JPS63219114A - Heat treatment of magnetic thin film - Google Patents

Heat treatment of magnetic thin film

Info

Publication number
JPS63219114A
JPS63219114A JP5254487A JP5254487A JPS63219114A JP S63219114 A JPS63219114 A JP S63219114A JP 5254487 A JP5254487 A JP 5254487A JP 5254487 A JP5254487 A JP 5254487A JP S63219114 A JPS63219114 A JP S63219114A
Authority
JP
Japan
Prior art keywords
thin film
magnetic field
magnetic
heat treatment
unidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5254487A
Other languages
Japanese (ja)
Inventor
Satoru Mitani
覚 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5254487A priority Critical patent/JPS63219114A/en
Publication of JPS63219114A publication Critical patent/JPS63219114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve the high-frequency characteristics of a thin film magnetic core of a magnetic thin film pattern by simultaneously applying a fixed unidirectional magnetic field and a rotating unidirectional magnetic field to the film surface of the magnetic thin film pattern and performing a heat treatment. CONSTITUTION:When a fixed unidirectional magnetic field 3 is applied in a particular direction of the pattern of a thin film magnetic core 1 and the magnitude of the magnetic field 3 is made larger than the demagnitizing field, magnetization is provided in the magnetic field 3 direction. Further, when a rotating unidirectional magnetic field 4 is applied in superposition, a magnetic field having a peak in the magnetic field 3 direction is effectively added to the pattern independently of the change of the effective magnetic field due to the demagnitizing field. When a heat treatment is performed in such magnetic field, an easy magnetizing axis is given in the direction of magnetic filed 3, and an anisotropy is imparted which is somewhat diverging, centering on this axis. With this, the direction and magnitude of the anisotropy can be made to be desired ones, and a thin film head having excellent high-frequency characteristics is obtained using such thin film magnetic core.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄膜磁心の磁界中熱処理方法に関し、特に薄
膜磁気ヘッドに用いて良好な結果が得られる高周波特性
にすぐれた薄膜磁心を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of heat treatment in a magnetic field for a thin film magnetic core, and particularly aims to provide a thin film magnetic core with excellent high frequency characteristics that can be used in a thin film magnetic head to obtain good results. It is something.

従来の技術 従来より高周波で用いる磁心、特に磁性薄膜によって形
成された磁心においては、磁束が流れる方向に略垂直な
方向に磁性薄膜の磁化容易軸を付与し、すなわち、磁心
を使う方向が磁化困難軸となる様にすれば、その方向で
高い高周波透磁率が得られることが知られている。これ
は磁化困難軸方向で用いると、外部磁界変化に対する応
答が主に磁化の回軸によって行なわれる様になるために
、高い高周波透磁率が得られるものである。
Conventional technology Conventionally, in magnetic cores used at high frequencies, especially in magnetic cores formed of magnetic thin films, the axis of easy magnetization of the magnetic thin film is given in a direction approximately perpendicular to the direction in which magnetic flux flows, that is, the direction in which the magnetic core is used is difficult to magnetize. It is known that high frequency magnetic permeability can be obtained in that direction by arranging it to be axial. When used in the direction of the hard axis of magnetization, the response to changes in the external magnetic field is mainly caused by the rotational axis of magnetization, resulting in high high-frequency magnetic permeability.

この様な特定の異方性を磁性薄膜に付与する方法として
は、磁界中蒸着、磁界中スパッタ、あるいは成膜後の磁
界中熱処理等が知られている。このとき磁化容易軸とな
るべき方向に上記磁界の方向が向けられる。またこれら
の方法で付与される異方性が大き過ぎて、透磁率が低く
なる場合は、最初に一方向性の磁界を磁化容易軸となる
べき方向に加えて、磁界中蒸着、磁界中スパッタ、ある
いは成膜後磁界中熱処理を行なった後、さらに回転する
一方向性の磁界中で熱処理を行ない異方性の大きさを低
下させることが行なわれる。
Known methods for imparting such specific anisotropy to a magnetic thin film include evaporation in a magnetic field, sputtering in a magnetic field, and heat treatment in a magnetic field after film formation. At this time, the direction of the magnetic field is directed in the direction that should become the axis of easy magnetization. In addition, if the anisotropy imparted by these methods is too large and the magnetic permeability becomes low, first add a unidirectional magnetic field in the direction that should be the axis of easy magnetization, and then apply evaporation in a magnetic field or sputtering in a magnetic field. Alternatively, after the film is formed, heat treatment is performed in a magnetic field, and then heat treatment is performed in a rotating unidirectional magnetic field to reduce the magnitude of anisotropy.

薄膜ヘッドの薄膜磁心1は通常、第2図の様な形をして
おり、トラック幅方向2が磁化容易軸となる様に異方性
が付与、される。薄膜ヘッド製造においては、薄膜磁心
を第2図の様な形状にパターン形成後、上記の方法を用
いて異方性を与える必要がある場合が多い。この様な場
合、磁性薄膜のパターンの形状によって、回転する一方
向性の磁界の加わり方がトラック幅方向とトラック幅と
垂直方向とで異なってくる。極端な例として非常にトラ
ック幅が狭い場合、トラック幅方向に磁界がまったく加
わらないことさえあり、磁化容易方向がトラック幅と垂
直方向になることがある。
The thin film magnetic core 1 of the thin film head usually has a shape as shown in FIG. 2, and is given anisotropy so that the track width direction 2 is the axis of easy magnetization. In manufacturing thin film heads, it is often necessary to provide anisotropy using the above-mentioned method after patterning a thin film magnetic core into the shape shown in FIG. In such a case, depending on the shape of the pattern of the magnetic thin film, the way in which the rotating unidirectional magnetic field is applied differs in the track width direction and in the direction perpendicular to the track width. As an extreme example, if the track width is extremely narrow, no magnetic field may be applied in the track width direction, and the direction of easy magnetization may be perpendicular to the track width.

この理由は磁性薄膜パターンのトランク幅方向の長さW
l とトラック幅と垂直方向の長さW2とが異なるだめ
にトラック幅方向とそれに垂直方向との反磁界の大きさ
が異なり、磁性薄膜に有効に加わる磁界の大きさが異な
ってくるためである。
The reason for this is the length W of the magnetic thin film pattern in the trunk width direction.
This is because the magnitude of the demagnetizing field in the track width direction and the direction perpendicular to the track width direction differs because the track width and the length W2 in the perpendicular direction differ, and the magnitude of the magnetic field effectively applied to the magnetic thin film differs. .

ずなわぢ、外部から加える回転する一方向性の磁界強度
をH1磁性薄膜に有効に加わる磁界強度をHa ffと
するとトラック幅方向では、略トラック幅と垂直方向で
は、略 Reff   =  H−4yrMs−−2w2 となる。ここでtは磁性薄膜の膜厚、4πMsは磁性薄
膜の飽和磁化である。通常の薄膜ヘッドの磁心の様にw
、 < w2の場合には、 He ff、(Heff2
となシ、回転する一方向性の磁界が磁性薄膜パターンに
均一に加わらなくなってくる。このため、最初に一方向
性の磁界中熱処理でトランク幅方向に付与した異方性が
、消失したり、異方性を小さくして透磁率を向上させる
だめの異方性の大きさのコン)・ロールが困難になった
りする。
Zunawaji, if the strength of a rotating unidirectional magnetic field applied from the outside is defined as the magnetic field strength effectively applied to the H1 magnetic thin film as Hff, then in the track width direction, in the direction perpendicular to the track width, approximately Reff = H-4yrMs- -2w2. Here, t is the thickness of the magnetic thin film, and 4πMs is the saturation magnetization of the magnetic thin film. Like the magnetic core of a normal thin film head lol
, < w2, then He ff, (Heff2
As a result, the rotating unidirectional magnetic field no longer applies uniformly to the magnetic thin film pattern. For this reason, the anisotropy initially imparted in the trunk width direction by heat treatment in a unidirectional magnetic field may disappear, or the anisotropy size may be reduced to reduce the anisotropy and improve magnetic permeability. )・Rolls may become difficult.

発明が解決しようとする間呟点 この様に薄膜ヘッドに用いられる様なパターンの薄膜磁
心に、高周波における高透磁率が得られる様な異方性を
与えることが従来技術では困難であった。
Problems to be Solved by the Invention With the prior art, it has been difficult to provide a thin film magnetic core with a pattern such as that used in a thin film head with such anisotropy as to provide high magnetic permeability at high frequencies.

問題点を解決するだめの手段 磁性薄膜パターンの膜面内に固定した一方向性の磁界お
よび回転する一方向性の磁界を同時に加えて熱処理を行
なう。
The only way to solve the problem is to perform heat treatment by simultaneously applying a fixed unidirectional magnetic field and a rotating unidirectional magnetic field within the film plane of the magnetic thin film pattern.

作用 固定した一方向性の磁界は、薄膜磁心のパターンの特定
の方向に加えられる。この磁界の大きさを磁性薄膜パタ
ーンによって生じる反磁界の大きさ程度以上にすること
によって印加した磁界の方向に磁性薄膜パターン内の磁
化は向けられる。さらK、別に回転する一方向性の磁界
を重畳して加えると、磁性薄膜パターンの形状による反
磁界の大きさの違いに基づく磁性薄膜パターンに加わる
有効磁界の変化にかかわらず、固定した一方向性の磁界
方向にピークを持つ磁界が磁性薄膜パターンに有効に加
わるようになる。
A fixed, unidirectional magnetic field is applied in a particular direction of the pattern of thin film cores. By making the magnitude of this magnetic field greater than or equal to the magnitude of the demagnetizing field generated by the magnetic thin film pattern, the magnetization within the magnetic thin film pattern is directed in the direction of the applied magnetic field. Furthermore, if a separately rotating unidirectional magnetic field is superimposed and applied, a fixed unidirectional magnetic field is applied, regardless of the change in the effective magnetic field applied to the magnetic thin film pattern due to the difference in the magnitude of the demagnetizing field depending on the shape of the magnetic thin film pattern. A magnetic field having a peak in the direction of the magnetic field is effectively applied to the magnetic thin film pattern.

このような磁界中で熱処理を行うと、主として固定した
磁界の方向に磁化容易軸を有し、これを中心に異方性が
若干分散する。
When heat treatment is performed in such a magnetic field, the easy axis of magnetization is mainly in the direction of the fixed magnetic field, and the anisotropy is slightly dispersed around this axis.

実施例 第1図は本発明の実施例を示すものである。同図中1は
磁性薄膜より成る薄膜ヘッドの薄膜磁心である。また、
3は固定した一方向性の磁界H8で、とれはトラック幅
方向2に印加される。さらに4は回転する一方向性の磁
界HRである。
Embodiment FIG. 1 shows an embodiment of the present invention. In the figure, reference numeral 1 denotes a thin film core of a thin film head made of a magnetic thin film. Also,
3 is a fixed unidirectional magnetic field H8, which is applied in the track width direction 2. Furthermore, 4 is a rotating unidirectional magnetic field HR.

以下に第3図を用いてこれの作用を説明する。The effect of this will be explained below using FIG.

第3図のX方向に固定した一方向性の磁界Hsが加えら
れ、さらに原点Oを中心に回転する一方向性の磁界HR
が加えられる。H8とHRを合成すると合成磁界HTの
先端は座標点(Hs、O)を中心とする半径HRの円周
上を動くようになる。すなわち、X方向には最大でHs
+ HRの一方向性の磁界が加わる間があるのに対し、
X方向には一方向性の磁界が加わることはまったくない
。このような磁界が磁性薄膜パターンに加わると、磁性
薄膜内の磁化ばX方向を中心に、±yX方向傾くように
振動する。したがって、この様な磁界中熱処理を行なう
と主としてX方向に磁化容易軸を有し、これを中心に異
方性が若干分散した異方性が付与される。このためX方
向に使用する場訃、買方性が大き過ぎることによる透磁
率の低下を引き起こすことなく、かつ高い高周波透磁率
が得られる。
A unidirectional magnetic field Hs fixed in the X direction in Fig. 3 is applied, and a unidirectional magnetic field HR rotating around the origin O is further applied.
is added. When H8 and HR are combined, the tip of the combined magnetic field HT moves on the circumference of the radius HR centered on the coordinate point (Hs, O). That is, in the X direction, Hs at maximum
+ While there is a period when the unidirectional magnetic field of HR is applied,
No unidirectional magnetic field is applied in the X direction at all. When such a magnetic field is applied to the magnetic thin film pattern, the magnetization within the magnetic thin film vibrates so as to be tilted in the ±yX direction with the X direction as the center. Therefore, when such a heat treatment in a magnetic field is performed, anisotropy is imparted, which has an axis of easy magnetization mainly in the X direction, with the anisotropy slightly dispersed around this axis. Therefore, when used in the X direction, a high high-frequency magnetic permeability can be obtained without causing a decrease in magnetic permeability due to excessive availability.

さらにHRの大きさを変化させることによって付与され
る異方性の大きさをコントロールすることも可能である
。すなわち、HRが小さい場合にばH8が支配的となり
付与される異方性は大きくなる。HRが大きい場合には
HRが支配的どなり付与される異方性は小さくなる。
Furthermore, it is also possible to control the magnitude of anisotropy imparted by changing the magnitude of HR. That is, when HR is small, H8 becomes dominant and the anisotropy imparted becomes large. When HR is large, HR is dominant and the anisotropy imparted becomes small.

従来技術においては、回転する一方向性の磁界による磁
界中熱処理の前に、磁界中蒸着、磁界中スパッタ、成膜
後の固定した一方向性の磁界による磁界中熱処理が必要
であるが、本発明によればこれは不要となる。
Conventional technology requires evaporation in a magnetic field, sputtering in a magnetic field, and heat treatment in a magnetic field with a fixed unidirectional magnetic field after film formation before heat treatment in a magnetic field with a rotating unidirectional magnetic field. According to the invention, this is no longer necessary.

本発明では膜形成が終了して後の磁界中熱処理によって
有効に異方性が付与できる材料において本発明の特徴が
より発揮される。従ってパーマロイやセンダストの様に
成膜中に磁界を印加しないと異方性が付与しにくい材料
より、非晶質合金の様に磁界中熱処理によって容易に原
子の再配列が起こる拐料を用いて本発明を実施するのが
望ましい。
In the present invention, the characteristics of the present invention are more fully exhibited in materials that can be effectively imparted with anisotropy by heat treatment in a magnetic field after film formation is completed. Therefore, rather than materials such as permalloy and sendust, which are difficult to impart anisotropy to unless a magnetic field is applied during film formation, it is preferable to use materials such as amorphous alloys, which easily rearrange atoms when heat treated in a magnetic field. It is desirable to practice the invention.

次に具体的な実施例について説明する。Next, specific examples will be described.

スパッタ法でGo−Nb−Zr非晶質合金磁性薄膜を形
成後、リソグラフィ技術を用いて第1図の様な磁性薄膜
パターンに形成した。この後、所定の熱処理温度におい
て上記の磁界を印加した。磁性薄膜パターンのトラック
幅は、507zm 、膜厚は5μm、飽和磁化は12K
Gであり、トラック幅方向の反磁界の大きさは1.2K
Oe程度であるので、Hs  の大きさは1.5KOe
とした。またHRの大きさは0.5 KOeとした。以
上の磁界中熱処理によってトラック幅方向に磁化容易軸
を有する異方性を付与することができた。
After forming a Go-Nb-Zr amorphous alloy magnetic thin film by sputtering, a magnetic thin film pattern as shown in FIG. 1 was formed using lithography technology. Thereafter, the above magnetic field was applied at a predetermined heat treatment temperature. The track width of the magnetic thin film pattern is 507 zm, the film thickness is 5 μm, and the saturation magnetization is 12K.
G, and the magnitude of the demagnetizing field in the track width direction is 1.2K.
Since it is about Oe, the size of Hs is 1.5KOe
And so. Further, the size of HR was set to 0.5 KOe. The above heat treatment in a magnetic field made it possible to impart anisotropy with an axis of easy magnetization in the track width direction.

さらに、同じ形状の磁性薄膜パターンをHsの大きさ1
.5 KOe 、 HRの大きさ1.5KOeの磁界を
印加して熱処理を行なうと前者よりも小さい異方性をト
ラック幅方向に付与することができた。
Furthermore, a magnetic thin film pattern of the same shape is
.. When heat treatment was performed by applying a magnetic field with an HR of 1.5 KOe and an HR of 1.5 KOe, smaller anisotropy than the former could be imparted in the track width direction.

上記の様な磁界中熱処理を行なって作製した薄膜磁心を
使った薄膜ヘッドの電磁変換特性は高周波特性の良好な
ものであった。
The electromagnetic conversion characteristics of a thin film head using a thin film magnetic core manufactured by performing heat treatment in a magnetic field as described above had good high frequency characteristics.

発明の効果 本発明によれば、磁性薄膜をパターン形成した後におい
て、磁気異方性の方向および大きさを所望のものKでき
、この様な薄膜磁心を用いて高周波特性のすぐれた薄膜
ヘッドが得られる。
Effects of the Invention According to the present invention, after patterning a magnetic thin film, the direction and magnitude of magnetic anisotropy can be set to a desired value, and a thin film head with excellent high frequency characteristics can be produced using such a thin film core. can get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例ておける磁性薄膜の熱処理方
法を説明するだめの平面図、第2図は薄膜磁心を示す斜
視図、第3図は本実施例における磁界の状態を示す図で
ある。 1・・・・・・薄膜磁心、2・・・・・・トラ、り幅の
方向、3・・・・・・固定した一方向性の磁界、4・・
・・・・回転する一方向性の磁界。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 I −−薄 y@ 1;幅1 ノ\4 2−)−ラック幅の7向 3− 回定した一方向・在の、磁界 4−”−回転する一方向性の磁界 第3図
FIG. 1 is a plan view illustrating a heat treatment method for a magnetic thin film in one embodiment of the present invention, FIG. 2 is a perspective view showing a thin film magnetic core, and FIG. 3 is a diagram showing the state of a magnetic field in this embodiment. It is. 1... Thin film magnetic core, 2... Trap and width direction, 3... Fixed unidirectional magnetic field, 4...
...Rotating unidirectional magnetic field. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 I -- Thin y @ 1; Width 1 No. Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)磁性薄膜パターンの膜面内に固定した一方向性の
磁界および上記膜面内で回転する一方向性の磁界を同時
に加えながら熱処理することを特徴とする磁性薄膜の熱
処理方法。
(1) A method for heat treatment of a magnetic thin film, characterized in that heat treatment is carried out while simultaneously applying a unidirectional magnetic field fixed within the film plane of a magnetic thin film pattern and a unidirectional magnetic field rotating within the film plane.
(2)固定した一方向性磁界の大きさが磁性薄膜パター
ンによって生じる反磁界の大きさ程度以上であることを
特徴とする特許請求の範囲第1項記載の磁性薄膜の熱処
理方法。
(2) The method for heat treatment of a magnetic thin film according to claim 1, wherein the magnitude of the fixed unidirectional magnetic field is approximately equal to or greater than the magnitude of the demagnetizing field generated by the magnetic thin film pattern.
(3)回転する一方向性の磁界の大きさを変化させるこ
とにより磁性薄膜パターンに付与する異方性の大きさを
コントロールすることを特徴とする特許請求の範囲第1
項記載の磁性薄膜の熱処理方法。
(3) Claim 1, characterized in that the magnitude of anisotropy imparted to the magnetic thin film pattern is controlled by changing the magnitude of the rotating unidirectional magnetic field.
A method for heat treatment of a magnetic thin film as described in .
(4)磁性薄膜が非晶質合金であることを特徴とする特
許請求の範囲第1項記載の磁性薄膜の熱処理方法。
(4) The method for heat treatment of a magnetic thin film according to claim 1, wherein the magnetic thin film is an amorphous alloy.
JP5254487A 1987-03-06 1987-03-06 Heat treatment of magnetic thin film Pending JPS63219114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5254487A JPS63219114A (en) 1987-03-06 1987-03-06 Heat treatment of magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5254487A JPS63219114A (en) 1987-03-06 1987-03-06 Heat treatment of magnetic thin film

Publications (1)

Publication Number Publication Date
JPS63219114A true JPS63219114A (en) 1988-09-12

Family

ID=12917730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5254487A Pending JPS63219114A (en) 1987-03-06 1987-03-06 Heat treatment of magnetic thin film

Country Status (1)

Country Link
JP (1) JPS63219114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262307A (en) * 1989-04-03 1990-10-25 Fuji Photo Film Co Ltd Soft magnetic thin film
US6217672B1 (en) * 1997-09-24 2001-04-17 Yide Zhang Magnetic annealing of magnetic alloys in a dynamic magnetic field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262307A (en) * 1989-04-03 1990-10-25 Fuji Photo Film Co Ltd Soft magnetic thin film
US6217672B1 (en) * 1997-09-24 2001-04-17 Yide Zhang Magnetic annealing of magnetic alloys in a dynamic magnetic field

Similar Documents

Publication Publication Date Title
JPH0268906A (en) Highly saturated flux density soft magnetic film and magnetic head
US5503686A (en) Heat treatment method for thin film magnetic head
JPS63219114A (en) Heat treatment of magnetic thin film
JPH0375624B2 (en)
JPH06267023A (en) Thin film magnetic head and manufacture thereof
JPH0714118A (en) Thin-film magnetic head and its production
JPH02105307A (en) Production of thin film magnetic head
JPH02302007A (en) Manufacture of magnetic head
JPS62119709A (en) Manufacture of magnetic head core for high frequency
JPH06162442A (en) Vertical magnetic head
JPS5972636A (en) Manufacture for thin film head
JPH01102712A (en) Thin film magnetic head and its manufacture
JPH02249132A (en) Magnetic field orienting device
JPH06333770A (en) Manufacture of magnetic film and thin film magnetic head
JPH01300412A (en) Manufacture of magnetic head
JPH03108111A (en) Magnetic film core for thin-film magnetic head and production thereof
JPH01109710A (en) Heat treatment within magnetic field
JPH0252415A (en) Formation of magnetic thin film having uniaxial anisotropy
JPH0665662A (en) Soft magnetic alloy
JPS63809A (en) Formation of thin film magnetic head core
JPH0371403A (en) Ring head
JPH04102206A (en) Magnetic head
JP2001085257A (en) Choke coil core and its manufacture
JPH0827905B2 (en) High frequency magnetic head
JPH02205310A (en) Method of forming magnetic multilayer film