical patent/JPS61139044A/en
Publication of JPS61139044A publication Critical patent/JPS61139044A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To minimize the increase in area occupied by wiring regions of a chip even if the chip is made in a larger size, by composing cell columns in the central portion of the chip, of basic cells provided with one or more regions to be passed through by a wiring layer. CONSTITUTION:A chip is wired with two metal wiring layers on condition that an element region 1 and a wiring region are wired with the first and second metal layers while the first metal layer is used in the longitudinal (vertical) direction and the second metal layer is used in the transverse (horizontal) direction. Two types of basic cells 4, namely the basic cells having one or more regions to be passed through by the second metal layer and the basic cells having less such regions are prepared. For defining an element region 1, one or more columns of cells in the central portion of the chip are composed of the former type of basic cells arranged vertically while one or more columns in the right-hand and left-hand portions of the chip are composed of the latter type of cells arranged vertically.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体集積回路装置lこ係り、特にマスター
スライス方式を採用した装置に関わるものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor integrated circuit device, and particularly to a device employing a master slice method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

マスタースライス方式の半導体集積回路装置は、予め複
数の素子からなる基本セルを半導体基板に多数作り込ん
でおき、配線層並びに接続穴を変更することにより所望
の回路動作を得ようとするもので、新たな機能の回路の
要望に対し、比較的簡単に対処出来る特徴を有している
A master slice type semiconductor integrated circuit device is a device in which a large number of basic cells each consisting of a plurality of elements are fabricated on a semiconductor substrate in advance, and desired circuit operation is obtained by changing wiring layers and connection holes. It has the feature of being able to respond to requests for circuits with new functions relatively easily.

すなわち、金属配線を形成する以前の工程により作成さ
れる半導体チップは、全ての機能回路に共通であるため
、上記方式を採用すると、開発期間の短縮、製造コスト
の低減が図れ、多品種少量生産を可能とする。
In other words, since the semiconductor chip created by the process before forming metal wiring is common to all functional circuits, adopting the above method can shorten the development period and reduce manufacturing costs, allowing for high-mix, low-volume production. is possible.

マスタースライス方式によるゲートアレイ型大規模集積
回路装置の一般的な例を第4図に示す。
FIG. 4 shows a general example of a gate array type large-scale integrated circuit device using the master slice method.

すなわち、この半導体集積回路装置は、半導体チップ上
が素子領域l、配線領域2、入出力端子並びに入出力回
路領域3に分けられている。
That is, in this semiconductor integrated circuit device, the top of the semiconductor chip is divided into an element region 1, a wiring region 2, input/output terminals, and an input/output circuit region 3.

また、配線は通常2層金属配線で行なわれ、横方向(水
平方向)と縦方向(垂直方向)の配線に各々別の層が割
りあてられる。さらに、素子領域は基本セルを縦方向に
並べたものを単位として、それを何列か横方向に等間隔
に配置して構成されている。
In addition, wiring is usually performed using two-layer metal wiring, with separate layers being allocated to horizontal (horizontal) and vertical (vertical) wiring. Further, the element region is constructed by arranging basic cells in the vertical direction in several rows at equal intervals in the horizontal direction.

また、論理ゲートは、1個または2個以上の基本セルを
縦に並べたものに、所望の動作を実現するための配線パ
ターンを施すことによって実現されている。
Further, a logic gate is realized by applying a wiring pattern to realize a desired operation to one or more basic cells arranged vertically.

しかし、この方式では、大規模化に伴って素子領域間の
配線本数が多くなると、配線領域の面積が増大し、チッ
プの集積度の低下を招く不都合があった。特に、大規模
化で問題となるのは、幾つかのセル列を横切る通過配線
であり、大規模化に伴って通過配線の本数は増大する。
However, in this method, when the number of wires between element regions increases as the scale increases, the area of the wire regions increases, leading to a decrease in the degree of integration of the chip. In particular, as the scale increases, passing wiring that crosses several cell columns becomes a problem, and as the scale increases, the number of passing wiring increases.

また、一般的に通過配線はチップの中央付近のセル列に
集中する傾向がある。通過配線は、論理ゲートの中で横
方向(水平方向)の配線に使用する層の金属配線パター
ンが無い箇所に限って可能である。従って。
Further, in general, passing wiring tends to be concentrated in cell rows near the center of the chip. Pass-through wiring is possible only at locations in the logic gate where there is no metal wiring pattern of a layer used for lateral (horizontal) wiring. Therefore.

通過配線が可能な箇所は各論理ゲートによってまちまち
であり、複数のセル列を横切る通過配線を実現する際に
は5通過配線が可能な箇所をセル列毎に探索するため、
通過配線は真直にはひけず、階段状の配線となる場合が
多い。これによって、配線領域の面積が増大し、チップ
の集積度の低下を招く不都合があった。
The locations where passing wiring is possible vary depending on each logic gate, and when implementing passing routing that crosses multiple cell columns, the locations where five passing routings are possible are searched for each cell column.
Pass-through wiring does not run straight, but often has a staircase-like pattern. As a result, the area of the wiring region increases, resulting in a disadvantage that the degree of integration of the chip decreases.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情を考慮してなされたもので。 The present invention has been made in consideration of the above circumstances.

マスタースライス方式によるゲートアレイ型大規模集積
回路装置を提供することを目的としている。
The purpose of this invention is to provide a gate array type large-scale integrated circuit device using a master slice method.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、配線を2層金属配線で行ない、1.2
層目の金属で素子領域及び配線領域を配線し、更に1層
目の金属を縦方向(垂直方向)、2層目の金属を横方向
(水平方向)に使用することを前提条件とし、基本セル
として、2層目の金属の通過配線の領域を1箇所以上確
保したものと。
The gist of the present invention is to conduct the wiring with two-layer metal wiring, and 1.2
The basic condition is that the element area and wiring area are wired using the metal of the first layer, and that the metal of the first layer is used vertically (vertically) and the metal of the second layer is used horizontally (horizontally). As a cell, one or more areas are secured for the second layer metal passing wiring.

同じ領域の箇所がそれより少ないものの2種類を準備し
、素子領域を構成するときにチップの中央部分の1つ以
上のセル列は、前述の2種の基本セルの前者の基本セル
を縦に並べて構成し、チップの右側、左側部分の各々1
つ以上のセル列は、後者の基本セルを縦に並べて構成す
る。更に論理ゲートを実現するにあたって、前者の基本
セルを縦に並べて構成するものと、後者の基本セルを縦
に並べて構成するものの2種類を用意し、チップの中央
部分の前者の基本セルから成る論理ゲートが配置されて
いるセル列の通過配線を実現するときに、基本セルに予
め確保されている通過配線用の箇所を利用し、階段状で
ない真直な通過配線を実現すること、である。
Two types of cells with fewer locations in the same area are prepared, and when configuring the element area, one or more cell rows in the center of the chip are formed by vertically connecting the former of the two types of basic cells described above. Arrange them side by side, one each for the right and left parts of the chip.
Two or more cell rows are formed by vertically arranging the latter basic cells. Furthermore, in realizing logic gates, we prepared two types: the former, which consists of basic cells arranged vertically, and the latter, which consists of basic cells arranged vertically. When realizing a passing wiring for a cell column in which gates are arranged, a straight passing wiring without a stepped shape is realized by using a place for the passing wiring secured in advance in a basic cell.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来のマスタースライス方式によるゲ
ートアレイ型大規模集積回路の構成方式に比べ下記の効
果が得られる。
According to the present invention, the following effects can be obtained compared to the configuration method of a gate array type large-scale integrated circuit using the conventional master slice method.

すなわち、一般的に通過配線の集中するチップの中央部
分のセル列が、通過配線用の領域を1箇所以上確保した
基本セルから構成されているため、この部分の2つ以上
の連続するセル列を横切る通過配線を実現するときに、
基本セルのこの領域を利用すれば、各セル列共に同一位
置(y座標)に通過配線が実現でき、配線領域内での階
段状の配線を必要としない。このため、配線領域内の配
線の混雑度が効果的に緩和され、大規模化しても配線領
域の面積の増大する割合を、従来方式に比べて低減する
ことが可能になり、チップの集積度の増大をもたらす。
In other words, since the cell row in the central part of the chip, where passing wiring is generally concentrated, is composed of basic cells that have secured one or more areas for passing wiring, two or more consecutive cell rows in this part When realizing a passing wiring that crosses the
By using this area of the basic cell, passing wiring can be realized at the same position (y coordinate) for each cell column, and step-like wiring within the wiring area is not required. As a result, the degree of congestion of wiring within the wiring area is effectively alleviated, and even when the scale is increased, it is possible to reduce the rate of increase in the area of the wiring area compared to the conventional method, and it is possible to increase the density of the chip. results in an increase in

また1通過配線用の領域を確保した基本セルでセル列を
構成しているため、1つのセル列に置ける基本セルの個
数は、少なくなるが上記の領域の箇所が異なる基本セル
を2種類用意して、チップの左側、右側の部分には、通
過配線用の領域の箇所がより少ないもの(そういう箇所
が全く無いものも有る)でセル列を構成するため、素子
領域全体の基本セルの個数をいたずらに減少させること
無く、前述の集積度向上の効果が得られる。
In addition, since a cell row is made up of basic cells that have an area reserved for one-pass wiring, the number of basic cells that can be placed in one cell row is reduced, but two types of basic cells with different locations in the above area are prepared. On the left and right sides of the chip, the number of basic cells in the entire device area is reduced because the number of basic cells in the entire device area is reduced because the number of areas for passing wiring is smaller (some have no such area at all) to form cell rows. The above-mentioned effect of improving the degree of integration can be obtained without unnecessarily reducing the amount of data.

更ζ乙連続する2つ以上のセル列を横切る通過配線の位
置を決定する際に、セル列毎に通過可能な領域を探索す
る方法をとらなくて済むため、自動配線のツールもより
容易に実現できる。
Furthermore, when determining the position of a passing route that crosses two or more consecutive cell rows, it is no longer necessary to search for a passable area for each cell row, making automatic routing tools easier. realizable.

〔発明の実施例〕[Embodiments of the invention]

第1図に、本発明を通用したマスタースライス方式によ
るゲートアレイ型大規模集積回路の例を示す。
FIG. 1 shows an example of a gate array type large-scale integrated circuit using the master slice method to which the present invention is applied.

基本セルは1例えば複数個の能動素子からなるCMO8
型とする。第1図では、チップの右側及び左側の各々3
つのセル列が、通過配線のための領域が確保されていな
い基本セルから構成されており、それ以外のセル列は通
過配線のための領域を1箇所持つ基本セルから構成され
ている。第2図に、第1図に使用した2つの種類の基本
セルの構造を示す。
The basic cell is 1, for example, a CMO8 consisting of multiple active elements.
Make it into a mold. In Figure 1, 3 each on the right and left sides of the chip.
One cell column is made up of basic cells for which no area is secured for passing wiring, and the other cell columns are made up of basic cells having one area for passing wiring. FIG. 2 shows the structure of the two types of basic cells used in FIG. 1.

本発明の特徴とする通過配線の実現例を従来例と比較さ
せたものを第3図に示す。第3図に示されるように1本
発明によれば通過配線位置が同一のy座標に得られるた
め、従来例のような階段状の配線が不要となる。
FIG. 3 shows an example of implementing the through wiring, which is a feature of the present invention, in comparison with a conventional example. As shown in FIG. 3, according to the present invention, the passing wiring positions can be obtained at the same y coordinate, so that step-like wiring as in the conventional example is not necessary.

伺5本発明は上記した実施例に限られるものではなく、
その趣旨を逸脱しない範囲で種々変形実施することが可
能である。例えば第1図においてチップの右側及び左側
の各々3つのセル列を通過配線のための領域を1箇所も
つ基本−セルとし、それ以外のセル列は該領域を基本セ
ルの上側及び下側に2箇所(又は一方にまとめて2箇所
分)有する基本セルから形成してもよい。
5. The present invention is not limited to the above embodiments,
Various modifications can be made without departing from the spirit of the invention. For example, in FIG. 1, each of the three cell rows on the right and left sides of the chip is a basic cell with one area for passing wiring, and the other cell rows have two areas above and below the basic cell. It may be formed from a basic cell having two locations (or two locations at one end).

又、このようにセル列を単位とする方法の他にセル列の
中で、中央部とその上側及び下側の部分とで基本セルを
変え、中央部領域では配線専用領域を1つもつ基本セル
、上側及び下側では配線専用領域のない基本セル(又は
中央部領域では配線専用領域を2つ分、上側及び下側で
は1つ)を用いるようにしてもよい。
In addition to this method of using a cell row as a unit, there is also a method in which the basic cells are changed between the central part and the upper and lower parts of the cell row, and the central area has one area exclusively for wiring. A basic cell without a wiring-dedicated area on the upper and lower sides of the cell (or two wiring-dedicated areas on the central area and one wiring-only area on the upper and lower sides) may be used.

或いは、第1図で更に破線領域(Alで示す領域内を配
線専用領域を基本セルの上下に夫々1つ又は、上側また
は下側にまとめて2つ分備えた基本セルで構成して階層
構造としてもよい。
Alternatively, the area indicated by the broken line in FIG. 1 (indicated by Al) may be configured with basic cells that have wiring dedicated areas, one each on the top and bottom of the basic cell, or two on the top or bottom of the basic cell to create a hierarchical structure. You can also use it as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係る半導体集積回路装置の
構成を示す平面図、第2図は1本発明の特徴とする通過
配線用の領域が確保されていないものと、1箇所確保さ
れている2種類の基本セルの形状を示す平面図、第3図
は、本発明の特徴とする通過配線用の領域を使用して通
過配線“を実現したものと、従来方式を比較した1例を
示す平面図、第4図は、従来のマスタースライス方式に
よるケートアレイ型大規模集積回路装置の構成例を示す
平面図である。 図において、1・・・素子領域% 2・・・配線領域、
3・・・入出力端子並びに入出力回路領域、4・・・基
本セル15・・・通過配線用の領域。 代理人 弁理士 則 近 憲 佑(他1名)第  1 
図 第  2 図 (久) 第  3 図 Cαλ
FIG. 1 is a plan view showing the configuration of a semiconductor integrated circuit device according to an embodiment of the present invention, and FIG. 2 shows one in which no area is secured for passing wiring, which is a feature of the present invention, and one in which one area is secured. Figure 3 is a plan view showing the shapes of the two types of basic cells that have been used, and shows a comparison between a conventional method and one in which "pass-through wiring" is realized using the region for through-wiring, which is a feature of the present invention. FIG. 4 is a plan view showing an example of the configuration of a gate array type large-scale integrated circuit device using the conventional master slice method. In the figure, 1...element area% 2...wiring area ,
3... Input/output terminal and input/output circuit area, 4... Basic cell 15... Area for passing wiring. Agent: Patent Attorney Noriyuki Chika (and 1 other person) No. 1
Figure 2 (Kyu) Figure 3 Cαλ

Claims (1)

【特許請求の範囲】[Claims]  半導体基板に能動素子を備えた基本セルからなるセル
列を複数個配列し集積してなるチップに必要に応じた配
線パターンを施して所望の回路動作を実現するマスター
スライス方式の半導体集積回路装置において、前記基本
セルとして通過配線専用領域を備えた基本セルと、通過
配線専用領域が前記基本セルより小さいか又はこれを設
けない基本セルの2種類を少なくとも備え、前者の基本
セルをチップ中央部に集中せしめる如く為した事を特徴
とする半導体集積回路装置。
In a master slice type semiconductor integrated circuit device in which a desired circuit operation is realized by applying wiring patterns as necessary to a chip formed by arranging and integrating a plurality of cell rows consisting of basic cells equipped with active elements on a semiconductor substrate. , at least two types of basic cells are provided as the basic cell, a basic cell having a dedicated area for passing wiring, and a basic cell having a dedicated area for passing wiring that is smaller than the basic cell or not provided, and the former basic cell is placed in the center of the chip. A semiconductor integrated circuit device characterized by being designed to concentrate.
JP26068184A 1984-12-12 1984-12-12 Semiconductor integrated circuit device Pending JPS61139044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26068184A JPS61139044A (en) 1984-12-12 1984-12-12 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26068184A JPS61139044A (en) 1984-12-12 1984-12-12 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS61139044A true JPS61139044A (en) 1986-06-26

Family

ID=17351293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26068184A Pending JPS61139044A (en) 1984-12-12 1984-12-12 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS61139044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646049U (en) * 1987-07-01 1989-01-13
JPH0312963A (en) * 1989-06-12 1991-01-21 Mitsubishi Electric Corp Gate array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646049U (en) * 1987-07-01 1989-01-13
JPH0312963A (en) * 1989-06-12 1991-01-21 Mitsubishi Electric Corp Gate array

Similar Documents

Publication Publication Date Title
KR900003832B1 (en) Wiring method for semiconductor intergrated circuit device
JPH02177345A (en) Semiconductor integrated circuit device
JPS61292341A (en) Semiconductor integrated circuit
JPS61139044A (en) Semiconductor integrated circuit device
JPH0348669B2 (en)
JPS61240652A (en) Semiconductor integrated circuit device
JP2505039B2 (en) Wiring method for wiring that passes over functional blocks
JPS62140430A (en) Wiring method for semiconductor integrated circuit
JPS59155145A (en) Semiconductor integrated circuit device
JP2807129B2 (en) Semiconductor integrated circuit
JPS60247943A (en) Semiconductor integrated circuit device
JPS60224243A (en) Manufacture of gate array type semiconductor integrated circuit device
JPS6260235A (en) Semiconductor integrated circuit device
JPS63150934A (en) Semiconductor integrated circuit device
JPS60121756A (en) Semiconductor integrated circuit device
JPS5936942A (en) Semiconductor integrated circuit
JPS6074548A (en) Semiconductor integrated circuit
JPH02187050A (en) Semiconductor integrated circuit device
JPH04280471A (en) Semiconductor integrated circuit based on master slice system
JP2907836B2 (en) Semiconductor integrated circuit
JPH03116868A (en) Semiconductor integrated circuit device
JPH03255665A (en) Semiconductor integrated circuit device
JPS60113945A (en) Semiconductor integrated circuit
JPS60111440A (en) Integrated circuit device
JPS6115346A (en) Semiconductor logic ic device