JPS61292341A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS61292341A
JPS61292341A JP13291285A JP13291285A JPS61292341A JP S61292341 A JPS61292341 A JP S61292341A JP 13291285 A JP13291285 A JP 13291285A JP 13291285 A JP13291285 A JP 13291285A JP S61292341 A JPS61292341 A JP S61292341A
Authority
JP
Japan
Prior art keywords
wiring
blocks
cell
layer
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13291285A
Other languages
Japanese (ja)
Inventor
Masami Murakata
村方 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13291285A priority Critical patent/JPS61292341A/en
Publication of JPS61292341A publication Critical patent/JPS61292341A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly set a wiring density and to integrate without increasing the number of tracks by blocking cell row groups, wiring with the first and second wiring layers in the block, and wiring between the blocks with the third wiring layer. CONSTITUTION:A chip is divided into four blocks, and one is used for function blocks 5 such as ROM, RAM, PLA. The remaining three blocks are composed of cell rows 2 in which several types of standard cells 3 of NAND, NOR of the minimum units of logic functions are aligned in many rows. The length of the cell row is decided so that the number of tracks of the cell row direction required for wiring between the cells 3 in each block becomes the width between the terminals of the adjacent cell rows, i.e., the wiring region, namely, the height of the cell, as the block number 3. The cell rows are disposed and wired in each block by the first layer aluminum in the direction along the row and the second layer aluminum in the direction perpendicular thereto by a CAD. Then, the connection between the blocks in lateral direction is decided by the third aluminum wiring layer. The connection between the blocks in elevational direction uses the second layer aluminum. This is to eliminate the contact with the third layer aluminum.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、標準セル方式半導体集積回路に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a standard cell type semiconductor integrated circuit.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

標準セル方式半導体集積回路は、論理機能の最小単位で
らるNAND6るいはNOR等からなる複数種類の標準
セルを多数個列状に並べてセル列を形成し、これらセル
列間を結線要求のらる標準セル間の配線のための領域と
して使用する。本方式によれば、配線のための領域でb
るチャネルの幅は可変でラシ、必要なだけの幅を取るこ
とができるO 標準セル方式による半導体集積回路の一般的な例を第3
図に示す。この様に、一般的な標準セル方式半導体集積
回路では、標準セル3の並びからなるセル列2、配線の
ための領域4及び品種によっては、予め設計されたRO
M,RAM,PLA 等の機能ブロック5から構成され
ている。
Standard cell type semiconductor integrated circuits consist of multiple types of standard cells, such as NAND6 or NOR, which are the minimum unit of logic function, arranged in rows to form cell rows, and connections are required between these cell rows. It is used as an area for wiring between standard cells. According to this method, b
The width of the channel is variable and can be as wide as required.
As shown in the figure. In this way, in a general standard cell type semiconductor integrated circuit, a cell row 2 consisting of a row of standard cells 3, an area 4 for wiring, and a pre-designed RO
It is composed of functional blocks 5 such as M, RAM, and PLA.

また、配線は通常2層金属配線で行なわれ、横方向(セ
ル列に並行な方向)と縦方向(セル列に対して垂直な方
向)の配線に各々別の層が割り当てられる。
Further, wiring is usually performed using two-layer metal wiring, with separate layers being assigned to horizontal (parallel to the cell columns) and vertical (perpendicular to the cell columns) interconnects.

しかし、この方式では大規模化に伴い、セル列の長さも
長くなシ、それに伴い各標準セル間を結線するための縦
方向及び横方向の配線本数も増大する。また、配線のた
めの領域であるチャネルの幅は横方向の配線本数で決ま
シ、一部でも横方向の配線が多い部分がおると当該チャ
ネルの幅は、その部分の幅だけ必要とする。この様な領
域は一般に各セル列の中央付近に生じやすく、従ってこ
の様なセル列の左端及び右端部分は、配線には有効に使
用されない無効領域として残る問題があった。
However, in this system, as the scale increases, the length of the cell rows becomes longer, and the number of vertical and horizontal wiring lines for connecting each standard cell also increases accordingly. Further, the width of the channel, which is a region for wiring, is determined by the number of horizontal wirings, and if there is a part where there are many horizontal wirings, the width of the channel needs to be equal to the width of that part. Generally, such a region tends to occur near the center of each cell row, and therefore, there is a problem in that the left and right end portions of such a cell row remain as invalid regions that are not effectively used for wiring.

また、1つのセル列に含まれる標準セル数と、そのセル
列と対向するセル列間の配線領域とは強い相関がらり一
般に1つのセル列内に含まれる標準セルの増加に伴ない
配線に必要な領域も増加する傾向がらる。従ってセル列
の長さが長くなると配線に必要な領域も増加することに
なシ、上記問題が増長される傾向にろった。
In addition, there is a strong correlation between the number of standard cells included in one cell column and the wiring area between that cell column and the opposing cell column. There is also a tendency for the number of such areas to increase. Therefore, as the length of the cell array becomes longer, the area required for wiring also increases, and the above-mentioned problem tends to be exacerbated.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した従来方式の欠点を改良したもので、
高集積化を図った標準セル方式半導体集積回路を提供す
ることを目的とする。
The present invention improves the drawbacks of the conventional method described above.
The purpose of this invention is to provide a standard cell type semiconductor integrated circuit with high integration.

〔発明の概要〕[Summary of the invention]

本発明ではセル列の長さを、ブロック内配線に必要とす
るトラック(セル列方向のセル間接続配線の配置部)数
に応じて決定する事により、論理セル列群をブロック化
し、ブロック内を第1層及び第2層金属配線により配−
し、ブロック間を第3層金属配線を用いて配線する事を
特徴とする。
In the present invention, by determining the length of a cell column according to the number of tracks (placement area for interconnection wiring between cells in the direction of the cell column) required for intra-block wiring, a group of logic cell columns can be divided into blocks, and the length of the cell column can be divided into blocks. are distributed by the first and second layer metal wiring.
The feature is that the blocks are interconnected using third-layer metal interconnections.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ブロック化により配線密度の均一化が
図られ、また、ブロック間配線は、更に上位の層を用い
るため、トラック数の増加を招くことなく高集積化が達
成される。
According to the present invention, uniform wiring density is achieved by forming blocks, and since inter-block wiring uses an upper layer, high integration can be achieved without increasing the number of tracks.

また、トラックが設けられる配線領域の幅を標準セルの
高さと等しくする如くセル列の長ざを決め、セル列と配
線領域を重ねれば高集積化に更に有効でらる。
Further, it is more effective to increase the integration density by determining the length of the cell row so that the width of the wiring region where the track is provided is equal to the height of the standard cell, and by overlapping the cell row and the wiring region.

〔発明の実施例〕[Embodiments of the invention]

第1図(a)は本発明の実施例を示す図でらる。 FIG. 1(a) is a diagram showing an embodiment of the present invention.

チップは4つのブロックに分けられ、内1つはROM、
RAM、PLA 等の機能ブロック5にあてられている
。残る3つのブロックには、論理機能の最小単位でらる
NAND、NOR等からなる複数種の標準セル3を多数
個列状に並べたセル列2で構成されている。セル列の中
心軸はセルの入出力端子が設けられる(×印)。そして
統計的に求めることにより、各ブロック内の標準セル3
間の配線に長さが決定され、上記の如くブロック数3と
されている。
The chip is divided into four blocks, one of which is ROM,
It is allocated to functional block 5 such as RAM and PLA. The remaining three blocks are composed of cell rows 2 in which a large number of standard cells 3 of a plurality of types, such as NAND, NOR, etc., which are the minimum units of logic functions, are arranged in rows. Cell input/output terminals are provided at the center axis of the cell row (x mark). Then, by statistically determining the standard cell 3 in each block,
The length of the wiring between them is determined, and the number of blocks is 3 as described above.

本実施例では、先ず、セル列に沿う方向を第1層M1こ
れに直角な方向を第2層Mによ、j5、CADにより各
ブロック内で配置・配線を行なう。0印はスルーホール
を示す。
In this embodiment, first, placement and wiring are performed in each block using CAD using the first layer M1 in the direction along the cell column and the second layer M in the direction perpendicular thereto. The 0 mark indicates a through hole.

次に、第3層M配線により左右方向のブロック間の接続
が決定される。上下方向のブロック間の接続は第2層、
υが用いられる。これは第3層M配線と接触しない様に
する為でらる。しかもブロック内の配置・配線に於いて
設けられたセル列に直^な方向の配線はセル列方向の配
線に比較して密度が粗でめるので、障害とはならなり0
従って設計が容易でらる。
Next, connections between blocks in the left and right direction are determined by the third layer M wiring. Connections between blocks in the vertical direction are in the second layer,
υ is used. This is done to prevent contact with the third layer M wiring. Moreover, in the layout and wiring within the block, the wiring in the direction perpendicular to the cell columns is less dense than the wiring in the direction of the cell columns, so it does not cause any interference.
Therefore, the design is easy.

第2図は他の実施例を示す。ここでは、各ブロックはセ
ル列2の方向が異なっている。しかしブロック内の配線
に関してセル列2方向は第1層M1これに垂直な方向は
第2層Alで構成される点は変わらない。そして、ブロ
ック間配線は第3層AJが用いられるが、ブロック境界
でスルーホールヲ介してセル列と垂直な方向については
第2層Alに接続され、層変換が為されている。これは
、ブロック間配線に際し、x、y方向に異なる配線層を
割シ当て、同時にセル列と直角な方向のブロック内配線
は密度が粗である事を用いた結果である。
FIG. 2 shows another embodiment. Here, the directions of the cell columns 2 in each block are different. However, the fact remains that the wiring within the block is composed of the first layer M1 in the direction of two cell columns and the second layer Al in the direction perpendicular thereto. The third layer AJ is used for the inter-block wiring, but it is connected to the second layer Al in the direction perpendicular to the cell rows through through holes at the block boundaries, thereby achieving layer conversion. This is the result of allocating different wiring layers in the x and y directions for inter-block wiring, and at the same time using the fact that the intra-block wiring in the direction perpendicular to the cell columns is sparse in density.

以上の様に、本発明によればトラック数を前照してブロ
ック化を行ない、ブロック内は第1、第2/i金属配線
、ブロック間は第3層金属配線を用いて配線し、高密度
の配置・配線が実現できる。
As described above, according to the present invention, blocks are formed with consideration given to the number of tracks, wiring is performed using the first and second/i metal wiring within the block, and third layer metal wiring is used between blocks, and High-density placement and wiring can be achieved.

尚、上記実施例において、第1層、第2層Mの関係を全
て逆にしてもよい。又、上記実施例に限らず、第1図ら
)に示す如くセル列間に配線領域を設けたものにも同様
に適用することが出来る。
In addition, in the above embodiment, the relationship between the first layer and the second layer M may be completely reversed. Furthermore, the present invention is not limited to the above-mentioned embodiments, and can be similarly applied to those in which wiring regions are provided between cell columns as shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実施例を示す平面図、第3
図は従来列の平面図でろる。 図において、 1・・・半導体基板、   2・・・セル列、3・・標
準セル、    4・・・配線領域、5・・・機能ブロ
ック。 代理人 弁理士 則 近 憲 佑 (ほか1名)第  
2 図
1 and 2 are plan views showing embodiments of the present invention;
The figure is a plan view of the conventional row. In the figure, 1... semiconductor substrate, 2... cell row, 3... standard cell, 4... wiring area, 5... functional block. Agent Patent Attorney Kensuke Chika (and 1 other person) No.
2 figure

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板に論理セル列が複数形成され、セル間
が配線されて所望の回路動作が実現される半導体集積回
路において、前記セル列の長さを、ブロック内配線に必
要とする配線トラック数に応じて決定することにより、
論理セル列群をブロック化し、ブロック内を第1層及び
第2層金属配線により配線し、ブロック間を第3層金属
配線を用いて配線した事を特徴とする半導体集積回路。
(1) In a semiconductor integrated circuit in which a plurality of logic cell rows are formed on a semiconductor substrate and the cells are interconnected to achieve a desired circuit operation, the length of the cell rows is determined by the wiring track required for intra-block wiring. By deciding according to the number
A semiconductor integrated circuit characterized in that a group of logic cell columns is divided into blocks, the blocks are interconnected using first and second layer metal interconnections, and the blocks are interconnected using third layer metal interconnections.
(2)隣接するブロック間をセル列方向は第3層配線で
、セル列に対して直角する方向は第2層配線で接続した
事を特徴とする前記特許請求の範囲第1項記載の半導体
集積回路。
(2) The semiconductor according to claim 1, wherein adjacent blocks are connected by third-layer wiring in the direction of the cell columns and by second-layer wiring in the direction perpendicular to the cell columns. integrated circuit.
(3)隣接するブロック間でセル列が互いに直角に配列
され、隣接領域でブロック間配線がスルーホールを介し
て層変換されてなる事を特徴とする前記特許請求の範囲
第1項記載の半導体集積回路。
(3) The semiconductor according to claim 1, characterized in that cell rows are arranged at right angles to each other between adjacent blocks, and inter-block interconnections are layer-converted via through holes in adjacent regions. integrated circuit.
JP13291285A 1985-06-20 1985-06-20 Semiconductor integrated circuit Pending JPS61292341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13291285A JPS61292341A (en) 1985-06-20 1985-06-20 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13291285A JPS61292341A (en) 1985-06-20 1985-06-20 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS61292341A true JPS61292341A (en) 1986-12-23

Family

ID=15092426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13291285A Pending JPS61292341A (en) 1985-06-20 1985-06-20 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS61292341A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023952A (en) * 1988-06-21 1990-01-09 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0223633A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0223636A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit for fm/am tuner and broadcasting radio receiver using same
JPH0223637A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0223661A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0223635A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit and broadcasting radio receiver using same
JPH0223663A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0223662A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0223634A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit and broadcasting radio receiver using same
JPH0251250A (en) * 1988-08-12 1990-02-21 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0282638A (en) * 1988-09-20 1990-03-23 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0282622A (en) * 1988-09-20 1990-03-23 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0329342A (en) * 1989-06-26 1991-02-07 Toshiba Corp Semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023952A (en) * 1988-06-21 1990-01-09 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0223633A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0223636A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit for fm/am tuner and broadcasting radio receiver using same
JPH0223637A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0223661A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0223635A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit and broadcasting radio receiver using same
JPH0223663A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0223662A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0223634A (en) * 1988-07-12 1990-01-25 Sanyo Electric Co Ltd Semiconductor integrated circuit and broadcasting radio receiver using same
JPH0251250A (en) * 1988-08-12 1990-02-21 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0282638A (en) * 1988-09-20 1990-03-23 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0282622A (en) * 1988-09-20 1990-03-23 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPH0329342A (en) * 1989-06-26 1991-02-07 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US5117277A (en) Semiconductor integrated circuit device with improved connection pattern of signal wirings
US5977574A (en) High density gate array cell architecture with sharing of well taps between cells
JPS61292341A (en) Semiconductor integrated circuit
JPH09162279A (en) Semiconductor integrated circuit device and manufacture thereof
US4564773A (en) Semiconductor gate array device having an improved interconnection structure
JPH0480538B2 (en)
JPH09293844A (en) High density gate array cell structure and manufacture thereof
US4910574A (en) Porous circuit macro for semiconductor integrated circuits
JPS5866343A (en) Semiconductor integrated circuit device
JP2000068383A (en) Design method for semiconductor integrated circuit device and the semiconductor integrated circuit device
KR910007900B1 (en) Semiconductor integrated circuit device
US4791609A (en) Semiconductor integrated circuit device
JPS5895855A (en) Designing method for semiconductor integrated circuit device
JPS6022337A (en) Semiconductor integrated circuit
EP0288688A2 (en) Porous circuit macro for semiconductor integrated circuits
JPH0443665A (en) Semiconductor device and its manufacture
JP2947219B2 (en) Wiring structure of standard cell type semiconductor integrated circuit
JP2505039B2 (en) Wiring method for wiring that passes over functional blocks
JPH04280452A (en) Manufacture of semiconductor integrated circuit device and semiconductor integrated circuit device
JP2907836B2 (en) Semiconductor integrated circuit
JPS61214543A (en) Gate array
JP3106489B2 (en) Semiconductor integrated circuit
JPS6248042A (en) Master/slice type semiconductor integrated circuit
JPH0286167A (en) Master slice system integrated circuit device
JPH0695567B2 (en) Integrated circuit device