JP2739574B2 - Heat treatment method for amorphous soft magnetic material - Google Patents
Heat treatment method for amorphous soft magnetic materialInfo
- Publication number
- JP2739574B2 JP2739574B2 JP62088652A JP8865287A JP2739574B2 JP 2739574 B2 JP2739574 B2 JP 2739574B2 JP 62088652 A JP62088652 A JP 62088652A JP 8865287 A JP8865287 A JP 8865287A JP 2739574 B2 JP2739574 B2 JP 2739574B2
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- magnetic
- soft magnetic
- amorphous soft
- magnetic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15341—Preparation processes therefor
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Magnetic Heads (AREA)
- Soft Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は非晶質軟磁性材料の熱処理方法に関し、特に
広い周波数範囲で高透磁率が得られて薄膜磁気ヘッドの
磁気コアなどの各種磁気応用部品に好適となる非晶質軟
磁性材料の熱処理方法に関する。
(従来技術)
金属は、通常、固体状態において原子配列が規則性を
有した結晶構造を持って存在しているものであるが、例
えば、ある種の合金溶液を溶融状態から急冷凝固させた
り、あるいは、ある種のターゲット材料をイオンにより
スパッタリングし、その散乱された原子を基板上に急冷
付着させたりすることにより、固体状態でも液体状態に
類似した原子配列を持つ非晶質状態の軟磁性材料が得ら
れることは周知のとおりである。
このようにして得られた非晶質軟磁性材料は、原子配
列が結晶質材料のような長範囲規則性を有せず、ランダ
ムに配列しているために元来、結晶質のような結晶磁気
異方性を有していない。
しかし、非晶質軟磁性材料は、その製造時に何らかの
理由で材料中に磁気異方性が誘起されることが多い。と
ころが、このように生起された誘導磁気異方性は、その
大きさや方向の分布が不均一であり、製造直後の材料の
磁気特性が一般的に余り良くなく、しかも熱的にも不安
定である。また、非晶質状態を作り出す際に、その製造
方法に起因する種々の歪が生じており、これが材料内部
に残留してしまい、この点からも磁気特性を悪くし、熱
的に不安定である。
非晶質軟磁性材料製造時のこれら誘導磁気異方性や内
部歪を除去するために、従来より行われている熱処理方
法、例えば、キュリー温度および結晶化温度以下の温度
で非酸化性雰囲気中において回転磁気中で熱処理する方
法は有効な方法であり、直流や低周波領域での透磁率を
向上させることができる。
(発明が解決しようとする問題点)
しかし、反面、誘導磁気異方性が除去されて磁気異方
性が小さくなると、磁区構造が不安定で粗大になり、磁
壁の移動が生じ易くなるため、高周波領域(1MHz以上)
での透磁率は逆に低下してくるという問題が生じる。
高周波領域での透磁率を向上させるためには、磁化過
程として、磁壁移動よりもそのスイッチング速度が速い
磁化回転を用いる必要があり、そのためには、磁気材料
にある適切な大きさの一軸磁気異方性を付与し、その困
難軸方向に駆動する必要がある。
本発明の目的は、上記事情に基づいて行われたもの
で、非晶質軟磁性材料の高周波特性が改善される熱処理
方法を提供することにある。つまり、高周波領域で使用
する非晶質軟磁性材料の特性を向上させるためには、製
造時に誘起される誘導磁気異方性や内部歪を除去するだ
けでなく、所望の方向に目的に応じたある適切な大きさ
の一軸磁気異方性を付与することが必要である。
(問題点を解決するための手段)
本発明の上記目的は、非晶質軟磁性材料を、最終的に
高い高周波透磁率が得たい方向に印加された静磁界中に
配置し、該非晶質軟磁性材料の結晶化温度およびキュリ
ー温度よりも低い温度で第1の熱処理を施すことによっ
て一軸磁気異方性を付与した後、前記処理温度またはそ
れ以下の温度で前記最終的に高い高周波透磁率が得たい
方向と略直交する方向に印加された静磁界中で第2の熱
処理をし、この第2の熱処理の温度および時間により該
非晶質軟磁性材料の一軸磁気異方性の大きさを制御する
ことを特徴とする非晶質軟磁性材料の熱処理方法により
達成される。
以上のようにして熱処理された非晶質軟磁性材料は広
い周波数範囲で高透磁率が得られ、薄膜磁気ヘッドの磁
気コアなどに好適なものとなる。
第1の熱処理および第2の熱処理により磁区の向きが
試料面内で直角に反転されるので試料全域にわたる一軸
磁気異方性が確実につけられやすい。さらに、この方法
では短時間の熱処理により一軸磁気異方性をつけること
ができる。
以下、本発明の方法を詳細に説明する。
第1図は本発明の磁場中熱処理に用いる装置の好まし
い1例を示している。
第1図において、基板上に非晶質膜が形成された試料
1は、架台2の上に載置される。架台2は石英管で囲わ
れた炉3内に収納されており、ヒータ4により架台2上
の試料1は所定温度に加熱保持される。更に試料1は加
熱されながら外部磁場により面内方向に磁化される。外
部磁場は炉3の外面に配置されかつヨーク5に取り付け
られた磁石6により形成される。ヨーク5は角度コント
ローラ7により回転角が制御されるパルスモータ8によ
り角度調整可能なように設けられており、磁石6は試料
面内の異なる方向にも静磁界を印加できる。
(実施例)
以下、本発明の実施例を挙げて本発明を説明する。
スパッター法によりアルミナ基板上に10μmの膜厚の
Co91.8Zr2.3Nb5.9(at%)なる組成の非晶質合金膜(飽
和磁束密度Bs=10.5KG,飽和磁歪λs≒+3×10-7,結晶
化温度Tx=480℃)を形成した。この試料に、最終的に
高い高周波透磁率を得たい主たる方向に印加された静磁
界中で、かつ10-3〜10-5Torrの真空中において360℃で3
0分間の第1の熱処理をした。その後室温まで冷却して
得られた試料のBH特性は第2図(A)に示すとおりであ
り、典型的な一軸異方性を示している。この段階で異方
性は最終的に高い透磁率を得たい方向(以下、Y方向と
する)に付与されておりその異方性磁界の大きさは10.0
θeとなっている。次に、パルスモータを駆動し、静磁
界の方向を、先のY方向と直交するX方向に移動した
後、同一真空中において再び360℃で第2の熱処理を行
った。この際、処理時間は30分、60分、180分、300分、
450分のそれぞれの場合について行ない、それぞれのBH
特性を測定し、一軸異方性磁界Hkを求めた。各BH曲線を
第2図(B)〜(F)に示す。
図から明らかなように、第2の熱処理後30分で異方性
はY方向からX方向へ向きをかえ、異方性磁界Hkは4.2
θeと測定された。また、図から明らかなように、第2
の熱処理時間が長ければ長いほど異方性磁界Hkが増大し
Y方向の透磁率は低下していくことが分る。
第3図は第1の熱処理後の異方性磁界Hkの大きさを第
2の熱処理時間に対してプロットしたものである。
第4図は、本発明の熱処理方法が薄膜磁気ヘッドの磁
気コアに適用された場合を示す。
すなわち、所定磁気ギャップが形成された磁気コアの
磁化方向が前述のY方向に相当し、第1の熱処理はY方
向に静磁界を印加した状態で行われる。次に、磁気コア
の磁化方向と直交するX方向に静磁界を印加した状態で
第2の熱処理を施し、最終的に磁化方向を困難軸方向と
して高周波での透磁率を高くする。
なお、磁気コア材料の一軸異方性磁界Hkは、磁壁が不
安定にならない範囲でかつなるべく小さい方が良く、こ
れはコア寸法にもよるが略2〜6θe程度である。従っ
て、先の測定結果より、第2の熱処理時間が30分で既に
所望の一軸異方性磁界が得られる。
なお、上記実施例では、第1の熱処理後、室温まで冷
却した後第2の熱処理を実施したが、実際の処理は、第
5図に図示するように、同温中で、印加する静磁界の角
度を変えるだけで同等の効果が得られる。また、真空中
において熱処理を行ったが、非酸化性雰囲気中において
行われてもよい。Description: FIELD OF THE INVENTION The present invention relates to a method for heat-treating an amorphous soft magnetic material, and in particular, to various magnetic materials such as a magnetic core of a thin-film magnetic head which can obtain high magnetic permeability over a wide frequency range. The present invention relates to a heat treatment method for an amorphous soft magnetic material suitable for application parts. (Prior Art) A metal is usually present in a solid state with a crystal structure having a regular atomic arrangement. For example, a certain alloy solution is rapidly solidified from a molten state, Alternatively, an amorphous soft magnetic material having an atomic arrangement similar to a liquid state even in a solid state by sputtering a certain kind of target material with ions and rapidly scattering the scattered atoms on a substrate. Is well known. The amorphous soft magnetic material thus obtained does not have a long-range regularity such as an atomic arrangement like a crystalline material, and is originally arranged randomly, so that a crystal like a crystalline material is originally used. Does not have magnetic anisotropy. However, in the case of an amorphous soft magnetic material, magnetic anisotropy is often induced in the material for some reason during its production. However, the induced magnetic anisotropy generated in this way has a nonuniform size and distribution in the direction, and generally the magnetic properties of the material immediately after production are not very good, and are also thermally unstable. is there. Also, when producing an amorphous state, various strains due to the manufacturing method are generated, and these remain in the material, deteriorating the magnetic characteristics from this point, and becoming thermally unstable. is there. In order to remove these induced magnetic anisotropy and internal strain during the production of an amorphous soft magnetic material, a conventional heat treatment method, for example, in a non-oxidizing atmosphere at a temperature lower than the Curie temperature and the crystallization temperature. In the above, a method of performing heat treatment in rotating magnetism is an effective method, and can improve the magnetic permeability in a DC or low frequency region. (Problems to be Solved by the Invention) On the other hand, when the induced magnetic anisotropy is removed and the magnetic anisotropy is reduced, the magnetic domain structure becomes unstable and coarse, and the domain wall easily moves. High frequency range (1MHz or more)
However, there arises a problem that the magnetic permeability at the same time decreases. In order to improve the magnetic permeability in the high-frequency region, it is necessary to use, as a magnetization process, magnetization rotation whose switching speed is faster than domain wall motion. It is necessary to provide anisotropy and drive in the hard axis direction. It is an object of the present invention to provide a heat treatment method based on the above circumstances, in which the high-frequency characteristics of an amorphous soft magnetic material are improved. In other words, in order to improve the characteristics of the amorphous soft magnetic material used in the high frequency region, it is necessary to not only remove the induced magnetic anisotropy and internal strain induced during manufacturing, but also to meet the purpose in a desired direction. It is necessary to provide a certain size of uniaxial magnetic anisotropy. (Means for Solving the Problems) An object of the present invention is to dispose an amorphous soft magnetic material in a static magnetic field applied in a direction in which a high high-frequency magnetic permeability is desired to be finally obtained. After imparting uniaxial magnetic anisotropy by performing a first heat treatment at a temperature lower than the crystallization temperature and the Curie temperature of the soft magnetic material, the final high-frequency magnetic permeability is obtained at the processing temperature or lower. Perform a second heat treatment in a static magnetic field applied in a direction substantially perpendicular to the direction in which the amorphous soft magnetic material is to be obtained, and determine the magnitude of uniaxial magnetic anisotropy of the amorphous soft magnetic material by the temperature and time of the second heat treatment. This is achieved by a method of heat-treating an amorphous soft magnetic material characterized by controlling. The amorphous soft magnetic material heat-treated as described above has high magnetic permeability over a wide frequency range, and is suitable for a magnetic core of a thin film magnetic head. Since the directions of the magnetic domains are inverted at right angles in the plane of the sample by the first heat treatment and the second heat treatment, uniaxial magnetic anisotropy over the entire region of the sample is easily provided. Further, in this method, uniaxial magnetic anisotropy can be imparted by a short-time heat treatment. Hereinafter, the method of the present invention will be described in detail. FIG. 1 shows a preferred example of an apparatus used for heat treatment in a magnetic field of the present invention. In FIG. 1, a sample 1 having an amorphous film formed on a substrate is placed on a gantry 2. The gantry 2 is housed in a furnace 3 surrounded by a quartz tube. The sample 1 on the gantry 2 is heated and maintained at a predetermined temperature by a heater 4. Further, the sample 1 is magnetized in an in-plane direction by an external magnetic field while being heated. The external magnetic field is formed by a magnet 6 arranged on the outer surface of the furnace 3 and mounted on a yoke 5. The yoke 5 is provided so that the angle can be adjusted by a pulse motor 8 whose rotation angle is controlled by an angle controller 7, and the magnet 6 can apply a static magnetic field in different directions in the sample surface. (Example) Hereinafter, the present invention will be described with reference to examples of the present invention. 10 μm thick film on alumina substrate by sputtering
An amorphous alloy film having a composition of Co 91.8 Zr 2.3 Nb 5.9 (at%) (saturation magnetic flux density Bs = 10.5KG, saturation magnetostriction λ s ≒ + 3 × 10 −7 , crystallization temperature Tx = 480 ° C.) was formed. The sample is heated at 360 ° C. in a static magnetic field applied in the main direction in which a high high-frequency magnetic permeability is desired to be finally obtained and in a vacuum of 10 −3 to 10 −5 Torr at 360 ° C.
The first heat treatment was performed for 0 minutes. Thereafter, the BH characteristics of the sample obtained by cooling to room temperature are as shown in FIG. 2 (A), and show a typical uniaxial anisotropy. At this stage, the anisotropy is imparted in a direction in which a high magnetic permeability is to be finally obtained (hereinafter, referred to as a Y direction), and the magnitude of the anisotropic magnetic field is 10.0.
θe. Next, after driving the pulse motor to move the direction of the static magnetic field in the X direction perpendicular to the Y direction, the second heat treatment was performed again at 360 ° C. in the same vacuum. At this time, the processing time is 30 minutes, 60 minutes, 180 minutes, 300 minutes,
450 minutes for each case, each BH
The characteristics were measured, and the uniaxial anisotropic magnetic field Hk was determined. Each BH curve is shown in FIGS. 2 (B)-(F). As is clear from the figure, 30 minutes after the second heat treatment, the anisotropy changes from the Y direction to the X direction, and the anisotropic magnetic field Hk becomes 4.2.
θe. Also, as is clear from the figure, the second
It can be seen that the longer the heat treatment time, the larger the anisotropic magnetic field Hk and the lower the magnetic permeability in the Y direction. FIG. 3 shows the magnitude of the anisotropic magnetic field Hk after the first heat treatment plotted against the second heat treatment time. FIG. 4 shows a case where the heat treatment method of the present invention is applied to a magnetic core of a thin-film magnetic head. That is, the magnetization direction of the magnetic core in which the predetermined magnetic gap is formed corresponds to the above-described Y direction, and the first heat treatment is performed in a state where a static magnetic field is applied in the Y direction. Next, a second heat treatment is performed in a state where a static magnetic field is applied in the X direction orthogonal to the magnetization direction of the magnetic core, and finally the magnetization direction is set to the hard axis direction to increase the magnetic permeability at high frequencies. Note that the uniaxial anisotropic magnetic field Hk of the magnetic core material is preferably as small as possible within a range where the domain wall does not become unstable. Therefore, from the above measurement results, a desired uniaxial anisotropic magnetic field can be already obtained in the second heat treatment time of 30 minutes. In the above embodiment, after the first heat treatment, the second heat treatment was performed after cooling to room temperature. However, as shown in FIG. The same effect can be obtained simply by changing the angle. Further, the heat treatment is performed in a vacuum, but may be performed in a non-oxidizing atmosphere.
【図面の簡単な説明】
第1図は本発明の方法を実施するための磁界中熱処理装
置の構造の一例を示す図、第2図は非晶質軟磁性材料Co
91.8Zr2.3Nb5.9(at%)のBH特性を示す図、第3図は同
一材料の磁界中等温熱処理時間によるHkの変化を示す
図、第4図は薄膜磁気ヘッドの磁気コアに本発明が適用
される様子を説明する図、第5図は実際の熱処理方法を
説明する図である。
1……試料、2……架台、3……炉、
4……ヒータ、5……ヨーク、6……磁石、
7……角度コントローラ、8……パルスモータ、BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an example of the structure of a heat treatment apparatus in a magnetic field for carrying out the method of the present invention, and FIG. 2 shows an amorphous soft magnetic material Co.
91.8 Zr 2.3 Nb 5.9 (at%) BH characteristics, Fig. 3 shows changes in Hk due to isothermal heat treatment time in the same material in a magnetic field, and Fig. 4 shows the present invention applied to a magnetic core of a thin film magnetic head. FIG. 5 is a view for explaining a state of application, and FIG. 5 is a view for explaining an actual heat treatment method. 1 ... sample, 2 ... stand, 3 ... furnace, 4 ... heater, 5 ... yoke, 6 ... magnet, 7 ... angle controller, 8 ... pulse motor,
Claims (1)
得たい方向に印加された静磁界中に配置し、該非晶質軟
磁性材料の結晶化温度およびキュリー温度よりも低い温
度で第1の熱処理を施すことによって一軸磁気異方性を
付与した後、前記処理温度またはそれ以下の温度で前記
最終的に高い高周波透磁率が得たい方向と略直交する方
向に印加された静磁界中で第2の熱処理をし、この第2
の熱処理の温度および時間により該非晶質軟磁性材料の
一軸磁気異方性の大きさを制御することを特徴とする非
晶質軟磁性材料の熱処理方法。 2.スパッタリング法により基板上に作製された非晶質
軟磁性材料を用いることを特徴とする特許請求の範囲第
1項に記載の熱処理方法。(57) [Claims] An amorphous soft magnetic material is placed in a static magnetic field applied in a direction in which a high high-frequency magnetic permeability is desired to be finally obtained, and the first soft magnetic material is heated at a temperature lower than a crystallization temperature and a Curie temperature of the amorphous soft magnetic material. After imparting uniaxial magnetic anisotropy by performing a heat treatment, in a static magnetic field applied in a direction substantially perpendicular to the direction in which the final high-frequency magnetic permeability is desired to be obtained at the processing temperature or lower. A second heat treatment is performed.
Controlling the magnitude of the uniaxial magnetic anisotropy of said amorphous soft magnetic material by the temperature and time of said heat treatment. 2. 2. The heat treatment method according to claim 1, wherein an amorphous soft magnetic material produced on a substrate by a sputtering method is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62088652A JP2739574B2 (en) | 1987-04-13 | 1987-04-13 | Heat treatment method for amorphous soft magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62088652A JP2739574B2 (en) | 1987-04-13 | 1987-04-13 | Heat treatment method for amorphous soft magnetic material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63255370A JPS63255370A (en) | 1988-10-21 |
JP2739574B2 true JP2739574B2 (en) | 1998-04-15 |
Family
ID=13948750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62088652A Expired - Fee Related JP2739574B2 (en) | 1987-04-13 | 1987-04-13 | Heat treatment method for amorphous soft magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2739574B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02302007A (en) * | 1989-05-17 | 1990-12-14 | Hitachi Ltd | Manufacture of magnetic head |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS599157A (en) * | 1982-07-08 | 1984-01-18 | Sony Corp | Heat treatment of amorphous magnetic alloy |
JPS59170248A (en) * | 1983-03-18 | 1984-09-26 | Hitachi Ltd | Heat treatment of amorphous alloy |
JPS59200748A (en) * | 1983-04-30 | 1984-11-14 | Akai Electric Co Ltd | Manufacture of amorphous soft-magnetic thin film |
-
1987
- 1987-04-13 JP JP62088652A patent/JP2739574B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63255370A (en) | 1988-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4475962A (en) | Annealing method for amorphous magnetic alloy | |
JPWO2005091315A1 (en) | R-Fe-B system thin film magnet and method for manufacturing the same | |
JP4053328B2 (en) | Polycrystalline FeGa alloy ribbon with giant magnetostrictive properties | |
JPS6133058B2 (en) | ||
JP2739574B2 (en) | Heat treatment method for amorphous soft magnetic material | |
JPS63259072A (en) | Method for controlling uniaxial magnetic anisotropy of amorphous soft magnetic material | |
JPH0694589B2 (en) | Heat treatment method for amorphous soft magnetic material | |
US4944805A (en) | Method of heat treatment amorphous soft magnetic film layers to reduce magnetic anisotropy | |
Hoselitz et al. | The cause of anisotropy in permanent magnet alloys | |
JPH0375624B2 (en) | ||
Garcia et al. | Magnetic domains and transverse induced anisotropy in magnetically soft CoFeB amorphous thin films | |
JPS6216268B2 (en) | ||
JPH0571163B2 (en) | ||
JP3742116B2 (en) | Method for controlling magnetic anisotropy of magnetic thin film | |
JPH0571164B2 (en) | ||
JPH0252415A (en) | Formation of magnetic thin film having uniaxial anisotropy | |
JPH0665662A (en) | Soft magnetic alloy | |
JPH0457637B2 (en) | ||
JPH0337721B2 (en) | ||
JPS58213860A (en) | Heat treatment of amorphous magnetic film | |
JPH03136216A (en) | Manufacture of soft magnetic alloy film and heat treatment method | |
JP2006013549A (en) | Control method for magnetic anisotropy of magnetic thin film | |
JPS63228443A (en) | Production of magneto-optical recording material | |
JPH08253395A (en) | Garnet crystal and its production | |
JP2015161644A (en) | Magnetic force microscope probe and manufacturing method for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |