JPS58213860A - Heat treatment of amorphous magnetic film - Google Patents

Heat treatment of amorphous magnetic film

Info

Publication number
JPS58213860A
JPS58213860A JP57095412A JP9541282A JPS58213860A JP S58213860 A JPS58213860 A JP S58213860A JP 57095412 A JP57095412 A JP 57095412A JP 9541282 A JP9541282 A JP 9541282A JP S58213860 A JPS58213860 A JP S58213860A
Authority
JP
Japan
Prior art keywords
film
magnetic field
heat treatment
magnetic
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57095412A
Other languages
Japanese (ja)
Other versions
JPS6150134B2 (en
Inventor
Hiroshi Sakakima
博 榊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57095412A priority Critical patent/JPS58213860A/en
Publication of JPS58213860A publication Critical patent/JPS58213860A/en
Publication of JPS6150134B2 publication Critical patent/JPS6150134B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve the soft magnetic characteristics of an amorphous magnetic film formed on a substrate, by heat-treating the film in a magnetic field applied in a prescribed direction and by further heat treating the film while rotating the magnetic field in the film. CONSTITUTION:An amorphous magnetic film whose crystallization temp. is below the Curie temp. is formed on the surface of a substrate 3, the substrate 3 is mounted on a heater 1 in a container 4, and the container 4 is evacuated. A stationary magnetic field is applied to the film from magnets 5 placed at the outside of the container 4 in the direction perpendicular to the direction in which the magnetic permeability is measured, and the film is heated from room temp. to 300 deg.C in 30min with the heater 1 and held for about 15min. The magnets 5 are then rotated through a yoke 6, and while applying a rotating magnetic field to the film, the film is slowly cooled from 300 deg.C to room temp. in about 60min to improve the soft magnetic characteristics of the film.

Description

【発明の詳細な説明】 本発明は非晶質磁性膜の熱処理方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for heat treating an amorphous magnetic film.

近年液体超急冷法の発達によ、? IJボン形状の非晶
質磁性合金が得られるように々っだ。これらは2ベー−
二j キュリ一温度Tc以」二、結晶化温度Tx以下の温度で
熱処理した後、室温近く壕で水中急冷することにより、
優れた軟磁気特性が得られることがわかっている。とこ
ろが、材料によってはTxがTcより低いような非晶質
磁性合金があり、前記のような熱処理はできない。発明
者は先にT x (T cの条件をみたす材料について
は回転磁場中でアニールする(特開昭55−11076
4号公報)か、1だはリボン面に垂直な磁場中でのアニ
ールと回転磁場中でのアニールとを組合わせる(特開昭
56一方、上述のような液体超急冷法と異なり、蒸着や
スパッターなどの気体急冷法により基板上に非晶質膜を
形成し、これを複合材料として用いる研究も盛んになっ
て来ている。しかしながら、一般に基板として用いられ
る材質はセラミックやガラスであるため、上述の液体急
冷法で得られる非晶質リボンの場合のように、熱処理し
た後、水中急冷するというようなことはできない。なぜ
なら3 べ −・ ば、このような急冷をすれば、基板のガラスやセラミッ
クが割れてし壕うからである。寸だ、金属のような基板
を用いれば、急冷しても割れないが基板と非晶質膜の熱
膨張係数の差により剥離が生じやすい。壕だ、高周波領
域のテバイスには基板はメタル系の材質を用いない方が
望ましい。さらに、一般に膜厚が小さいため、上述のよ
うな膜面に垂直な磁場中アニールと回転磁場中アニール
を組合せるのは、採用しにくい。なぜならば、反磁界係
数が面に垂直な方向ではきわめて犬きくなり、非晶質磁
性膜の飽和磁化B8 と同じ程度の磁場が必要と々す、
あまり実用的ではないからである。
Due to the recent development of liquid super-quenching method? It is hoped that an amorphous magnetic alloy with an IJ-bond shape can be obtained. These are 2 bases.
2. After heat treatment at a temperature below the crystallization temperature Tx, quenching in water near room temperature in a trench,
It is known that excellent soft magnetic properties can be obtained. However, depending on the material, there are amorphous magnetic alloys whose Tx is lower than Tc, and therefore cannot be subjected to the heat treatment described above. The inventor first annealed materials that satisfied the conditions of T x (T c
4), or (1) a combination of annealing in a magnetic field perpendicular to the ribbon surface and annealing in a rotating magnetic field (JP-A-56) On the other hand, unlike the liquid ultra-quenching method described above, vapor deposition and Research on forming an amorphous film on a substrate using a gas quenching method such as sputtering and using this as a composite material is also gaining momentum.However, since the materials generally used for the substrate are ceramic or glass, As in the case of the amorphous ribbon obtained by the liquid quenching method described above, it is not possible to quench it in water after heat treatment. If a substrate such as metal is used, it will not crack even if it is rapidly cooled, but peeling will occur easily due to the difference in thermal expansion coefficient between the substrate and the amorphous film. For devices in the high frequency range, it is preferable not to use metal materials for the substrate.Furthermore, since the film thickness is generally small, it is recommended to combine annealing in a magnetic field perpendicular to the film surface and annealing in a rotating magnetic field as described above. is difficult to adopt because the demagnetizing field coefficient becomes extremely steep in the direction perpendicular to the plane, and a magnetic field of the same magnitude as the saturation magnetization B8 of the amorphous magnetic film is required.
This is because it is not very practical.

なお、回転磁界の回転数は約1Or、p、m以上あれば
充分であり、装置の構成の点から10Or、p、m程度
が望ましい。
Note that it is sufficient that the rotational speed of the rotating magnetic field is about 1 Or, p, m or more, and desirably about 10 Or, p, m from the viewpoint of the configuration of the apparatus.

本発明は以上のような問題点を解決し、基板上に形成さ
れた非晶質磁性膜の軟磁気特性を大幅に改良する熱処理
方法を提供することを目的とする販のである。つまり、
所定の一方向に磁界を印加して熱処理し、引続いて面内
で回転磁界中にて熱処理をすることにより、いちじるし
く軟磁気特性を向上できることを発見した。本発明はこ
のような知見にもとづくものである。
The present invention aims to solve the above-mentioned problems and provide a heat treatment method that significantly improves the soft magnetic properties of an amorphous magnetic film formed on a substrate. In other words,
We have discovered that the soft magnetic properties can be significantly improved by applying a magnetic field in one predetermined direction and heat-treating the material, followed by in-plane heat treatment in a rotating magnetic field. The present invention is based on such knowledge.

以下、本発明の方法を詳細に説明する。The method of the present invention will be explained in detail below.

第1図に示すような、膜の面内で磁場を回転もしくは固
定できる装置を作製し、熱処理実験を行なった。図にお
いて、1はヒータで、1′はその取り出し電極、2は熱
電対で、2′はその取り出し電極である。このヒータ1
上に、主面上に非晶質膜を形成した基板3をのせ、石英
管で囲われた容器4内を真空ポンプで減圧しながら、熱
処理を行なう。外部磁場は磁石5により印加される。そ
の磁気ギャップは6mで、試料3には面内に1000 
0eの磁界が加えられる。磁石6はヨーク6に取り付け
られモータ(図示せず)でヨーク6を回転させることに
より、試料面内に回転磁場が加えられる。7は○リング
である。
A device as shown in FIG. 1 that can rotate or fix a magnetic field within the plane of a film was fabricated, and heat treatment experiments were conducted. In the figure, 1 is a heater, 1' is its extraction electrode, 2 is a thermocouple, and 2' is its extraction electrode. This heater 1
A substrate 3 having an amorphous film formed on its main surface is placed thereon, and heat treatment is performed while reducing the pressure in a container 4 surrounded by a quartz tube with a vacuum pump. The external magnetic field is applied by magnet 5. The magnetic gap is 6 m, and sample 3 has 1000 in-plane
A magnetic field of 0e is applied. The magnet 6 is attached to the yoke 6, and by rotating the yoke 6 with a motor (not shown), a rotating magnetic field is applied within the sample surface. 7 is a circle.

以下、具体的に本発明の実施例ならびに比較例により、
本発明の効果を示す。
Hereinafter, specific examples of the present invention and comparative examples will be explained.
The effects of the present invention are shown.

比較例1 5ベ−コ・ スパッター法によりガラス基板上に厚さ3μmのFe2
C083,514,5なる組成の非晶質合金b 膜(Tx=460℃、Tc;550℃)を形成した。こ
の非晶質合金膜に、静止させた状態で10  Torr
の真空中において3oo℃で2e分間、磁場を印加して
熱処理し、それから磁場中で室温捷で徐冷しだ。熱処理
した膜の透磁率μの周波数特性を測定した。この場合、
μの測定磁界は1 moeと10 moe  の2種類
とした。測定方向については、磁場中アニールした磁場
方向に平行、すなわち容易軸方向および直角な困難軸方
向の2種類を調べた、結果を第2図に示す。図中、μ、
、 (1)、  μよ00は上述の測定磁界レベル(1
mOeもしくは1゜moe)及び測定方向(平行Iもし
くは直角上)をを添字で示すものである。
Comparative Example 1 Fe2 with a thickness of 3 μm was deposited on a glass substrate by the 5 Baco sputtering method.
An amorphous alloy b film having a composition of C083,514,5 (Tx=460°C, Tc: 550°C) was formed. This amorphous alloy film was subjected to 10 Torr in a stationary state.
A magnetic field was applied for 2 e minutes in a vacuum at 30° C. for heat treatment, and then the material was slowly cooled in a magnetic field at room temperature. The frequency characteristics of the magnetic permeability μ of the heat-treated film were measured. in this case,
There were two types of magnetic fields for measuring μ: 1 moe and 10 moe. Regarding the measurement direction, two types of measurements were conducted: an easy axis direction parallel to the magnetic field direction during annealing in a magnetic field, and a hard axis direction perpendicular to the magnetic field direction. The results are shown in FIG. In the figure, μ,
, (1), μyo00 is the measurement magnetic field level (1
mOe or 1°moe) and the measurement direction (parallel I or perpendicular) are indicated by subscripts.

第2図から明らかなことは、容易軸方向に測った透磁率
μ 〔1)、μ、01の周波数特性が一般に悪く、困難
軸方向に測った透磁率μよ(1)、μ工00の周波数特
性は良好であるが、透磁率が低いということである。ま
た、容易軸方向の透磁率は測定磁6、−−ミ・ 界による値の変化が大きく、特に初透磁率が低いという
問題点がある。
It is clear from Figure 2 that the frequency characteristics of magnetic permeability μ [1), μ, 01 measured in the easy axis direction are generally poor, and that of magnetic permeability μ (1), μ, μ, 00 measured in the hard axis direction are generally poor. Although the frequency characteristics are good, the magnetic permeability is low. In addition, the magnetic permeability in the easy axis direction changes greatly depending on the measuring magnetic field, and there is a problem in that the initial magnetic permeability is particularly low.

比較例2 スパッター法によりガラス基板上に作製した厚さ2 p
mのFe Co   Nb 2 83.6 14.5なる組成の非 晶質膜を形成した。この非晶質膜を1O−3Torr′
)真空中において30o℃で20分間、第1図に示した
装置を用い、磁場を100r、p、mで回転させながら
熱処理した後、磁場と回転させたまま室温まで徐冷した
。熱処理した膜の透磁率μφ(1)。
Comparative Example 2 Thickness 2p fabricated on a glass substrate by sputtering method
An amorphous film having a composition of Fe Co Nb 2 83.6 14.5 m was formed. This amorphous film is heated to 1O-3Torr'
) Heat treatment was performed in vacuum at 30° C. for 20 minutes using the apparatus shown in FIG. 1 while rotating the magnetic field at 100 r, p, m, and then slowly cooled to room temperature while rotating with the magnetic field. Magnetic permeability μφ(1) of the heat-treated membrane.

μφ00の周波数特性を第3図に示す(添字φは回転磁
場中熱処理を意味し、カッコ内の数字は測定磁場(単位
moe)を示す)。
The frequency characteristics of μφ00 are shown in FIG. 3 (the subscript φ means heat treatment in a rotating magnetic field, and the number in parentheses indicates the measured magnetic field (unit: moe)).

第3図から明らかなように、f時は良好で測定磁界が大
きいレベルでの透磁率は高いものの、初透磁率μφ(1
)は比較例1の場合に比べて少し改良されただけで十分
ではない。
As is clear from Fig. 3, although the magnetic permeability is good at the time of f and high when the measured magnetic field is large, the initial permeability μφ(1
) was only slightly improved compared to Comparative Example 1, which is not sufficient.

実施例1 次に比較例1で行なった固定磁場中熱処理法と比較例2
で行なった回転磁場中熱処理方法とを組7 べ−ゞ み合わせて、同じ非晶質合金膜の熱処理を行なった。
Example 1 Next, the fixed magnetic field heat treatment method performed in Comparative Example 1 and Comparative Example 2
The same amorphous alloy film was heat treated by combining the heat treatment method in a rotating magnetic field performed in 7.

熱処理方法のパターンを第4図に示す。The pattern of the heat treatment method is shown in FIG.

パターンAは、磁場を固定した状態で室温から300℃
まで30分を要して温度を高め、300℃で16分間保
持した後、磁場を15分間回転させ、さらに磁場を回転
させながら60分を要して室温まで冷却するというもの
である。まだ、パターンBは、パターンAにおける固定
磁場、回転磁場の印加順序を反対にしたもの、すなわち
回転磁場中で熱処理し、さらに固定磁場中で熱処理して
、冷却するというものである。パターンAの熱処理方法
による試料の透磁率の周波数特性を第5図に示す。図中
、透磁率μの添字は前述と1つたく同じことを意味して
いる。図から明らかなように、固定磁場の方向が透磁率
の測定方向に直角なものと回転磁場を組合わせて熱処理
を行なった試料は、透磁率μ↓、φ(1)、  μ工、
φOQ  が高く、周波数特性も良好で、かつ測定磁界
依存性がなく、きわめ[優れていることがわかる。これ
に反して、透磁率の測定方向と平行な方向の固定磁場を
使用した場合には、初透磁率が不十分であり、透磁率の
周波数特性や測定磁界依存性もよくない。
Pattern A is from room temperature to 300℃ with a fixed magnetic field.
The temperature was raised over 30 minutes to 300°C, held at 300°C for 16 minutes, then the magnetic field was rotated for 15 minutes, and the magnetic field was rotated for 60 minutes to cool down to room temperature. However, pattern B is a pattern in which the application order of the fixed magnetic field and the rotating magnetic field is reversed in pattern A, that is, heat treatment is performed in the rotating magnetic field, further heat treatment is performed in the fixed magnetic field, and then cooling is performed. FIG. 5 shows the frequency characteristics of the magnetic permeability of the sample obtained by the heat treatment method of pattern A. In the figure, the subscript of magnetic permeability μ means exactly the same thing as above. As is clear from the figure, the samples heat-treated using a combination of a fixed magnetic field direction perpendicular to the permeability measurement direction and a rotating magnetic field have magnetic permeability μ↓, φ(1), μμ,
It can be seen that the φOQ is high, the frequency characteristics are good, and there is no dependence on the measured magnetic field, which is extremely excellent. On the other hand, when a fixed magnetic field in a direction parallel to the permeability measurement direction is used, the initial permeability is insufficient, and the frequency characteristics and measurement magnetic field dependence of magnetic permeability are also poor.

次にパターンBでの熱処理実験を行なったところ、はぼ
第6図に示した結果とほぼ同じ結果を得た。また、さら
に回転磁場中および固定磁場中の熱処理温度および熱処
理時間を変化させて同様の実験を行なった。その結果は
当然予想されることながら、熱処理時間が長ければ長い
ほど、また熱処理温度が高ければ高いほど、それぞれの
熱処理の特徴が強調されることになり、第5図に示した
結果が強調した熱処理に従って第2図もしくは第3図の
結果に近づくことがわかった。
Next, when a heat treatment experiment was conducted using pattern B, almost the same results as shown in FIG. 6 were obtained. Further, similar experiments were conducted by changing the heat treatment temperature and heat treatment time in a rotating magnetic field and a fixed magnetic field. As expected, the longer the heat treatment time and the higher the heat treatment temperature, the more the characteristics of each heat treatment will be emphasized, and the results shown in Figure 5 emphasize this. It was found that the results approached those shown in FIG. 2 or 3 depending on the heat treatment.

次に重要なファクターである初透磁率の膜面内の測定方
向依存性を調べた。熱処理は第4図のパターンAに従っ
て、上述厚さ3μmのF e 2 COs a 、5N
b14.5  なる組成の非晶質合金膜について行なっ
た。この合金膜の面内の4■hにおける初透磁率μ、を
、固定磁場中熱処理の磁場方向と測定方向のなす角θを
パラメータとして測定した、結果を9 ページ 第6図に示す。図から明らかなように、透磁率は上述の
角度θが900−に45° の範囲が高く、少くとも平
行であってはならないことがわかる。
Next, we investigated the dependence of the initial magnetic permeability, which is an important factor, on the measurement direction within the film plane. The heat treatment was carried out according to pattern A in FIG.
The test was conducted on an amorphous alloy film having a composition of b14.5. The initial magnetic permeability μ at 4 hours in the plane of this alloy film was measured using the angle θ between the magnetic field direction of heat treatment in a fixed magnetic field and the measurement direction as a parameter. The results are shown in FIG. 6 on page 9. As is clear from the figure, the magnetic permeability is high when the above-mentioned angle θ is in the range of 900° to 45°, and it can be seen that the angles θ should not be parallel to each other.

実施例2 種々の結晶化温度Txとキュリ一点Tc を有する厚さ
2pmの非晶質合金膜について、パターンへ〇熱処理方
法と、比較のために比較例2と同様の回転磁場中熱処理
をそれぞれ施し、4計、1m0eの透磁率を測定した。
Example 2 Amorphous alloy films with a thickness of 2 pm having various crystallization temperatures Tx and Curie point Tc were subjected to heat treatment in a rotating magnetic field similar to Comparative Example 2 for comparison. , a total of 4 magnetic permeabilities of 1 m0e were measured.

結果を下表にまとめて示す。The results are summarized in the table below.

表に示した実験結果より本発明は特にTcがTxより高
い非晶質合金膜についてきわめて有効であることがわか
る。
The experimental results shown in the table show that the present invention is extremely effective particularly for amorphous alloy films in which Tc is higher than Tx.

10、、、、 以上示した実施例よりわかるように、本発明は非晶質磁
性膜の特性改善にきわめて有効々熱処理方法である。
10. As can be seen from the examples shown above, the present invention is an extremely effective heat treatment method for improving the characteristics of amorphous magnetic films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するだめの磁場中熱処理装
置の構造の一例を示す図、第2図、第3図、および第6
図は非晶質合金膜F e 2 COs 3. esNb
14.5の種々の熱処理後の透磁率μの周波数特性を示
す図、第4図は本発明の熱処理方法にもとづく処理パタ
ーン代表例を示す図、第6図は本発明熱処理方法によっ
て得られた透磁率μ(4肌。 1m0e)の非晶質合金膜面内の測定方向依存性を示す
図である。 1・・・・・・ヒータ、3・・・・・・非晶質膜が主面
上に付着している基板、4・・・・・容器、6・・・・
・磁石、6・川・・11 べ−く゛ 回転可能なヨーク。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 用  シ良Aおχ  (MHz) 第3図 711i数(開門) 第5図 メ監1 彼 ゴ瞥≦(コ      (/ブH7〕第6
図 )’: (4MH2,/IFθe) θ−45’/(1”      tJ6      t
σσθ
FIG. 1 is a diagram showing an example of the structure of a magnetic field heat treatment apparatus for carrying out the method of the present invention, FIGS. 2, 3, and 6.
The figure shows an amorphous alloy film F e 2 COs 3. esNb
14.5 is a diagram showing the frequency characteristics of magnetic permeability μ after various heat treatments, FIG. 4 is a diagram showing representative examples of treatment patterns based on the heat treatment method of the present invention, and FIG. 6 is a diagram showing the frequency characteristics of magnetic permeability μ after various heat treatments of the present invention. FIG. 2 is a diagram showing the dependence of magnetic permeability μ (4 layers, 1 m0e) on the measurement direction within the plane of an amorphous alloy film. 1... Heater, 3... Substrate on which the amorphous film is attached on the main surface, 4... Container, 6...
・Magnet, 6. River... 11 Rotatable yoke. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
For illustration Shira A O χ (MHz) Fig. 3 711i number (opening) Fig. 5 Me supervisor 1 he Gobetsu ≦ (ko (/bu H7) No. 6
Figure)': (4MH2,/IFθe) θ-45'/(1" tJ6 t
σσθ

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に形成された非晶質膜をその結晶化温度以
下の温度で、非晶質膜面内の一方向に固定した磁場中で
の熱処理と前記非晶質膜面内で回転する磁場中での熱処
理を組合せて行なうことを特徴とする非晶質磁性膜の熱
処理方法。 質磁性膜の熱処理方法。 の熱処理方法。
(1) Heat treatment of an amorphous film formed on a substrate in a magnetic field fixed in one direction within the plane of the amorphous film at a temperature below its crystallization temperature, and rotation within the plane of the amorphous film. 1. A method for heat treatment of an amorphous magnetic film, characterized by carrying out heat treatment in a magnetic field in combination. Heat treatment method for magnetic film. heat treatment method.
JP57095412A 1982-06-03 1982-06-03 Heat treatment of amorphous magnetic film Granted JPS58213860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57095412A JPS58213860A (en) 1982-06-03 1982-06-03 Heat treatment of amorphous magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57095412A JPS58213860A (en) 1982-06-03 1982-06-03 Heat treatment of amorphous magnetic film

Publications (2)

Publication Number Publication Date
JPS58213860A true JPS58213860A (en) 1983-12-12
JPS6150134B2 JPS6150134B2 (en) 1986-11-01

Family

ID=14136958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57095412A Granted JPS58213860A (en) 1982-06-03 1982-06-03 Heat treatment of amorphous magnetic film

Country Status (1)

Country Link
JP (1) JPS58213860A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177610A (en) * 1984-02-23 1985-09-11 Anelva Corp Vacuum heat treatment device for soft magnetic thin film
JPS60206123A (en) * 1984-03-30 1985-10-17 Anelva Corp Vacuum heat-treatment device for soft magnetic thin film
JPS61113151A (en) * 1984-11-07 1986-05-31 Nippon Hoso Kyokai <Nhk> Processing method of amorphous photomagnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177610A (en) * 1984-02-23 1985-09-11 Anelva Corp Vacuum heat treatment device for soft magnetic thin film
JPS60206123A (en) * 1984-03-30 1985-10-17 Anelva Corp Vacuum heat-treatment device for soft magnetic thin film
JPS61113151A (en) * 1984-11-07 1986-05-31 Nippon Hoso Kyokai <Nhk> Processing method of amorphous photomagnetic recording medium

Also Published As

Publication number Publication date
JPS6150134B2 (en) 1986-11-01

Similar Documents

Publication Publication Date Title
Chen et al. Field heat treatment of ferromagnetic metallic glasses
JPH0372702B2 (en)
Onoda et al. Strain engineering of magnetic anisotropy in epitaxial films of cobalt ferrite
Shilling Domain Structure During Magnetization of Grain‐Oriented 3% Si–Fe as a Function of Applied Tensile Stress
JPS58213860A (en) Heat treatment of amorphous magnetic film
JPH10223438A (en) Planar inductance element
JPS6128743B2 (en)
Furuya et al. Magneto-optical properties of a sputtered Bi-substituted Dy–Fe garnet-ferrite/hematite bilayer
JPS60185237A (en) Photothermomagnetic recording medium
JPS61196439A (en) Photomagnetic recording medium and its production
JP2739574B2 (en) Heat treatment method for amorphous soft magnetic material
JPS59185024A (en) Magnetic recording medium
JPH0721544A (en) Magnetic recording medium and its production
JPS59125607A (en) High saturation magnetization and high permeability magnetic film
Ono et al. Magnetic properties of Fe‐Zr‐Co/Fe‐Zr‐Co‐N multilayered films
Greenberg et al. Magnetic Annealing of Thin Permalloy Films
JPS63140076A (en) Perpendicularly magnetized film
JP2611976B2 (en) Method for manufacturing magneto-optical recording film
JPH0227524A (en) Production of perpendicular magnetic recording film
JP2001110044A (en) Method of manufacturing rependicular magnetic recording medium
JPS6273413A (en) Method and apparatus for manufacturing magnetic recording medium
JPS63259072A (en) Method for controlling uniaxial magnetic anisotropy of amorphous soft magnetic material
JPS63255371A (en) Heat treatment of amorphous soft magnetic material
JPS61182652A (en) Production of photomagnetic recording medium
JPH0337913A (en) Oxide superconductor film material