JPS6311654A - Production of amorphous magnetic material - Google Patents

Production of amorphous magnetic material

Info

Publication number
JPS6311654A
JPS6311654A JP61153401A JP15340186A JPS6311654A JP S6311654 A JPS6311654 A JP S6311654A JP 61153401 A JP61153401 A JP 61153401A JP 15340186 A JP15340186 A JP 15340186A JP S6311654 A JPS6311654 A JP S6311654A
Authority
JP
Japan
Prior art keywords
magnetic
heat treatment
amorphous
magnetic field
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61153401A
Other languages
Japanese (ja)
Inventor
Hiroyasu Murase
村瀬 広恭
Shoji Murakami
村上 省自
Hiroshi Okumura
奥村 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61153401A priority Critical patent/JPS6311654A/en
Publication of JPS6311654A publication Critical patent/JPS6311654A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an amorphous magnetic material which is improved in magnetic permeability particularly in a high-frequency region by subjecting a thin sheet-like Co amorphous alloy having a specific component compsn. to a heat treatment at the temp. below the Curie temp. of said alloy and below the crystallization temp. thereof while impressing a magnetic field thereto in the direction perpendicular to the thin sheet surface. CONSTITUTION:The Co amorphous alloy having the compsn. expressed by the formula I is subjected to the heat treatment in the perpendicular magnetic field under the above-mentioned temp. conditions, by which the magnetic anisotropy is induced into the amorphous magnetic material. The magnitude and direction of the induced magnetic anisotropy in the magnetic field can be variously changed by changing the treatment conditions. On the other hand, the magnetic permeability and loss coefft. are the constitutionally sensitive physical quantities to sensitively reflect the change of the magnetic anisotropy. The amorphous magnetic material which permits the improvement in the magnetic permeability and the control of the loss coefft. is, therefore, obtd. by subjecting the material to the adequate heat treatment as with this invention.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Coを主成分とし、高周波領域で用いるのに
適した非晶質磁性材料の製造方法、特にその高周波領域
における透磁率の改善に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an amorphous magnetic material containing Co as a main component and suitable for use in a high frequency region, and particularly to improving its magnetic permeability in a high frequency region. It is related to.

〔従来の技術〕[Conventional technology]

近年、磁性部品を組込んだ電子機器や民生用のAV機器
においては、ますます小型軽量化、高密度化、高効率化
を日桁した研究、開発が進められている。それに伴って
1例えばスイッチング電源のトランスやコイルに使用さ
れる磁気コアや、ビデオヘッド用としては、一層の高周
波化に対応しろるような磁性材料の開発が求められてい
る。このような状況においては、従来用いられてきたF
e−Ni系合金やフェライトでは、必要な材料特性を満
足させることが困難になってきており、これに代わるも
のとして、非晶質磁性合金が注目されている。
BACKGROUND ART In recent years, research and development has been progressing day by day to make electronic devices and consumer AV devices incorporating magnetic components smaller and lighter, more dense, and more efficient. Accordingly, there is a need to develop magnetic materials that can handle higher frequencies, for example, for magnetic cores used in transformers and coils of switching power supplies, and for video heads. In such situations, the conventionally used F
With e-Ni alloys and ferrites, it has become difficult to satisfy necessary material properties, and amorphous magnetic alloys are attracting attention as an alternative.

一般に非晶質磁性合金は、本質的に結晶磁気異方性を持
たないため、優れた軟磁気特性が得られやすい、特にG
oを主成分とする合金系では、適切な組成を・選ぶこと
によって磁歪を極めて小さくすることができるので、新
しい高透磁率材料として期待されている。
In general, amorphous magnetic alloys do not inherently have magnetocrystalline anisotropy, so they are easy to obtain excellent soft magnetic properties, especially G
In alloy systems containing o as the main component, magnetostriction can be made extremely small by selecting an appropriate composition, so they are expected to be used as new high magnetic permeability materials.

ところが非晶質合金は、製造時の急冷過程において導入
される歪等が磁壁のピンニングや磁気異方性の原因とな
り、その結果作製したままでは予期したような軟磁気特
性が得られない、そこで。
However, in amorphous alloys, the strain introduced during the quenching process during manufacturing causes domain wall pinning and magnetic anisotropy, and as a result, the expected soft magnetic properties cannot be obtained as-is. .

非晶質合金のキュリ一温度Tc以上かつ結晶化温度Tx
未漢の温度において焼鈍し、その後、急冷処理すること
によって、軟磁気特性の改善が図られている。
Curie temperature Tc or higher and crystallization temperature Tx of the amorphous alloy
The soft magnetic properties are improved by annealing at a low temperature and then rapid cooling.

ところで低磁歪組成のCO系非晶質合金では、そのキュ
リ一温度Tcは飽和磁束密度Bsにほぼ比例し、一方そ
の結晶化温度TxはBsにほぼ反比例する傾向を示す。
By the way, in a CO-based amorphous alloy having a low magnetostriction composition, its Curie temperature Tc tends to be approximately proportional to the saturation magnetic flux density Bs, while its crystallization temperature Tx tends to be approximately inversely proportional to Bs.

このため例えばメタルテープ対応のビデオヘッド用とし
て高周波透磁率に優れ、かつ高飽和磁束密度となるよう
に合金組成を設計すると。
For this reason, for example, if the alloy composition is designed to have excellent high frequency magnetic permeability and high saturation magnetic flux density for a video head compatible with metal tape.

必然的にTx<Tcとなってしまう、従って上記のよう
なTc<T^<Txにおける温度T^で特性改善の焼鈍
をすることが不可能となる。
Inevitably, Tx<Tc, and therefore it is impossible to perform annealing to improve characteristics at the temperature T^ where Tc<T^<Tx as described above.

このようなTx<Tcであるような非晶質磁性合金の透
磁率、特に高周波領域での透磁率を改善するのに適用可
能な熱処理法として、アモルファス合金薄板の厚さ方向
に磁界を印加しながら熱処理することによって、低い磁
界レベルにおける実効透磁率が著しく向上する方法が提
案されている(特開昭56−38808)。
As a heat treatment method applicable to improving the magnetic permeability of such an amorphous magnetic alloy where Tx<Tc, especially the magnetic permeability in the high frequency region, a magnetic field is applied in the thickness direction of the amorphous alloy thin plate. A method has been proposed in which the effective magnetic permeability at low magnetic field levels is significantly improved by heat treatment (Japanese Patent Laid-Open No. 56-38808).

また非晶質合金のTx未満の温度で、その薄板面に対し
て垂直方向の磁界を印加しながら熱処理(垂直磁界中熱
処理)する工程と、その薄板面内に回転磁界を印加しな
がら熱処理(回転磁界中熱処理)する工程とを組み合わ
せ、がっ面熱処理の焼鈍条件を適切に選ぶことにより、
実質的に誘導磁気異方性を消滅させることができ、その
結果10kHz程度以上の実効透磁率が向上する方法が
提案されている(特開昭59−14609)。
Additionally, there is a process of heat treatment (heat treatment in a vertical magnetic field) at a temperature below Tx of the amorphous alloy while applying a magnetic field perpendicular to the thin plate surface (heat treatment in a perpendicular magnetic field), and a process of heat treatment (heat treatment in a perpendicular magnetic field) while applying a rotating magnetic field within the thin plate surface. By combining the process of heat treatment in a rotating magnetic field and appropriately selecting the annealing conditions for the flat surface heat treatment,
A method has been proposed that can substantially eliminate the induced magnetic anisotropy and, as a result, improve the effective magnetic permeability above about 10 kHz (Japanese Patent Application Laid-Open No. 59-14609).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

L記のような従来の方法は非晶質合金の高周波領域にお
ける透磁率のうちでも特に実効透磁率の改善方法に関す
るものに限られており、いまだ複素透磁率μ(:μ/、
μ′)〔μ′:実効透磁率、μ′:複素透磁率の虚数成
分〕を高める手段等については何ら知られていない。
Conventional methods such as those described in L are limited to methods for improving the effective magnetic permeability of amorphous alloys in the high frequency range, and are still limited to methods for improving the effective magnetic permeability of amorphous alloys in the high frequency range, and are still limited to improving the complex magnetic permeability μ(:μ/,
μ') [μ': effective magnetic permeability, μ': imaginary component of complex magnetic permeability] is not known at all as a means for increasing it.

ところで各種部品や機器において、100kHzを越え
るような高周波領域で磁性材料が使われる場合には、装
置の性能は材料の実効透磁率μ′ばかりでなく、複素透
磁率の虚数成分μ′によっても大きく左右され、例えば
非晶質磁性合金を使ったビデオヘッドではその再生出方
は材料のμ′だけでなく、損失係数tanδ(=μ′/
μ′)にも大きく依存することが知られている(Pro
c、 4th Int、 Conf。
By the way, when magnetic materials are used in various parts and equipment in high frequency ranges exceeding 100 kHz, the performance of the device is greatly affected not only by the material's effective magnetic permeability μ' but also by the imaginary component μ' of the complex magnetic permeability. For example, in a video head that uses an amorphous magnetic alloy, the way it is reproduced depends not only on the μ' of the material, but also on the loss coefficient tanδ (=μ'/
μ′) is known to be highly dependent on (Pro
c, 4th Int, Conf.

on Rapi、dly Quenched Meta
ls (Sandai、 1981) p。
on Rapi, dly Quenched Meta
ls (Sandai, 1981) p.

p、1023〜1026)。p, 1023-1026).

従来はμ′がなるべく大きく、がっt9nδはできるだ
け小さいことが軟磁性材料としての好ましい特性である
と常識的に考えられてきたが、高周波領域においてはこ
のことが必ずしも成り立つわけではない、したがって高
周波用の非晶質磁性材料としては、透磁率が大きいこと
の他に、使用目的に応じて材料の損失係数の値が自由に
変えられることが望ましいといえる。しかしながらこの
ような特性をもった非晶質磁性合金は今のところまだ開
発されていない。
Conventionally, it has been common sense that μ′ is as large as possible and t9nδ is as small as possible as desirable characteristics for a soft magnetic material, but this does not necessarily hold true in the high frequency region. In addition to having a high magnetic permeability, it is desirable for an amorphous magnetic material for use to have a loss coefficient that can be freely changed depending on the purpose of use. However, an amorphous magnetic alloy with such characteristics has not yet been developed.

本発明は上記のような問題点を解決するためになされた
もので、高周波領域で高い透磁率1μm=((μT+(
μ#)t)l/2を有するとともに、損失係数の値を広
い範囲で制御できるような非晶質磁性材料の製造方法を
提供することを目的とするものである。
The present invention was made to solve the above problems, and has a high magnetic permeability in the high frequency region of 1 μm=((μT+(
It is an object of the present invention to provide a method for manufacturing an amorphous magnetic material which has a loss coefficient of .mu.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の第1発明の非晶質磁性材料の製造方法は、組成
式 %式%() (ただし1MはNi、 Mn、 Cr、 Mo、 vt
 V、 Nb、 Ta。
The method for producing an amorphous magnetic material according to the first aspect of the present invention is based on the composition formula % formula % () (where 1M is Ni, Mn, Cr, Mo, vt
V, Nb, Ta.

Ru、 TiおよびZrから選ばれる少なくとも1種の
金属であり、原子比で0≦X≦0.2.0≦a≦9.0
≦b≦20、O≦C≦20.5≦(b+c)≦30であ
る)の組成を有する薄板状のCo系非晶質合金を、同合
金のキュリ一温度未満で、かつ結晶化温度未満の温度に
保持した状態で、その薄板面に対して垂直方向の磁界を
印加しながら熱処理(垂直磁界中熱処理)する方法であ
る。
At least one metal selected from Ru, Ti and Zr, with an atomic ratio of 0≦X≦0.2.0≦a≦9.0
≦b≦20, O≦C≦20.5≦(b+c)≦30. This is a method of heat treatment (heat treatment in a perpendicular magnetic field) while applying a magnetic field perpendicular to the thin plate surface while maintaining the temperature at .

本発明の第2発明の非晶質磁性材料の製造方法は1組成
式 %式%(1) (ただし、MはNi、 Mn、 Cr、 No、 w、
 Vt Nb、 Ta。
The method for producing an amorphous magnetic material according to the second aspect of the present invention has a compositional formula % formula % (1) (where M is Ni, Mn, Cr, No, w,
Vt Nb, Ta.

RutTlおよびZrから選ばれる少なくとも1種の金
属であり、原子比でO≦X≦0.2、O≦a≦9.O≦
b≦20、O≦C≦20,5≦(b+c)≦30である
)の組成を有する薄板状の非晶質合金を、この非晶質合
金のキュリ一温度未満で、かつ結晶化温度未満の温度に
保持した状態で、その薄板面に対して垂直方向の磁界を
印加しながら熱処理(垂直磁界中熱処理)シ、この熱処
理の前または後に、上記合金のキュリ一温度未満で、か
つ結晶化温度未満の温度に保持した状態で、その薄板面
内に回転磁界を印加しながら熱処理(回転磁界中熱処理
)する方法である。
At least one metal selected from RutTl and Zr, with an atomic ratio of O≦X≦0.2, O≦a≦9. O≦
b≦20, O≦C≦20, 5≦(b+c)≦30) A thin plate-like amorphous alloy is prepared at a temperature below the Curie temperature and below the crystallization temperature of the amorphous alloy. heat treatment while applying a magnetic field perpendicular to the thin plate surface (heat treatment in a perpendicular magnetic field) while maintaining the thin plate at a temperature of This is a method in which heat treatment is performed while applying a rotating magnetic field to the surface of the thin plate (heat treatment in a rotating magnetic field) while maintaining the temperature at a temperature lower than that temperature.

上記の方法で製造された非晶質磁性材料は、いずれも特
に100kHz程度以上の高周波領域で高い透磁率1μ
m=((μ/ )2 + (μ#)2)i/2を有する
。そして上記垂直磁界中熱処理、ならびに回転磁界中熱
処理時の処理条件(印加磁界の大きさ、焼鈍温度および
保持時間など)を適切に変化させることにより、種々の
損失係数をもつ非晶質磁性材料が製造できる。
All of the amorphous magnetic materials produced by the above method have a high magnetic permeability of 1μ, especially in the high frequency region of about 100kHz or higher.
It has m=((μ/ )2 + (μ#)2)i/2. By appropriately changing the treatment conditions (magnetic field magnitude, annealing temperature, holding time, etc.) during the heat treatment in the perpendicular magnetic field and the heat treatment in the rotating magnetic field, amorphous magnetic materials with various loss coefficients can be produced. Can be manufactured.

本発明において使用する(1)式の合金の主成分はco
であり、またFaは主に磁歪を零に近づけるために加え
られる。しかしFeの含有量が多すぎると、飽和磁束密
度は大きくなるが、磁歪も大きくなってしまうので、X
は0.2以下とする必要がある0Mは副次成分で、飽和
磁束密度を高めたり、結晶化温度を上昇させて熱的安定
性を高めたり、固有抵抗を高めて高周波領域での損失を
小さくするために添加されるものであるが、添加量が過
剰になると本来の低磁歪特性が失われたり、飽和磁束密
度が大幅に低下してしまうなど、軟磁気特性上好ましく
ないので、aは9at%以下に限定される。一方、Si
およびBは非晶質化のために必須のメタロイド元素であ
るが、各々の含有量が20 aL%を戴えると非晶質化
が困難になる。SiとBを共に含有すると、単独で用い
た場合よりも熱的な安定性が増すが、(b+c)が5a
t〆未満あるいは30at%を越えると非晶質化しにく
くなる。
The main component of the alloy of formula (1) used in the present invention is co
, and Fa is added mainly to bring the magnetostriction close to zero. However, if the Fe content is too high, the saturation magnetic flux density will increase, but the magnetostriction will also increase, so
0M is a secondary component that must be less than 0.2 and is used to increase the saturation magnetic flux density, increase the crystallization temperature to improve thermal stability, and increase the resistivity to reduce loss in the high frequency range. It is added to make the size smaller, but if the amount added is excessive, the original low magnetostriction properties will be lost and the saturation magnetic flux density will drop significantly, which is unfavorable in terms of soft magnetic properties, so a is It is limited to 9 at% or less. On the other hand, Si
Although B and B are essential metalloid elements for amorphization, if the content of each is 20 aL%, amorphization becomes difficult. When Si and B are contained together, thermal stability increases compared to when they are used alone, but when (b+c) is 5a
If it is less than t or exceeds 30 at%, it becomes difficult to become amorphous.

〔作 用〕[For production]

本発明の非晶質磁性材料においては、(1)式のCo系
非晶質合金に、垂直磁界中熱処理を加えたり、あるいは
垂直磁界中熱処理と回転磁界中熱処理の複合焼鈍を施す
と、非晶質磁性材料内には磁気異方性が誘導される。こ
の磁界中誘導磁気異方性の大きさおよび方向は、処理条
件を変化させることによって種々変えることが可能であ
る。一方、透磁率や損失係数は、磁気異方性の変化を敏
感に反映する構造敏感な物性量である。したがって本発
明のように適切な熱処理を加えれば、透磁率の改善や損
失係数の制御が可能となるわけである。
In the amorphous magnetic material of the present invention, when the Co-based amorphous alloy of formula (1) is subjected to heat treatment in a vertical magnetic field or combined annealing of heat treatment in a perpendicular magnetic field and heat treatment in a rotating magnetic field, Magnetic anisotropy is induced within the crystalline magnetic material. The magnitude and direction of magnetic anisotropy induced in a magnetic field can be varied in various ways by changing processing conditions. On the other hand, magnetic permeability and loss coefficient are structurally sensitive physical properties that sensitively reflect changes in magnetic anisotropy. Therefore, by applying appropriate heat treatment as in the present invention, it becomes possible to improve the magnetic permeability and control the loss coefficient.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例1 (Co、 +@!Fe11−os)tsMnz−sWl
、5sitB1iの組成を有する非晶質磁性合金を単ロ
ール液体急冷法を用いて作製した。得られた薄帯は幅1
0+a+m、厚さ約25μmであった。この薄帯から超
音波加工機を使って外径3a+m、内径1+amのリン
グ状試料を打ち抜き、その板厚方向に磁界を印加しなが
ら、焼鈍温度T^(’C)で30m1n保持する垂直磁
界中熱処理を行った。
Example 1 (Co, +@!Fe11-os)tsMnz-sWl
, 5sitB1i was produced using a single roll liquid quenching method. The obtained thin strip has a width of 1
The thickness was 0+a+m and the thickness was about 25 μm. A ring-shaped specimen with an outer diameter of 3 a + m and an inner diameter of 1 + am was punched out from this ribbon using an ultrasonic processing machine, and while a magnetic field was applied in the thickness direction of the thin strip, it was annealed in a perpendicular magnetic field maintained at 30 m1n at an annealing temperature T^ ('C). Heat treatment was performed.

このときT^を200〜400℃の範囲内で種々変化さ
せて焼鈍を行った。このあと巻線し、インピーダンスア
ナライザーを使って、周波数5MHzでの透磁率1μm
と損失係数tanδを求めた。その結果を第1図に示す
。作製したままの状態では、1μmの値は約580と低
い値であったが、図に示したような焼鈍条件で垂直磁界
中熱処理すると、いずれの場合も800以上でほぼ一定
した大きな1μmの値が得られた。一方焼鈍後のtan
δは1.0〜1,9の間の種々の値が得られている。す
なわちT^を適当に選べば、大きな透磁率を有し、かつ
所望の損失係数を持つような材料を製造することが可能
となることがわかる。
At this time, annealing was performed while varying T^ within the range of 200 to 400°C. After this, wind the wire and use an impedance analyzer to measure the magnetic permeability of 1 μm at a frequency of 5 MHz.
and the loss coefficient tanδ was calculated. The results are shown in FIG. In the as-prepared state, the 1 μm value was low at about 580, but when heat treated in a vertical magnetic field under the annealing conditions shown in the figure, the large 1 μm value remained almost constant at 800 or more in all cases. was gotten. On the other hand, tan after annealing
Various values of δ between 1.0 and 1.9 have been obtained. That is, it can be seen that if T^ is appropriately selected, it is possible to manufacture a material that has high magnetic permeability and a desired loss coefficient.

比較例1 比較例として(Coo 、78Feo 、12)7i”
ni 、、w□*5Si7Bts の組成の非晶質合金
について実施例1と同じ熱処理を施したが、1μmの値
は最大でも700 Lか得られなかった。
Comparative Example 1 As a comparative example (Coo, 78Feo, 12) 7i”
Although the same heat treatment as in Example 1 was applied to an amorphous alloy having a composition of ni,,w□*5Si7Bts, the maximum value of 1 μm was only 700 L.

実施例2 (Co0−ssFea 、as)vJntVzslzJ
*の組成を有する非晶質磁性合金を実施例1と同様にし
て作製後、リング状試料に加工した。そしてその板厚方
向に磁界を印加しながら、260℃で垂直磁界中焼鈍を
行った。このとき、焼鈍時間t^(min)を5−15
−15Oの間で変化させて実験したところ、 5MHz
の1μmとtanδは第2図のような値となった。実施
例1の場合と同様に1μmは800以上でほぼ一定して
おり、またtanδはt^に応じて1.0〜1.9の間
で単調に変化している。
Example 2 (Co0-ssFea, as)vJntVzslzJ
An amorphous magnetic alloy having a composition of * was prepared in the same manner as in Example 1, and then processed into a ring-shaped sample. Then, annealing was performed in a perpendicular magnetic field at 260° C. while applying a magnetic field in the thickness direction of the plate. At this time, the annealing time t^ (min) was set to 5-15
When I experimented by changing it between -15O and 5MHz
The value of 1 μm and tan δ were as shown in FIG. As in the case of Example 1, 1 μm is substantially constant at 800 or more, and tan δ monotonically changes between 1.0 and 1.9 depending on t^.

比較例2 (coo **sFeo−ox)ggMnaV7slz
2Bsの組成を有する合金に対して、実施例2と同様の
熱処理をしたところ、1μmが65O程度と低いばかり
か、tanδの値も熱処理時間t^を変えても、1.6
でほぼ一定のままであった。
Comparative example 2 (coo**sFeo-ox)ggMnaV7slz
When an alloy having a composition of 2Bs was heat treated in the same manner as in Example 2, not only was the value of 1 μm as low as about 65O, but the value of tan δ was also 1.6 even if the heat treatment time t^ was changed.
remained almost constant.

実施例3 (coo *g4F86 aag)to、6MnzTa
l 、5SisBtnの組成を有する非晶質磁性合金を
実施例1と同様にして作製し、リング状試料に加工した
。そしてその板厚方向に磁界を印加・しながら、360
℃で30m1n間保持する垂直磁界中熱処理をした。こ
のときの5 Ml(zにおける1μmとtanδの値を
実施例1と同様の方法で測定したところ、1μ1=82
0、tanδ=1.1であった1次にさらにリング状試
料の薄板面内に磁界H^(koe)を印加しながら、3
25℃で焼鈍するいわゆる回転磁界中熱処理を追加した
。このときの1μmとtanδのH^に対する依存性を
第3図に示す、第3図かられかるように、回転磁界中熱
処理を追加することによって、1μmの値は820から
900以上へと一様に増大する。またtanδの値は1
.5〜1.9の範囲で連続的に変化している。すなわち
垂直磁界中熱処理と回転磁界中熱処理を重畳させること
によってtanδの可変性を失うことなく、高周波での
1μmをより一層改善できることがわかる。
Example 3 (coo *g4F86 aag)to, 6MnzTa
An amorphous magnetic alloy having a composition of 1,5SisBtn was prepared in the same manner as in Example 1, and processed into a ring-shaped sample. Then, while applying a magnetic field in the thickness direction of the plate, 360
Heat treatment was performed in a vertical magnetic field held at ℃ for 30 ml. At this time, the values of 1 μm and tan δ at 5 Ml (z were measured in the same manner as in Example 1, and 1 μ1 = 82
0, and tan δ = 1.1. Further, while applying a magnetic field H^ (koe) within the thin plate surface of the ring-shaped sample, 3
A so-called rotating magnetic field heat treatment, which is annealing at 25°C, was added. The dependence of 1 μm and tan δ on H^ at this time is shown in Figure 3.As can be seen from Figure 3, by adding heat treatment in a rotating magnetic field, the value of 1 μm uniformly changes from 820 to over 900. increases to Also, the value of tan δ is 1
.. It changes continuously in the range of 5 to 1.9. That is, it can be seen that by superimposing heat treatment in a vertical magnetic field and heat treatment in a rotating magnetic field, it is possible to further improve 1 μm at high frequency without losing the variability of tan δ.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明の第1発明によれば、(I)式の
非晶質磁性合金に垂直磁界中熱処理を施すことにより、
特に100kl(z程度以上における透磁率が改善され
るとともに、適切な熱処理条件を選択すれば、材料の損
失係数の値を制御することも可能となり、その結果高周
波領域で用いるのに適した非晶質磁性材料が得られる。
As described above, according to the first aspect of the present invention, by subjecting the amorphous magnetic alloy of formula (I) to heat treatment in a perpendicular magnetic field,
In particular, the magnetic permeability above 100 kl (z) is improved, and if appropriate heat treatment conditions are selected, it is also possible to control the value of the loss coefficient of the material, resulting in an amorphous material suitable for use in the high frequency region. A highly magnetic material is obtained.

またこの発明の第2発明によれば、上記熱処理の前また
は後にさらに回転磁界中熱処理を加えることにより、損
失係数の可変性を失うことなく。
According to the second aspect of the present invention, heat treatment in a rotating magnetic field is further applied before or after the heat treatment, without losing the variability of the loss coefficient.

高周波領域での透磁率を一層改善することができる。Magnetic permeability in a high frequency region can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図はそれぞれ実施例工ないし3の結果
を示すグラフである。
1 to 3 are graphs showing the results of Examples 1 to 3, respectively.

Claims (2)

【特許請求の範囲】[Claims] (1)組成式 (Co_1_−_xFe_x)_1_0_0_−_a_
−_b_−_cM_aSi_bB_c・・・( I )(
ただし、MはNi、Mn、Cr、Mo、W、V、Nb、
Ta、Ru、TiおよびZrから選ばれる少なくとも1
種の金属であり、原子比で0≦x≦0.2、0≦a≦9
、0≦b≦20、0≦c≦20、5≦(b+c)≦30
である)の組成を有する薄板状の非晶質合金を、この非
晶質合金のキュリー温度未満で、かつ結晶化温度未満の
温度に保持した状態で、その薄板面に対して垂直方向の
磁界を印加しながら熱処理することを特徴とする非晶質
磁性材料の製造方法。
(1) Composition formula (Co_1_-_xFe_x)_1_0_0_-_a_
-_b_-_cM_aSi_bB_c...(I)(
However, M is Ni, Mn, Cr, Mo, W, V, Nb,
At least one selected from Ta, Ru, Ti and Zr
It is a metal with an atomic ratio of 0≦x≦0.2, 0≦a≦9
, 0≦b≦20, 0≦c≦20, 5≦(b+c)≦30
A thin plate-shaped amorphous alloy having a composition of 1. A method for producing an amorphous magnetic material, which comprises performing heat treatment while applying .
(2)組成式 (Co_1_−_xFe_x)_1_0_0_−_a_
−_b_−_cM_aSi_bB_c・・・( I )(
ただし、MはNi、Mn、Cr、Mo、W、V、Nb、
Ta、Ru、TiおよびZrから選ばれる少なくとも1
種の金属であり、原子比で0≦x≦0.2、0≦a≦9
、0≦b≦20、0≦c≦20、5≦(b+c)≦30
である)の組成を有する薄板状の非晶質合金を、この非
晶質合金のキュリー温度未満で、かつ結晶化温度未満の
温度に保持した状態で、その薄板面に対して垂直方向の
磁界を印加しながら熱処理する工程と、この工程の前ま
たは後に、上記合金のキュリー温度未満で、かつ結晶化
温度未満の温度に保持した状態で、その薄板面内に回転
磁界を印加しながら熱処理する工程を行うことを特徴と
する非晶質磁性材料の製造方法。
(2) Composition formula (Co_1_-_xFe_x)_1_0_0_-_a_
-_b_-_cM_aSi_bB_c...(I)(
However, M is Ni, Mn, Cr, Mo, W, V, Nb,
At least one selected from Ta, Ru, Ti and Zr
It is a metal with an atomic ratio of 0≦x≦0.2, 0≦a≦9
, 0≦b≦20, 0≦c≦20, 5≦(b+c)≦30
A thin plate-shaped amorphous alloy having a composition of and, before or after this step, heat treatment while applying a rotating magnetic field within the plane of the thin plate while maintaining the temperature below the Curie temperature and below the crystallization temperature of the above alloy. 1. A method for producing an amorphous magnetic material, comprising the steps of:
JP61153401A 1986-06-30 1986-06-30 Production of amorphous magnetic material Pending JPS6311654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61153401A JPS6311654A (en) 1986-06-30 1986-06-30 Production of amorphous magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61153401A JPS6311654A (en) 1986-06-30 1986-06-30 Production of amorphous magnetic material

Publications (1)

Publication Number Publication Date
JPS6311654A true JPS6311654A (en) 1988-01-19

Family

ID=15561682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61153401A Pending JPS6311654A (en) 1986-06-30 1986-06-30 Production of amorphous magnetic material

Country Status (1)

Country Link
JP (1) JPS6311654A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494534A (en) * 1995-03-17 1996-02-27 Industrial Technology Research Institute Method of heat treating an amorphous soft magnetic article
WO1996032731A1 (en) * 1995-04-13 1996-10-17 Alliedsignal Inc. Metallic glass alloys for mechanically resonant marker surveillance systems
EP0883141A1 (en) * 1997-06-04 1998-12-09 Mecagis Heating process with magnetic field of a soft magnetic component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494534A (en) * 1995-03-17 1996-02-27 Industrial Technology Research Institute Method of heat treating an amorphous soft magnetic article
WO1996032731A1 (en) * 1995-04-13 1996-10-17 Alliedsignal Inc. Metallic glass alloys for mechanically resonant marker surveillance systems
EP0883141A1 (en) * 1997-06-04 1998-12-09 Mecagis Heating process with magnetic field of a soft magnetic component
FR2764430A1 (en) * 1997-06-04 1998-12-11 Mecagis METHOD FOR MAGNETIC FIELD THERMAL TREATMENT OF A SOFT MAGNETIC MATERIAL COMPONENT
US5935346A (en) * 1997-06-04 1999-08-10 Mecagis Process for the heat treatment, in a magnetic field, of a component made of a soft magnetic material
CN1112711C (en) * 1997-06-04 2003-06-25 梅加日公司 Process for heat treatment, in magnetic field, of component made of soft magnetic material

Similar Documents

Publication Publication Date Title
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JP2007107096A (en) Soft magnetic alloy, its production method and magnetic component
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JPS6132388B2 (en)
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
JPH01294847A (en) Soft-magnetic alloy
JPS6332244B2 (en)
JPS6311654A (en) Production of amorphous magnetic material
JPH0711396A (en) Fe base soft magnetic alloy
JPH07103453B2 (en) Alloy with excellent permeability and method for producing the same
JPH01290744A (en) Fe-base soft-magnetic alloy
JP2024506431A (en) High magnetic induction high frequency nanocrystalline soft magnetic alloy and its manufacturing method
JPS6070157A (en) Amorphous alloy and its manufacture
JP3866266B2 (en) Amorphous magnetic thin film and planar magnetic element using the same
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
KR100473620B1 (en) Soft magnetic material of FeZrBAg system and a method for fabricating a soft magnetic thin film
JPS6396252A (en) Heat treatment of toroidal amorphous magnetic core
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
JPH0549742B2 (en)
Bottoni et al. Evolution from soft to hard magnetic behavior in Co‐based devitrified glassy alloy
JPH0257683B2 (en)
JPH01290746A (en) Soft-magnetic alloy
Greneche et al. Magnetic hyperfine properties in FeZrB‐type nanocrystalline metallic alloys
JPH04275407A (en) Soft magnetic film high in saturation magnetic flux density and its manufacture
KR0140788B1 (en) Ultrathin fe based nanocrystalline alloys and method for preparing ultrathin ribbons