JPS5935432B2 - Heat treatment method for amorphous magnetic materials - Google Patents

Heat treatment method for amorphous magnetic materials

Info

Publication number
JPS5935432B2
JPS5935432B2 JP55001955A JP195580A JPS5935432B2 JP S5935432 B2 JPS5935432 B2 JP S5935432B2 JP 55001955 A JP55001955 A JP 55001955A JP 195580 A JP195580 A JP 195580A JP S5935432 B2 JPS5935432 B2 JP S5935432B2
Authority
JP
Japan
Prior art keywords
heat treatment
magnetic
magnetic field
amorphous
amorphous magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55001955A
Other languages
Japanese (ja)
Other versions
JPS5698465A (en
Inventor
博 榊間
治文 先納
栄一 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55001955A priority Critical patent/JPS5935432B2/en
Priority to DE19803033258 priority patent/DE3033258A1/en
Publication of JPS5698465A publication Critical patent/JPS5698465A/en
Publication of JPS5935432B2 publication Critical patent/JPS5935432B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は非晶質磁性体の熱処理法にかかり、非晶質磁性
体の磁気特性を改善しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat treatment method for an amorphous magnetic material, and is intended to improve the magnetic properties of the amorphous magnetic material.

近年、物質を溶融状態から超急冷してこれを凝固させ、
非晶質の薄帯を得る技術の進歩により、一定薄帯形状を
有する非晶質磁性体の作製が可能となり、その応用研究
が盛んに行なわれるようになつた。
In recent years, materials have been rapidly cooled from a molten state to solidify.
Advances in technology for obtaining amorphous ribbons have made it possible to produce amorphous magnetic materials having a constant ribbon shape, and research into its application has become active.

超急冷法によつて得られる非晶質磁性体は、結晶磁気異
方性がないことから、優れた軟磁性を示すことが予想さ
れる。しかしながら、急冷凝固直後の非晶質磁性体の磁
気特性はさほど良好ではなく、特性の大巾な改良には熱
処理が不可欠である。この熱処理を行なうとき透磁率の
極めて高いものを必要とし、結晶化温度Txがキュリー
点Tcより高い場合には、非晶質磁性体のTc以上、T
x以下の温度TAで熱処理し、その後はTc以下を急冷
して室温まで戻さないと所望の磁気特性が得られないこ
とが知られている。一方、非晶質材料は、それ自体が過
冷却準安定状態にあるため、その磁気特性が経時変化を
伴なうという不安定性を有している。この不安定性はT
A<Txなる条件を満足するできるだけ高い熱処理温度
TAで非晶質磁性体の熱処理を行ない結晶化しない範囲
でできるだけゆつくりと室温まで冷却することにより、
改善できることが明らかになつた(特願昭54−777
82号)。したがつて、熱処理工程において、高透磁率
材料を得ようとすればTc以下を急冷しなければならず
、一方安定性を改良しようとすればTA以下を徐冷しな
ければならない。すなわち、従来の普通の熱処理により
両者の条件を兼ね備えることができるのは、To(TA
<Tx・・・・・・・・・・・・・・(1)となるよう
にTAを設定することができる。To、Txを有する非
晶質磁性体についてのみであつた。しかしながら、(1
)式で示したような条件を満足する非晶質磁性体は少な
く、一般にはTcとTxが近接しているものが多い。特
に透磁率が極めて高く、磁気ヘッド等への応用検討が進
められている磁歪の極めて小さいCoを主成分とする非
晶質合金系においては、飽和磁束密度Bsがそのキュリ
ー点Tcにほぼ比例し、結晶化温度Txにはほぼ反比例
した傾向を示すことが知られている。したがつて、Bs
の高い組成になるほど、TcとTxは近接し、Bsが約
9500ガウスでTcとTxが一致する。それ以上では
逆転してTc>Txとなり、(1)式で示したような熱
処理条件が満足されなくなる。したがつて、安定性がよ
くかつ高透磁率を有するBsが10000より高い非晶
質合金を得ることは、従来の熱処理では不可能であつた
。この様子を、代表的な磁歪零系非晶質合金(Fe4.
6cO7O.4)X/75(Sil2.5Bl2.5)
(100−X)/25について、第1図と第2図に示し
た。
Since the amorphous magnetic material obtained by the ultra-quenching method has no crystal magnetic anisotropy, it is expected to exhibit excellent soft magnetism. However, the magnetic properties of an amorphous magnetic material immediately after being rapidly solidified are not so good, and heat treatment is essential to significantly improve the properties. When performing this heat treatment, a material with extremely high magnetic permeability is required, and if the crystallization temperature Tx is higher than the Curie point Tc, T
It is known that the desired magnetic properties cannot be obtained unless heat treatment is performed at a temperature TA of x or lower, followed by rapid cooling below Tc and the temperature is returned to room temperature. On the other hand, since the amorphous material itself is in a supercooled metastable state, it has instability in that its magnetic properties change over time. This instability is T
By heat-treating the amorphous magnetic material at a heat treatment temperature TA as high as possible that satisfies the condition A<Tx, and cooling it to room temperature as slowly as possible without crystallization,
It became clear that improvements could be made (Patent Application 1986-777)
No. 82). Therefore, in the heat treatment process, if a high magnetic permeability material is to be obtained, the material below Tc must be rapidly cooled, while if stability is to be improved, the material below TA must be slowly cooled. In other words, To(TA
TA can be set so that <Tx (1). This was only true for amorphous magnetic materials having To and Tx. However, (1
) There are few amorphous magnetic materials that satisfy the conditions shown in the formula, and in general, many have Tc and Tx close to each other. In particular, in an amorphous alloy system mainly composed of Co, which has extremely high magnetic permeability and has extremely low magnetostriction and is currently being considered for application to magnetic heads, the saturation magnetic flux density Bs is approximately proportional to its Curie point Tc. It is known that the crystallization temperature Tx tends to be almost inversely proportional to the crystallization temperature Tx. Therefore, Bs
The higher the composition, the closer Tc and Tx become, and when Bs is about 9500 Gauss, Tc and Tx match. If it exceeds this value, the reverse occurs and Tc>Tx, and the heat treatment conditions as shown in equation (1) are no longer satisfied. Therefore, it has been impossible to obtain an amorphous alloy with Bs higher than 10,000, which has good stability and high magnetic permeability, by conventional heat treatment. This situation is shown in a typical zero-magnetostrictive amorphous alloy (Fe4.
6cO7O. 4)X/75 (Sil2.5Bl2.5)
(100-X)/25 is shown in FIGS. 1 and 2.

実用性を考慮してオーデイオ用磁気ヘツド等への応用が
可能な1kHzでの透磁率μが10000以上ある組成
のうちB8の最も高いものは、第2図から明らかなよう
にBsZ9OOOガウス程度のものであつた。しかもこ
の組成では第1図よりわかるようにTc.l!:.Tx
が極めて近接しており、高透磁率を得るためには熱処理
後は水中急冷する等の急冷処理が必要である。したがつ
て、前述したような熱処理後を徐冷して磁気特性の安定
性を改善することは不可能であつた。本発明はこれらの
問題を解決し、高磁束密度でかつ高透磁率を有し、また
その磁気特性の安定性も良好な非晶質磁性材料を得るこ
とを可能にする熱処理法を提供するもので、特に従来で
は透磁率の熱処理による改善が不可能であつたTc>T
xなる非晶質磁性体に対して極めて有効なものである。
Among the compositions with a magnetic permeability μ of 10,000 or more at 1 kHz that can be applied to audio magnetic heads etc. in consideration of practicality, the highest B8 has a BsZ9OOO Gauss, as is clear from Figure 2. It was hot. Moreover, with this composition, as can be seen from Figure 1, Tc. l! :. Tx
are extremely close to each other, and in order to obtain high magnetic permeability, rapid cooling treatment such as rapid cooling in water is required after heat treatment. Therefore, it has been impossible to improve the stability of magnetic properties by slow cooling after the heat treatment as described above. The present invention solves these problems and provides a heat treatment method that makes it possible to obtain an amorphous magnetic material with high magnetic flux density, high magnetic permeability, and good stability in magnetic properties. In particular, Tc>T, which conventionally could not improve magnetic permeability by heat treatment.
This is extremely effective for the amorphous magnetic material x.

従来より磁場を薄帯の面内で一方向に加えると、静的磁
気特性が改善され、角型比と呼ばれる残留磁束密度Br
と飽和磁束密度Bsとの比が1に近くなることが知られ
ている。しかし、この方法では交流での透磁率を改善す
を効果がなく、逆に初透磁率が低く、透磁率μの測定磁
界依存性が大きいいわゆるレベル特性の悪い材料しか得
られない。これを第3図に示す。一方、回転磁界中での
熱処理は透磁率の向上に有効である(特願昭54−19
209号)。
Conventionally, when a magnetic field is applied in one direction within the plane of the ribbon, the static magnetic properties are improved and the residual magnetic flux density Br, called the squareness ratio, is improved.
It is known that the ratio between Bs and the saturation magnetic flux density Bs is close to 1. However, this method is not effective in improving the magnetic permeability in alternating current, and on the contrary, only materials with low initial magnetic permeability and poor level characteristics, in which the magnetic permeability μ is highly dependent on the measured magnetic field, are obtained. This is shown in FIG. On the other hand, heat treatment in a rotating magnetic field is effective in improving magnetic permeability (Japanese Patent Application No. 54-19
No. 209).

しかしながら、この方法はTc<Txなる非晶質材料を
Tc以上でTx以下の温度TAでの普通の熱処理により
特性を改善した後、加工工程がやむを得ずTO以下でな
される場合に生ずる特性劣化を防ぐ上で極めて有効であ
るのであつて、回転磁界中熱処理のみでは大巾な透磁率
の増加が得られない。詳しく述べれば、この熱処理方法
では第3図に示したように、凝固直後のレベル特性を保
持しながら透磁率を増加させるので、測定磁界が大なる
場合には極めて高透磁率が得られるが、初透磁率につい
てはそれほど高いものが得られない。さらに、垂直磁界
中での熱処理も上述の回転磁界中での熱処理と同様、一
度Tc<TA<Txなる条件での普通熱処理により特性
を改善した後、その後のTc以下での加工工程での特性
劣化の防止、または一度劣化したものの特性回復には極
めて有効であるが、Tc>Txなる合金にはこの熱処理
方法単独で高い透磁率を得るのは困難である。しかしな
がら、この熱処理方法の特徴は第3図に示したようにレ
ベル特囲が非常に平坦になるといつた好ましい点があげ
られる。回転磁界中熱処理も単独では大巾な特性改善が
行なえず、Tc<Txなる条件を満足する非晶質磁性体
をTc<TA<Txなる処理温度TAで行なう普通熱処
理と組合わせた場合にのみ極めてその有効性を発揮する
ものである。したがつて、Tc≧Txのような非晶質磁
性体においては普通熱処理では磁気特性の改善が得られ
ない。このような材料に対して普通熱処理と回転磁界中
での熱処理もしくは垂直磁界中での熱処理を組合わせて
も特性は改善されない。一方、これらの処理を単独にT
c>Txなる材料に施しても特性はさほど改善されない
。第4図にTc〉Tx(=420℃)なる磁歪の極めて
小さい非晶質合金(Fe2.5cO7l.5Mn3)8
′77Si4Bl6を回転磁界中および垂直磁界中でそ
れぞれ単独に熱処理を施した場合、1kHz、3×10
−3エルステツドにおける透磁率の熱処理温度依存性を
示した。実験データよりわかるように両者とも200℃
付近で特性がやや向上するが、それより高い温度ではあ
まり改善がなされず、当然のことながらTx以上のTA
で特性が急激に劣化する。ところが、この垂直磁界中で
の熱処理と回転磁界中での熱処理を組み合わすことによ
り、非晶質磁性体の交流実効透磁率が著しく改善される
ことが実験の結果明らかとなつた。
However, this method prevents the characteristic deterioration that occurs when a processing step is unavoidably carried out at a temperature below TO after improving the properties of an amorphous material where Tc<Tx by ordinary heat treatment at a temperature TA above Tc and below Tx. However, a large increase in magnetic permeability cannot be obtained by heat treatment in a rotating magnetic field alone. Specifically, as shown in Figure 3, this heat treatment method increases magnetic permeability while maintaining the level characteristics immediately after solidification, so when the measurement magnetic field is large, extremely high magnetic permeability can be obtained. A very high initial permeability cannot be obtained. Furthermore, heat treatment in a perpendicular magnetic field is similar to heat treatment in a rotating magnetic field described above, after the characteristics are improved by normal heat treatment under the condition of Tc < TA < Tx, the characteristics are improved in the subsequent processing step below Tc. Although this heat treatment method is extremely effective in preventing deterioration or restoring properties once deteriorated, it is difficult to obtain high magnetic permeability by using this heat treatment method alone for alloys where Tc>Tx. However, the advantageous feature of this heat treatment method is that the level area becomes very flat as shown in FIG. Heat treatment in a rotating magnetic field alone cannot significantly improve properties, and only when combined with normal heat treatment, which is performed on an amorphous magnetic material that satisfies the condition Tc<Tx, at a treatment temperature TA where Tc<TA<Tx. It is extremely effective. Therefore, in an amorphous magnetic material where Tc≧Tx, the magnetic properties cannot be improved by normal heat treatment. Even if such a material is subjected to a combination of ordinary heat treatment and heat treatment in a rotating magnetic field or heat treatment in a perpendicular magnetic field, the characteristics will not be improved. On the other hand, if these processes are performed separately at T
Even if it is applied to a material where c>Tx, the characteristics will not be improved much. Figure 4 shows an amorphous alloy (Fe2.5cO7l.5Mn3)8 with extremely low magnetostriction where Tc>Tx (=420°C).
'77When Si4Bl6 is heat-treated in a rotating magnetic field and a perpendicular magnetic field, 1kHz, 3×10
The dependence of magnetic permeability on heat treatment temperature at -3 oersted is shown. As can be seen from the experimental data, both were at 200℃.
The characteristics improve slightly at temperatures near that temperature, but there is not much improvement at higher temperatures, and as a matter of course, the TA above Tx
The characteristics deteriorate rapidly. However, experiments have revealed that by combining heat treatment in a perpendicular magnetic field and heat treatment in a rotating magnetic field, the AC effective magnetic permeability of an amorphous magnetic material is significantly improved.

第4図に示した実験に用いた試料と同じものを用いて、
垂直磁界中での熱処理と回転磁界中での熱処理を組み合
わせて施す実験を行ない、それによる1kHzでの透磁
率のレベル特性の変化の様子を第5図,第6図に示した
。これらの図に示したように、両磁界中での熱処理方法
を組み合わすことにより、片方だけの磁界中熱処理だけ
では得られなかつた大巾な磁気特性の改善がなされるこ
とがわかつた。第7図に透磁率の処理温度依存性を示し
た。下表にTcとTxの異なる各種の非晶質合金に対し
て従来から知られている熱処理方法を施した場合と本発
明の熱処理方法を施した場合とを比較して示し、また熱
処理後の試料について透磁率の熱的安定性を調べるため
70℃、1000時間保時の加速試験を行なつた結果も
あわせて示した。上表に示した結果より、Tc<(T・
xの試料については、Tc<<TA<Txなる温度TA
で熱処理した後空冷すれば透磁率の改善と同時にその安
定性の改善もなされるので、本発明の方法の熱処理方法
を用いなくても好ましい磁気特性を得ることができる。
Using the same sample used in the experiment shown in Figure 4,
An experiment was conducted in which heat treatment in a perpendicular magnetic field and heat treatment in a rotating magnetic field were combined, and the resulting changes in the level characteristics of magnetic permeability at 1 kHz are shown in FIGS. 5 and 6. As shown in these figures, it was found that by combining the heat treatment methods in both magnetic fields, a significant improvement in magnetic properties could be achieved that could not be obtained by heat treatment in only one magnetic field. FIG. 7 shows the dependence of magnetic permeability on processing temperature. The table below shows a comparison between various amorphous alloys with different Tc and Tx subjected to the conventionally known heat treatment method and the case where the heat treatment method of the present invention is applied. The results of an accelerated test of holding the sample at 70° C. for 1000 hours to examine the thermal stability of magnetic permeability are also shown. From the results shown in the table above, Tc<(T・
For the sample x, the temperature TA such that Tc<<TA<Tx
If the material is heat-treated and then cooled in air, the magnetic permeability and stability will be improved at the same time, so that preferable magnetic properties can be obtained without using the heat treatment method of the present invention.

一方、TO≦Txなる試料についてはTc≦TA<Tx
なる温度TAで熱処理した後、水中に投入して急冷すれ
ば、透磁率の改善はなされるが、その安定性はよくない
。また、処理後空冷したものは、安定性がよいが、透磁
率が低いという欠点がある。このようなTc,Txを有
する試料に対しては本発明の熱処理方法が透磁率の安定
性に関して従来の方法に優つていることがわかる。次に
Tc>Txなる試料に対しては普通の無磁界中熱処理で
はTAをどのように選んでも透磁率の改善は不可能であ
る。また、回転磁界中での熱処理もしくは垂直磁界中で
の熱処理単独処理では、第4図に示したように200℃
付近で熱処理を行なうことにより少し磁気特性は改善さ
れるが、その程度はわずかであり、その後の熱的安定性
も熱処理温度が低いためによくないという欠点がある。
このような試料に対して本発明の磁界中熱処理を行うこ
とにより磁気特性が大巾に改善され、その後の安定性も
好ましいことがわかる。以上より本発明の磁界中熱処理
方法は非晶質磁性体の磁気特性をその安定性も含めて改
善するものであり、特にTO≧Txなる非晶質磁性体に
対して極めて有効なものである。
On the other hand, for the sample where TO≦Tx, Tc≦TA<Tx
If the material is heat treated at a temperature TA and then quenched in water, the magnetic permeability can be improved, but the stability is not good. Furthermore, those that are air-cooled after treatment have good stability, but have the disadvantage of low magnetic permeability. It can be seen that for samples having such Tc and Tx, the heat treatment method of the present invention is superior to the conventional method in terms of magnetic permeability stability. Next, for a sample where Tc>Tx, it is impossible to improve the magnetic permeability by ordinary heat treatment in a non-magnetic field, no matter how TA is selected. In addition, in heat treatment in a rotating magnetic field or heat treatment alone in a perpendicular magnetic field, as shown in Figure 4,
Although the magnetic properties are slightly improved by heat treatment in the vicinity, the degree of improvement is small, and the subsequent thermal stability is also poor due to the low heat treatment temperature.
It can be seen that by subjecting such a sample to the magnetic field heat treatment of the present invention, the magnetic properties are greatly improved and the subsequent stability is also favorable. From the above, the heat treatment method in a magnetic field of the present invention improves the magnetic properties of amorphous magnetic materials, including their stability, and is particularly effective for amorphous magnetic materials where TO≧Tx. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非晶質合金での遷移金属の割合とキユリ一点T
Cl結晶化温Tx、飽和磁化δ(Emu/g)との関係
の一例を示す図、第2図は同じ非晶質合金での遷移金属
の割合と普通の熱処理によつて得られる1kHzでの最
高の実効透磁率μe1飽和磁束密度Bsとの関係の一例
を示す図、第3図はTc=5500C1Tx=420℃
の非晶質合金に薄帯面内一方向磁界中熱処理を施した場
合、薄帯面垂直方向磁界熱処理を施した場合、薄帯面内
回転磁界中熱処理を施した場合の1kHzにおける透磁
率のレベル特性を示す図、第4図はTc=550℃,T
x=420℃なる非晶質合金を回転磁界中および垂直磁
界中で熱処理したときの透磁率の処理温度依存性を示す
図、第5図は回転磁界中熱処理を施してから垂直磁界中
熱処理を施したときの透磁率改善の様子を示す図、第6
図は垂直磁界中熱処理を施してから回転磁界中熱処理を
施した場合における透磁率改善の様子を示す図、第7図
は垂直磁界中熱処理と回転磁界中熱処理を組合わせた場
合における1kHz110×10−3エルステツドの透
磁率の処理温度依存性を示す図である。
Figure 1 shows the proportion of transition metals in an amorphous alloy and one point T.
Figure 2 shows an example of the relationship between the Cl crystallization temperature Tx and the saturation magnetization δ (Emu/g). A diagram showing an example of the relationship between the highest effective magnetic permeability μe1 and the saturation magnetic flux density Bs, Figure 3 is Tc=5500C1Tx=420℃
The magnetic permeability at 1 kHz of an amorphous alloy subjected to heat treatment in a unidirectional magnetic field in the plane of the ribbon, heat treatment in a magnetic field perpendicular to the plane of the ribbon, and heat treatment in a rotating magnetic field in the plane of the ribbon A diagram showing the level characteristics, Figure 4 is Tc = 550°C, T
Figure 5 shows the dependence of magnetic permeability on treatment temperature when an amorphous alloy with x = 420°C is heat treated in a rotating magnetic field and in a perpendicular magnetic field. Figure 6 shows how permeability is improved when
The figure shows the improvement in magnetic permeability when heat treatment is performed in a vertical magnetic field and then heat treatment in a rotating magnetic field. Figure 7 shows the improvement in magnetic permeability when heat treatment in a vertical magnetic field and heat treatment in a rotating magnetic field are combined. It is a figure which shows the processing temperature dependence of the magnetic permeability of -3 Oersted.

Claims (1)

【特許請求の範囲】 1 薄帯形状を有する非晶質磁性体を、その結晶化温度
以下の温度で、その薄帯面に対して垂直方向の磁界を印
加しながら、熱処理する工程と、前記非晶質磁性体を、
その結晶化温度よりも低い温度で、その薄帯面内に回転
磁界を印加しながら、熱処理する工程とを有することを
特徴とする非晶質磁性体の熱処理法。 2 非晶質磁性体のキュリー点がその結晶化温度以上で
あることを特徴とする特許請求の範囲第1項に記載の非
晶質磁性体の熱処理法。
[Scope of Claims] 1. A step of heat treating an amorphous magnetic material having a ribbon shape at a temperature below its crystallization temperature while applying a magnetic field perpendicular to the surface of the ribbon; Amorphous magnetic material,
1. A method for heat treatment of an amorphous magnetic material, comprising the step of heat treatment while applying a rotating magnetic field within the plane of the ribbon at a temperature lower than its crystallization temperature. 2. The method for heat treatment of an amorphous magnetic material according to claim 1, wherein the Curie point of the amorphous magnetic material is higher than its crystallization temperature.
JP55001955A 1979-09-05 1980-01-10 Heat treatment method for amorphous magnetic materials Expired JPS5935432B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP55001955A JPS5935432B2 (en) 1980-01-10 1980-01-10 Heat treatment method for amorphous magnetic materials
DE19803033258 DE3033258A1 (en) 1979-09-05 1980-09-04 Heat treatment of amorphous alloy films - esp. to remove magnetic dis-accommodation in magnetic recording heads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55001955A JPS5935432B2 (en) 1980-01-10 1980-01-10 Heat treatment method for amorphous magnetic materials

Publications (2)

Publication Number Publication Date
JPS5698465A JPS5698465A (en) 1981-08-07
JPS5935432B2 true JPS5935432B2 (en) 1984-08-28

Family

ID=11516011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55001955A Expired JPS5935432B2 (en) 1979-09-05 1980-01-10 Heat treatment method for amorphous magnetic materials

Country Status (1)

Country Link
JP (1) JPS5935432B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174481U (en) * 1988-05-25 1989-12-12
JPH0523661Y2 (en) * 1986-05-27 1993-06-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523661Y2 (en) * 1986-05-27 1993-06-16
JPH01174481U (en) * 1988-05-25 1989-12-12

Also Published As

Publication number Publication date
JPS5698465A (en) 1981-08-07

Similar Documents

Publication Publication Date Title
CA1142066A (en) Method of manufacturing an amorphous magnetic alloy
US4475962A (en) Annealing method for amorphous magnetic alloy
JPS6133900B2 (en)
Bi et al. The relationship of microstructure and magnetic properties in cold-rolled 6.5% Si-Fe alloy
JPS6133058B2 (en)
JPS6362579B2 (en)
JPS6324016A (en) Achievement of flat magnetization curve in manetic core of amorphous material
US4312683A (en) Method for heat-treating amorphous alloy films
JPS5935432B2 (en) Heat treatment method for amorphous magnetic materials
JPH0315323B2 (en)
JPH0772293B2 (en) Method for manufacturing Fe-Co-V based cast magnetic component
JPH0549742B2 (en)
Ochiai et al. Kinetics of magnetic annealing in amorphous Fe5Co75Si4B16
Nakano et al. Reduction of iron loss in thin grain-oriented silicon steel sheets
Krause et al. High frequency magnetic properties of some amorphous alloys
JPS6123646B2 (en) Preparation of tape wound core
JPS63121637A (en) Thin ni-fe alloy strip and its production
JPS59211530A (en) Production of amorphous fe-co-si-b alloy light-gage strip having small ac loss
JPH0151540B2 (en)
JPS6021217B2 (en) High magnetic permeability amorphous alloy with excellent heat resistance and corrosion resistance
JPS6133242B2 (en)
KR890004864B1 (en) Magnetic alloy for magnetic head
JPS6128012B2 (en)
Willens Melt extracted MnAl and MnAlC
JPS6128021B2 (en)