JPS5914609A - Thermal processing for amorphous magnetic material - Google Patents

Thermal processing for amorphous magnetic material

Info

Publication number
JPS5914609A
JPS5914609A JP57123487A JP12348782A JPS5914609A JP S5914609 A JPS5914609 A JP S5914609A JP 57123487 A JP57123487 A JP 57123487A JP 12348782 A JP12348782 A JP 12348782A JP S5914609 A JPS5914609 A JP S5914609A
Authority
JP
Japan
Prior art keywords
magnetic field
temperature
heat treatment
thin plate
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57123487A
Other languages
Japanese (ja)
Other versions
JPH0337721B2 (en
Inventor
Hideki Matsuda
秀樹 松田
Koichi Aso
阿蘇 興一
Akira Kamihira
上平 暁
Yoshitaka Ochiai
落合 祥隆
Masatoshi Hayakawa
正俊 早川
Kazuhide Hotai
保田井 和秀
Kazuhiko Hayashi
和彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP57123487A priority Critical patent/JPS5914609A/en
Publication of JPS5914609A publication Critical patent/JPS5914609A/en
Publication of JPH0337721B2 publication Critical patent/JPH0337721B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve permeability in a high frequency region by combining the thermal processings under the rotating magnetic field and vertical magnetic field and by selecting temperature to the specified relation. CONSTITUTION:An amorphous magnetic thin plate 1 is placed under the thermal processing in the rotating magnetic field and vertical magnetic field. In this case, the thermal processing under vertical magnetic field is carried out following the processing under the rotating magnetic field or this sequence may be inverted. In any case, a temperature Ta2 of the thermal processing to be executed first should satisfy the following relation. Namely, the temperature Ta1 is 300 deg.C or higher and is not higher than the Curie temperature Tc of amorphous magnetic material, while the temperature Ta2 is equal to Ta1 or lower and is 250 deg.C or higher but 350 deg.C or lower. Thereby, an inductive magnetic anisotropy can be controlled on the basis of three dimension and permeability in a frequency region as high as 10kHz or higher can be improved.

Description

【発明の詳細な説明】 本発明は、非晶質磁性材の熱処理方法に関する。[Detailed description of the invention] The present invention relates to a method for heat treating an amorphous magnetic material.

軟磁性材料として製造された非晶質磁性合金は、製造さ
れたままの状態では、一般に保磁力が大きく、そして透
磁率が低い。軟磁性材料として使用す゛るには、通常熱
処理を施して透磁率を大きくする必要がある。従来、非
晶質磁性合金の透磁率を改善する熱処理方法としては、
主として2つの方法が知られている。第1の方法は結晶
化温度Txがキュリ一温度Tcより高い非晶質磁性合金
に施される場合であシ、キュリ一温度Tcよシ高くかつ
結晶化温度Txよりも低い温度Taで適当な時間保持し
、その後急冷する熱処理方法である。第2の方法は回転
磁場中熱処理と呼ばれるもので、結晶化温度Txよシ低
くかクキユリ一温度Tcより低い温度で非晶質磁性合金
薄板の主面内で十分強い磁場を回転させて行う方法であ
る。この方法は静磁場中で非晶質磁性合金薄板を回転さ
せても同等の効果が得られる。非晶質磁性合金として望
まれる高磁束密度材料の場合は、結晶化温度Txがキュ
リ一温度Tcよりも低くなることが多く、従って第1の
方法ではなく第2の方法(回転磁場中熱処理)が施され
る。しかし、これらの熱処理方法においては高周波域で
の透磁率が低い。
Amorphous magnetic alloys manufactured as soft magnetic materials generally have a large coercive force and a low magnetic permeability in the as-manufactured state. To use it as a soft magnetic material, it is usually necessary to heat treat it to increase its magnetic permeability. Conventionally, heat treatment methods for improving the magnetic permeability of amorphous magnetic alloys include:
Mainly two methods are known. The first method is applied to an amorphous magnetic alloy whose crystallization temperature Tx is higher than the Curie temperature Tc. This is a heat treatment method in which the material is held for a period of time and then rapidly cooled. The second method is called rotating magnetic field heat treatment, which involves rotating a sufficiently strong magnetic field within the main surface of the amorphous magnetic alloy thin plate at a temperature lower than the crystallization temperature Tx or lower than the crystallization temperature Tc. It is. This method can produce the same effect even when rotating an amorphous magnetic alloy thin plate in a static magnetic field. In the case of high magnetic flux density materials desired as amorphous magnetic alloys, the crystallization temperature Tx is often lower than the Curie temperature Tc, so the second method (heat treatment in a rotating magnetic field) is used instead of the first method. will be applied. However, these heat treatment methods have low magnetic permeability in a high frequency range.

本発明は上述の点に鑑み、特に10kliz程度以上の
高周波域での透磁率の改善を図った非晶質磁性材料の熱
処理方法を提供するものである。
In view of the above-mentioned points, the present invention provides a method for heat treating an amorphous magnetic material, which improves the magnetic permeability particularly in a high frequency range of about 10 kliz or more.

本発明においては、非晶質磁性薄板に対して、この薄板
の主面内で薄板と相対的に回転する磁場の中で行う熱処
理、つまシ薄板の主面内で磁場を回転させるか、或は静
磁場中で薄板を回転させて行う所謂垂直磁場中熱処理と
、薄板の主面にほぼ垂直でかつ飽和させるに十分な強さ
の磁場中で行う熱処理即ち所謂垂直磁場中熱処理とを施
して成る。この場合、熱処理の順序としては、非晶質磁
性薄板に対して回転磁場中熱処理を施して後、垂直磁場
中熱処理を施してもよく、或はその逆に垂直磁場中熱処
理を施して後、回転磁場中熱処理を施してもよい。しか
して、いずれの熱処理順序によっても、最初に施される
熱処理の温度+11a 1と、次に施される熱処理の温
度Ta2は次の関係を満すようになす。温度l1la1
は300℃以上かつ非晶質磁性材料のキュリ一温度Tc
以下とし、温度1゛a2は’l’a1より低温で250
℃以上かっ350 ’C以下に選定する。即ち 300℃<、 ’I’al <TC 250℃<Ta2 <350℃ Ta2< Ta1 温度Ta1が300℃より低温では処理時間がかがシ且
つ歪除去の効果が上がらず、またキュリ一温度Tcよシ
高温では被処理物が磁性を失うので磁場中熱処理になら
ない。温度’l’a2が250℃よシ低温では後処理の
方向の誘導磁気異方性が充分に出す、かつ処理時間がか
がって工業的には意味が余りない。また温度Ta2が3
50 ’Oよシ高温では後処理の方向への誘導磁気異方
性が強すぎて透磁率が下がる。
In the present invention, heat treatment is performed on an amorphous magnetic thin plate in a magnetic field that rotates within the main plane of the thin plate relative to the thin plate, or by rotating the magnetic field within the main plane of the thin plate. The thin plate is subjected to so-called perpendicular magnetic field heat treatment performed by rotating the thin plate in a static magnetic field, and heat treatment performed in a magnetic field that is almost perpendicular to the main surface of the thin plate and strong enough to saturate the thin plate, that is, so-called perpendicular magnetic field heat treatment. Become. In this case, the order of heat treatment may be such that the amorphous magnetic thin plate is subjected to heat treatment in a rotating magnetic field and then heat treated in a vertical magnetic field, or vice versa, after heat treatment is performed in a perpendicular magnetic field, Heat treatment in a rotating magnetic field may also be performed. Therefore, in any heat treatment order, the temperature +11a1 of the first heat treatment and the temperature Ta2 of the next heat treatment satisfy the following relationship. Temperature l1la1
is 300°C or higher and the Curie temperature Tc of the amorphous magnetic material
The temperature 1゛a2 is lower than 'l'a1 and is 250
Select a temperature between ℃ or higher and 350'C or lower. That is, 300°C<, 'I'al <TC 250°C<Ta2 <350°C Ta2<Ta1 If the temperature Ta1 is lower than 300°C, the processing time will be long and the effect of strain removal will not be improved, and the temperature will be lower than the Curie temperature Tc. At high temperatures, the object to be treated loses its magnetism, so it cannot be heat-treated in a magnetic field. If the temperature 'l'a2 is as low as 250° C., the induced magnetic anisotropy in the direction of the post-processing will be sufficiently produced, and the processing time will be long, so it is not very meaningful industrially. Also, the temperature Ta2 is 3
At temperatures as high as 50'O, the induced magnetic anisotropy in the direction of post-treatment is too strong and the permeability decreases.

通常、多くの非晶質磁性材料は磁場中熱処理で誘導磁気
異方性が発生する。本発明においては上述のように回転
磁場中熱処理と垂直磁場中熱処理を組み合せ、 KXンKYミに2 但し、Kx:x方向の誘導磁気異方性定数Ky:Y方向
の誘導磁気異方性定数 Kz: z方向の誘導磁気異方性定数 第1図に非晶質磁性薄板薄&(1)に対する上記x、y
、z方向を示す。
Normally, many amorphous magnetic materials develop induced magnetic anisotropy when heat treated in a magnetic field. In the present invention, as described above, heat treatment in a rotating magnetic field and heat treatment in a perpendicular magnetic field are combined, and Kx is the induced magnetic anisotropy constant in the x direction. Kz: Induced magnetic anisotropy constant in the z direction.
, indicates the z direction.

となすことにより、非晶質磁性材料薄板内の誘導磁気異
方性をtlとんど無くすことができ、10kHz以上の
高周波域での透磁率を改善することができる。なお、逆
に適当にある方向に誘導磁気異方性を持たせるととも可
能である。
By doing so, the induced magnetic anisotropy in the thin plate of amorphous magnetic material can be almost eliminated, and the magnetic permeability in a high frequency range of 10 kHz or higher can be improved. It should be noted that, on the contrary, it is also possible to provide induced magnetic anisotropy in an appropriate direction.

一方、一般に熱処理においては処理温度が高かければ高
いほど構造緩和が速い。また2回の熱処理を行う場合、
1回目の処理温度’l’alを結晶化温度Txよシ低温
(’I’at < Tx )とし、2回月の処理温度1
゛a2を結晶化温度Txよシ低温(Ta2<Tx)とし
た場合、’l” 2 〉’l’a 1で2回目の熱処理
を行うと構造緩和は、’1”2 < Ta1のときに比
べて著しく速い。
On the other hand, in general, in heat treatment, the higher the treatment temperature, the faster the structural relaxation. In addition, when heat treatment is performed twice,
The first treatment temperature 'l'al is set to be lower than the crystallization temperature Tx ('I'at < Tx), and the second treatment temperature is set to 1.
When ゛a2 is set to a lower temperature than the crystallization temperature Tx (Ta2<Tx), when the second heat treatment is performed at 'l'2>'l'a1, the structural relaxation occurs when '1'2 < Ta1. It's significantly faster than that.

誘導磁気異方性は非晶質磁性材料の構造緩和の一種であ
るから、上記の2種の磁場中熱処理を施して、所要の誘
導磁気異方性を生じせしめて10 kl(z以上の高周
波域での透磁率を改善するにはl1182< ’l’a
lとして1回目及び2回目の熱処理を夫夫適当な時間行
う。これによって容易かつ特性のバラツキが少なく実現
できる。
Since induced magnetic anisotropy is a type of structural relaxation of amorphous magnetic materials, the above two types of magnetic field heat treatment are performed to produce the required induced magnetic anisotropy, and 10 kl (high frequency To improve the permeability in the area l1182<'l'a
The first and second heat treatments are carried out for an appropriate time. This allows for easy implementation with less variation in characteristics.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

実施例(1) Fes C075844816(原子比)なる組成の低
磁歪非晶質磁性合金薄板(但し結晶化温度Txは420
℃、キュリ一温度Tcは570℃、板厚18 ptn 
) K対して、板面を平行な磁場Ha : 2.4 k
Oe 、回転数:1100rpの回転磁場中でTa1:
370’Qの温度に保持し、30分間熱処理し、しかる
後、薄板の板面と垂直に13.8 koeの磁場1ia
を印加しながら’l’alよシ低い温度Ta2に保ち1
0分間熱処理を行った。第2図に2回目の処理温度’l
’a2を変えたときの各透磁率μ′の周波数In 性t
 示t。同図中、曲線(I) 、 (II) 、 +1
3 、 GV)は夫々処理温度Ta2が241℃、26
1’01275℃、305℃の場合である。
Example (1) A low magnetostrictive amorphous magnetic alloy thin plate having a composition of Fes C075844816 (atomic ratio) (however, the crystallization temperature Tx was 420
℃, Curie temperature Tc is 570℃, plate thickness 18 ptn
) Magnetic field Ha parallel to the plate surface with respect to K: 2.4 k
Oe, rotation speed: Ta1 in a rotating magnetic field of 1100 rp:
The temperature was maintained at 370'Q, heat treated for 30 minutes, and then a magnetic field of 13.8 koe 1ia was applied perpendicular to the surface of the thin plate.
While applying 'l'al, keep the temperature Ta2 lower than 1.
Heat treatment was performed for 0 minutes. Figure 2 shows the second treatment temperature.
Frequency In of each magnetic permeability μ′ when changing 'a2' Characteristic t
Shown. In the figure, curves (I), (II), +1
3, GV), the processing temperature Ta2 was 241°C and 26°C, respectively.
This is the case of 1'01275°C and 305°C.

実施例(2) 実施例(1)と同じ組成の非晶質磁性合金薄板(板厚3
9μm)に対して、その板面と垂直に13.8kOeの
磁場14aを印加しながら温度Ta1=370’Qに保
って30分間熱処理を行い、しかる後、板面と平行な磁
場Ha : 2.4 koe 、回転数=10Orpm
の回転磁場中で’l’a1よシ低い温度’J’a2 K
保ち1o分間熱処理を行った。第3図に2回目の処理温
度1゛a2を変えたときの各透磁率μ′の周波数特性を
示す。同図中、曲線(a) 、 (b)はTa2が30
0 ℃、332℃の場合である。また曲線[C)は第1
回目の垂直磁場中処理のみの場合、曲線(dlは回転磁
場中処理のみ(温度Ta : 370 oC,処理時間
ta:10分間)1曲線(elは製造された1まの(無
処理)の場合である。
Example (2) Amorphous magnetic alloy thin plate with the same composition as Example (1) (plate thickness 3
9 μm) was heat-treated for 30 minutes while applying a magnetic field 14a of 13.8 kOe perpendicular to the plate surface while maintaining the temperature Ta1 = 370'Q, and then a magnetic field Ha: 2.9 μm parallel to the plate surface was applied. 4 koe, rotation speed = 10Orpm
In the rotating magnetic field of 'l'a1, there is a lower temperature 'J'a2 K
Heat treatment was performed for 10 minutes. FIG. 3 shows the frequency characteristics of each magnetic permeability .mu.' when the second treatment temperature 1.a2 was changed. In the same figure, curves (a) and (b) show that Ta2 is 30
This is the case at 0°C and 332°C. Also, curve [C] is the first
In the case of only the second vertical magnetic field treatment, the curve (dl is the rotating magnetic field treatment only (temperature Ta: 370 oC, treatment time Ta: 10 minutes)) 1 curve (el is the case of the manufactured one (untreated) It is.

上記実施例から明らかなように回転磁場中熱処理と垂直
磁場中熱処理とを組合せ、且つ温度Ta1及びTa2を
上述した関係に選ぶときには、3次元的に誘導磁気異方
性が制御され、回転磁場中熱処理あるいは無処理の場合
に比べてl Q kHz以上の高周波域での透磁率が改
善される。
As is clear from the above examples, when heat treatment in a rotating magnetic field and heat treatment in a vertical magnetic field are combined and temperatures Ta1 and Ta2 are selected in the above-mentioned relationship, the induced magnetic anisotropy is controlled three-dimensionally, and the heat treatment in a rotating magnetic field is Magnetic permeability in a high frequency range of l Q kHz or more is improved compared to the case of heat treatment or no treatment.

なお、本発明は結晶化温度Txがキュリ一温度Tcよシ
も高い非晶質磁性合金についても有効である。
Note that the present invention is also effective for amorphous magnetic alloys whose crystallization temperature Tx is higher than the Curie temperature Tc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の説明に供する座゛標、軸1のとシ方を
示す図、第2図及び第3図は夫々実施例(1)及び(2
)の熱処理によって得られた透磁率の周波数特性図であ
る。 (1)は非晶質磁性材料薄板である。 11図 第1頁の続き 0発 明 者 林和彦 横浜市保土ケ谷区藤塚町174番 地ソニー株式会社中央研究所内
FIG. 1 is a diagram showing coordinates and the direction of axis 1 used for explaining the present invention, and FIGS. 2 and 3 are illustrations of embodiments (1) and (2), respectively.
) is a frequency characteristic diagram of magnetic permeability obtained by heat treatment. (1) is a thin plate of amorphous magnetic material. Figure 11 Continued from page 1 0 Inventor Kazuhiko Hayashi Sony Corporation Central Research Laboratory, 174 Fujitsuka-cho, Hodogaya-ku, Yokohama City

Claims (1)

【特許請求の範囲】[Claims] 非晶質磁性材料薄板に、該薄板の主面内で該薄板と相対
的に回転する磁場の中で行う熱処理と、該薄板の主面に
略々垂直な磁場中で行う熱処理を含む熱処理方法であっ
て、第1の熱処理は300℃以上かつ該非晶質磁性材料
のキュリ一温度以下であり、第2の熱処理は第1の熱処
理より低温で250℃以上かつ350℃以下で行われる
ことを特徴とする非晶質磁性材料の熱処理方法。
A heat treatment method for a thin plate of amorphous magnetic material, including heat treatment performed in a magnetic field that rotates within the main surface of the thin plate relative to the thin plate, and heat treatment performed in a magnetic field approximately perpendicular to the main surface of the thin plate. The first heat treatment is performed at a temperature of 300°C or higher and below the Curie temperature of the amorphous magnetic material, and the second heat treatment is performed at a lower temperature than the first heat treatment at a temperature of 250°C or higher and 350°C or lower. Characteristic heat treatment method for amorphous magnetic materials.
JP57123487A 1982-07-15 1982-07-15 Thermal processing for amorphous magnetic material Granted JPS5914609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57123487A JPS5914609A (en) 1982-07-15 1982-07-15 Thermal processing for amorphous magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123487A JPS5914609A (en) 1982-07-15 1982-07-15 Thermal processing for amorphous magnetic material

Publications (2)

Publication Number Publication Date
JPS5914609A true JPS5914609A (en) 1984-01-25
JPH0337721B2 JPH0337721B2 (en) 1991-06-06

Family

ID=14861838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123487A Granted JPS5914609A (en) 1982-07-15 1982-07-15 Thermal processing for amorphous magnetic material

Country Status (1)

Country Link
JP (1) JPS5914609A (en)

Also Published As

Publication number Publication date
JPH0337721B2 (en) 1991-06-06

Similar Documents

Publication Publication Date Title
JPS599157A (en) Heat treatment of amorphous magnetic alloy
US4639278A (en) Method of manufacturing an amorphous magnetic alloy
JPS6324016A (en) Achievement of flat magnetization curve in manetic core of amorphous material
JPS58107607A (en) Heat processing method for amorphous magnetic material
SU1744128A1 (en) Method of producing anisotropic electrical steel
JPS5914609A (en) Thermal processing for amorphous magnetic material
JPH0375624B2 (en)
US4944805A (en) Method of heat treatment amorphous soft magnetic film layers to reduce magnetic anisotropy
JPS6246408A (en) Production of magnetic head
JP2739574B2 (en) Heat treatment method for amorphous soft magnetic material
JPS61127103A (en) Manufacture of magnetic head
JPH0266119A (en) Production of high permeability soft magnetic pure iron sheet having excellent magnetic shieldability
JPS5935432B2 (en) Heat treatment method for amorphous magnetic materials
JPS63259072A (en) Method for controlling uniaxial magnetic anisotropy of amorphous soft magnetic material
JPS60145360A (en) Amorphous magnetic alloy and its manufacture
JPS5855211B2 (en) (h,k,o) Manufacturing method for unidirectional electrical steel sheet with crystals in [001] orientation and excellent iron loss
JPS61129713A (en) Production of magnetic head
JPS6311654A (en) Production of amorphous magnetic material
JPS59136415A (en) Manufacture of high magnetic permeability alloy film
JPS58161727A (en) Heat treatment of high silicon steel strip
JPH0694589B2 (en) Heat treatment method for amorphous soft magnetic material
JPH08253395A (en) Garnet crystal and its production
Shulika et al. Influence of Induced Anisotropy on Magnetic Properties of the Fe73. 5Cu1Nb3Si13. 5B9 Alloy in Amorphous and Nanocrystalline States
JPS63219114A (en) Heat treatment of magnetic thin film
JPS63292406A (en) Manufacture of amorphous alloy thin film magnetic head