JPS60206123A - Vacuum heat-treatment device for soft magnetic thin film - Google Patents

Vacuum heat-treatment device for soft magnetic thin film

Info

Publication number
JPS60206123A
JPS60206123A JP6289884A JP6289884A JPS60206123A JP S60206123 A JPS60206123 A JP S60206123A JP 6289884 A JP6289884 A JP 6289884A JP 6289884 A JP6289884 A JP 6289884A JP S60206123 A JPS60206123 A JP S60206123A
Authority
JP
Japan
Prior art keywords
magnetic field
thin film
heat treatment
soft magnetic
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6289884A
Other languages
Japanese (ja)
Inventor
Ryuji Osawa
隆二 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp, Anelva Corp filed Critical Canon Anelva Corp
Priority to JP6289884A priority Critical patent/JPS60206123A/en
Publication of JPS60206123A publication Critical patent/JPS60206123A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the shifting of axis of easy magnetization generating before or after heat treatment as well as to improve the reliability for a heat treatment by a method wherein a soft magnetic thin film fixed to the sample stand located in a vacuum chamber, a device with which the soft magnetic thin film is heated, and a magnetic device whereon an oval-shaped rotating magnetic field, on which magnetic field which is more powerful than the direction of axis of easy magnetization of the soft magnetic thin film, are provided. CONSTITUTION:Between the two pairs of electrodes of the conventional device in the case of a tetrapole structure of heat treatment device, the number of turns of the excitation coil 5b' of one magnetic pole is increased than that of the excitation coil 5a of the other magnetic pole, and the magnetic field intensity of the direction 12 is made higher than that of the direction 13 which orthogonally intersects with the former. According to this constitution, the intensity of the rotating magnetic field on a sample stand 2 is continuously changed into oval shape. Accordingly, a sample 1 is arranged in such a manner that the axis of easy magnetization of the soft magnetic film will be turned to the direction where the magnetic field of the maximum intensity will be applied, which is the direction 12 in other words. As above-mentioned, the operation to be performed after the arrangement of the sample 1 is same as the heat treatment device of the conventional type, a vacuum chamber 3 is evacuated using a vacuum evacuating device, heated up to the set temperature while applying the oval-shaped rotating magnetic field, and the above is natural-cooled after it has been maintained at the above-mentioned temperature for the prescribed period.

Description

【発明の詳細な説明】 本発明は磁気記録用薄膜ヘッド、%に垂直磁気記録再生
ヘッド等に用いられる軟磁性薄膜の熱処理装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat treatment apparatus for soft magnetic thin films used in magnetic recording thin film heads, particularly perpendicular magnetic recording and reproducing heads.

周知のように、磁気記録用薄膜ヘッド、なかんずく垂直
磁気記録ヘッド等の材料として+Co基の非晶質薄膜(
Co−X、Xとしては* Zr+ Ti+ TarNb
、 W等)は役れた特性を有する。これらの薄膜は一般
にスパッタ法によシ作成されるが成膜したままの状態で
は薄膜の磁気異方性が大きく、その異方性磁界Hkは2
00e程度になる。第1図にこの種の膜の一例としてC
o −Z r−Nb薄膜を取上げその50Hzにおける
B−H%性曲綜を磁化容易軸〔(a)図〕及び磁化困難
軸〔(b)図〕(以下単に容易軸。
As is well known, +Co-based amorphous thin films (
Co-X, X is * Zr+ Ti+ TarNb
, W, etc.) have useful properties. These thin films are generally created by sputtering, but in the as-deposited state, the magnetic anisotropy of the thin film is large, and the anisotropic magnetic field Hk is 2.
It will be about 00e. Figure 1 shows C as an example of this type of film.
An o -Z r-Nb thin film is taken and its B-H% curved heel at 50 Hz is plotted as an easy axis of magnetization [Figure (a)] and a hard axis of magnetization [Figure (b)] (hereinafter simply referred to as easy axis).

困難軸という)の両方向について示す。磁気ヘッドとし
てこれらの膜を利用する場合には2周波数特性が良好な
、すなわち透磁率の周波数依存性の少ない困難軸方向が
一般に用いられている。しかし、成膜したままの状態で
は困難軸方向の透磁率は低く、これlをこのまま磁気ヘ
ッド材料として使用することができない。そこで、この
困難軸方向の良同好な周波数特性を損なうことなしにそ
の磁気異方性を小さくシ、透磁率を高めるために。
Both directions of the difficulty axis are shown. When these films are used as a magnetic head, the hard axis direction is generally used, where the two-frequency characteristics are good, that is, the frequency dependence of magnetic permeability is small. However, in the as-formed state, the magnetic permeability in the hard axis direction is low, and this film cannot be used as is as a magnetic head material. Therefore, it is difficult to reduce the magnetic anisotropy and increase the magnetic permeability without impairing the good frequency characteristics in the axial direction.

膜面に平行な1回転磁界中でこれを熱処理することが行
なわれている。
This is heat-treated in a one-rotation magnetic field parallel to the film surface.

第2図に従来の熱処理装置の概略図を、第3図にその平
面図を示す。
FIG. 2 shows a schematic diagram of a conventional heat treatment apparatus, and FIG. 3 shows a plan view thereof.

真空排気装置7で排気された真空容器3内の試料台2上
に置かれた試料1は、固定鉄心6とその励磁コイル5に
より印加された静磁界の中で回転している。この回転駆
動は水冷パイプ10で冷却される回転導入器8を通して
、大気中に置かれたモータ9により行なわれる。
A sample 1 placed on a sample stage 2 in a vacuum container 3 that has been evacuated by an evacuation device 7 is rotating in a static magnetic field applied by a fixed iron core 6 and its excitation coil 5. This rotational drive is performed by a motor 9 placed in the atmosphere through a rotation introducer 8 cooled by a water-cooled pipe 10.

こうして、試料に対して回転磁界を印加しつつ。In this way, a rotating magnetic field is applied to the sample.

ヒータ4により設定温度まで加熱し、所定時間その温度
を保持した後に自然冷却することで熱処理を完了する。
The heat treatment is completed by heating to a set temperature with the heater 4, maintaining that temperature for a predetermined period of time, and then cooling naturally.

熱処理後の50HzにおけるCo−Zr−Nb薄膜のB
−H特性曲線を第4図に示す。困難軸方向のB−H特性
曲想16は鋭い立ち上が9を示し、この方向の透磁率が
増大したことを示す。17は容易軸方向のB−H%性曲
線である。
B of Co-Zr-Nb thin film at 50 Hz after heat treatment
-H characteristic curve is shown in FIG. The B-H characteristic curve 16 in the hard axis direction shows a sharp rise 9, indicating that the magnetic permeability in this direction has increased. 17 is a B-H% property curve in the easy axis direction.

しかしながら従来の上記の方法により熱処理を行なった
軟磁性薄膜は、その容易軸の方向が熱処理の前後で変化
して、#処理前と異なる方向を示すことがしばしばアリ
、歩留りを悪化させる原因となっていた。
However, in soft magnetic thin films that have been heat-treated using the conventional method described above, the direction of the easy axis often changes before and after the heat treatment, resulting in a direction different from that before the treatment, which causes a decrease in yield. was.

本発明者はこの問題の解決に注力し、研究を重ねるうち
9回転磁界を変形して9強さの等方向な磁界ではなく、
常に磁化困難方向に比べて容易軸方向に強い磁界が印加
されるように磁界強度を変化させる。楕円形状の回転磁
界を印加することで良好な結果が得られることを見出し
た。これを詳しく説明すると、第3図の回転する試料台
2上の試料1の両側に、第5図に示す2様にヨーク11
a111bを載置するときは、第6図(a)に示すよう
に磁力線14に対しヨーク11a、11bの位置が変化
するため、試料1上を流れる磁界の強さ15は第6図(
b)に示す様に変化し、楕円形状の回転磁界となる。
The inventor focused on solving this problem, and through repeated research, modified the 9-rotation magnetic field to create an iso-directional magnetic field with 9 strengths.
The magnetic field strength is changed so that a stronger magnetic field is always applied in the easy axis direction than in the difficult magnetization direction. It has been found that good results can be obtained by applying an elliptical rotating magnetic field. To explain this in detail, yokes 11 are placed on both sides of the sample 1 on the rotating sample stage 2 in FIG. 3 as shown in FIG. 5.
When placing a111b, the positions of the yokes 11a and 11b change with respect to the lines of magnetic force 14 as shown in FIG. 6(a), so the strength 15 of the magnetic field flowing over the sample 1 changes as shown in FIG.
It changes as shown in b) and becomes an elliptical rotating magnetic field.

ここで最大磁界が印加される方向、すなわち第6図(b
)の長径12の方向に磁化容易軸が向く様に試料1を配
置することによシ熱処理前後における磁気異方性の向き
の変化を防ぐことができることを見出したものである。
Here, the direction in which the maximum magnetic field is applied, that is, Fig. 6 (b
) It was discovered that by arranging the sample 1 so that the axis of easy magnetization faces in the direction of the long axis 12 of the sample 1, it is possible to prevent changes in the direction of magnetic anisotropy before and after heat treatment.

ところで回転磁界の印加方法には、前述の静磁界中で試
料を回転させる方法の他に試料1を真空容器内に固定さ
せ、固定鉄心及び励磁コイルを多極構造にして励磁コイ
ルに交流を流し、各励磁コイルに流す電位の位相を変え
て回転磁界を発生させる方法で知られている。
By the way, in addition to the above-mentioned method of rotating the sample in a static magnetic field, the method of applying the rotating magnetic field is to fix the sample 1 in a vacuum container, set the fixed core and the excitation coil to have a multipolar structure, and apply alternating current to the excitation coil. , is known as a method of generating a rotating magnetic field by changing the phase of the potential applied to each exciting coil.

第7図(正面図)、第8図(平面図)にその1梗構造の
熱処理装置の概略図を示す。試料1および試料台2は真
空容器3内に固定され、真空排気装置7により真空存器
3内を排気した後、ヒータ4によシ加熱される。そして
、励磁コイル5aに単相交流をRfZJtば2直接流し
、もう一方の励磁コイル5bにコンデンサーを経由し9
0度位相の進んだ単相交流を流すときは、固定された試
料1に対し回転磁界が印加される。
FIG. 7 (front view) and FIG. 8 (plan view) are schematic diagrams of the heat treatment apparatus having a one-stroke structure. The sample 1 and the sample stage 2 are fixed in a vacuum container 3, and after the inside of the vacuum container 3 is evacuated by a vacuum evacuation device 7, they are heated by a heater 4. Then, a single-phase alternating current (RfZJt) is directly applied to the excitation coil 5a, and is passed through a capacitor to the other excitation coil 5b.
When flowing single-phase alternating current with a phase lead of 0 degrees, a rotating magnetic field is applied to the fixed sample 1.

この方法は、前述の静磁界中で試料を回転させる方法に
比べて複雑な回転導入材機構(先述の8)等が省略され
るため、経済的でアシ、故障が生じにくいとともに1回
転導入部の加熱防止の機構(先述の10)も省略される
ため極めて小型にできるという利点がおる。しかし2問
題はなお残されておシ、第5図に示したヨークlla、
 llbが必要であるため試料1が占有する面積が限定
されもしくは、装置全体が大きくなるという欠点がある
Compared to the above-mentioned method of rotating the sample in a static magnetic field, this method omits the complicated rotating introduction material mechanism (see 8 above), so it is economical, less likely to cause trouble, and the single rotation introduction part is less likely to occur. Since the heating prevention mechanism (10 mentioned above) is also omitted, it has the advantage of being extremely compact. However, two problems still remain: the yoke shown in Figure 5;
llb is required, which has the disadvantage that the area occupied by the sample 1 is limited or that the entire apparatus becomes large.

本発明はこの問題の解決を目的とするもので、楕円形の
回転磁界をヨークlla、llbなしで試料に与えるこ
とのできる。新規の信頼性、経済性共に浸れた軟磁性薄
膜の熱処理装置を提供することにある。
The present invention aims to solve this problem, and can apply an elliptical rotating magnetic field to a sample without using yokes lla and llb. The object of the present invention is to provide a new heat treatment apparatus for soft magnetic thin films that is both reliable and economical.

以下図面を用いて本発明を詳細説明する。The present invention will be explained in detail below using the drawings.

第9図は本発明の実施例であり四極構造の熱処理装置を
示す。ここでは第7図及び第8区における装置の2対の
磁極6a+6bのうち、一方の磁極6bの励磁コイル5
b’の巻数をもう一方の磁極6aの励磁コイル5aより
も多くシ、方向12の磁界強度をこれと直交する方向1
3の磁界強度より大きくしである。この構成によって、
試料台2上の回転磁界はその強さが第10図に示す様に
連続的に楕円形状に変化するものとなる。
FIG. 9 shows a heat treatment apparatus having a quadrupole structure, which is an embodiment of the present invention. Here, the excitation coil 5 of one magnetic pole 6b of the two pairs of magnetic poles 6a+6b of the device in FIG. 7 and Section 8 is shown.
The number of turns of b' is greater than that of the excitation coil 5a of the other magnetic pole 6a, and the magnetic field strength in direction 12 is increased in direction 1 perpendicular to this.
The magnetic field strength should be greater than 3. With this configuration,
The strength of the rotating magnetic field on the sample stage 2 changes continuously in an elliptical shape as shown in FIG.

従ってこの最大強度の磁界が印加される方向。Therefore, the direction in which this maximum strength magnetic field is applied.

すなわち第9図、第1θ図の12の方向に軟磁性膜の磁
化容易軸が向く様に試料1を配置する。
That is, the sample 1 is arranged so that the axis of easy magnetization of the soft magnetic film faces in the direction 12 in FIGS. 9 and 1θ.

このように試料1を配置した後の操作は、従来の熱処理
装置と同様であシ、真空排気装置で真空室3を排気し、
楕円形状の回転磁界を印加しながら設定温度まで加熱し
、所定時間その温度で保持した後に自然冷却する。
The operations after placing the sample 1 in this way are the same as in conventional heat treatment equipment; the vacuum chamber 3 is evacuated using a vacuum evacuation device;
It is heated to a set temperature while applying an elliptical rotating magnetic field, held at that temperature for a predetermined period of time, and then allowed to cool naturally.

以上の熱処理を行なった軟磁性薄膜の磁気異方性の方向
は、熱処理前の磁気異方性の方向と変らなかった。楕円
形状の回転磁界は、各極対で励磁コイルの巻数を変化さ
せる他に、励磁コイルに流す交流の実効電流や、各磁極
対に流す交流の位相を変化させることでも可能で、それ
らの方法で楕円形状の回転磁場を発生させ熱処理を行っ
た場合も同様の効果のあることがわかっている。再現性
も良かった。
The direction of magnetic anisotropy of the soft magnetic thin film subjected to the above heat treatment was the same as the direction of magnetic anisotropy before heat treatment. In addition to changing the number of turns of the excitation coil in each pole pair, an elliptical rotating magnetic field can also be created by changing the effective AC current flowing through the excitation coil and the phase of the AC flowing in each magnetic pole pair. It is known that a similar effect can be obtained when heat treatment is performed by generating an elliptical rotating magnetic field. Reproducibility was also good.

ただし本発明でいう「楕円形状」は厳密な楕円なお、上
記の実施例は四極構造の装置について述べたが1回転磁
界は四極以外の極数によっては可能である。本発明は磁
極の数に制限されない。
However, the "elliptical shape" as used in the present invention is a strict ellipse.Although the above embodiment describes an apparatus having a quadrupole structure, one rotation magnetic field is possible depending on the number of poles other than quadrupole. The invention is not limited to the number of magnetic poles.

例えば3相交流を用いるときは6極構造の装置が最も安
直に回転磁界を与える。
For example, when using three-phase alternating current, a device with a six-pole structure provides a rotating magnetic field most easily.

本発明は以上説明した通シであって2本発明の装置によ
れば、熱処理前後における磁化容易軸の移動を防ぎ、熱
処理に対する信頼性を向上することができる。更に回転
導入機構を不安にすることにより熱処理装置の保守ケ簡
単にすることができ。
The present invention has been described above, and according to the apparatus of the present invention, movement of the axis of easy magnetization before and after heat treatment can be prevented, and reliability with respect to heat treatment can be improved. Furthermore, by making the rotation introduction mechanism unstable, maintenance of the heat treatment equipment can be simplified.

かつ装置自体を極めて小形化できる。Moreover, the device itself can be made extremely compact.

本発明が磁気記録用薄膜ヘッド特に垂直磁気記録ヘッド
の特性、経済性の向上に寄与するところは大きく、工業
上有益な発明ということができる。
The present invention greatly contributes to improving the characteristics and economic efficiency of magnetic recording thin film heads, particularly perpendicular magnetic recording heads, and can be said to be an industrially useful invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は50HzにおけるGo−Zr−NbN膜の磁化
容易軸方向(a)及び困難軸方向(b)のB−)L特性
曲線であり、第4図は熱処理後の50HzにおけるCo
−Zr−Nb薄膜のB−H特性曲線である。 第2図、第3図、第7図、第8図は従来の熱処理装置の
概略図で第5図、第6図は従来の楕円状回転磁界の印加
方法を示した図である。 第9図、第10図は本発明の実施例である。 1・・・試料、2・・・試料台、3・・・真空容器。 4・・・ヒータ、 5・・・励磁コイル、 6・・・固
定鉄心ヨーク。 7・・・真空排気装置、8・・・回転導入機構。 9・・・モータ、10・・・水冷パイプ、11・・・ヨ
ーク。 12・・・長径方向、13・・・短径方向、14・・・
印/J[+磁界。 15・・・試料上を流れる磁界の強さ 16・・・困j+I紬、17・・・容易軸。 特許出願人 日電アネルバ株式会社 FIG、2 ヒ1(j、4 ヒIG、5 (a) FIG、6 FIG、B FIG、9
Figure 1 shows the B-)L characteristic curves in the easy axis direction (a) and hard axis direction (b) of the Go-Zr-NbN film at 50 Hz, and Figure 4 shows the B-)L characteristic curves of the Go-Zr-NbN film at 50 Hz after heat treatment.
-BH characteristic curve of Zr-Nb thin film. FIGS. 2, 3, 7, and 8 are schematic diagrams of conventional heat treatment equipment, and FIGS. 5 and 6 are diagrams showing a conventional method of applying an elliptical rotating magnetic field. 9 and 10 show examples of the present invention. 1...sample, 2...sample stand, 3...vacuum container. 4...Heater, 5...Exciting coil, 6...Fixed core yoke. 7... Vacuum exhaust device, 8... Rotation introduction mechanism. 9...Motor, 10...Water cooling pipe, 11...Yoke. 12... Major axis direction, 13... Minor axis direction, 14...
Mark/J [+magnetic field. 15... Strength of the magnetic field flowing over the sample 16... Difficult + I Tsumugi, 17... Easy axis. Patent applicant Nichiden Anelva Co., Ltd. FIG, 2 Hi 1 (j, 4 Hi IG, 5 (a) FIG, 6 FIG, B FIG, 9

Claims (1)

【特許請求の範囲】 真空室内の試料台上に固定された軟磁性薄膜と。 それを加熱する装置と、該軟磁性薄膜の磁化容易軸方向
よりも強い磁界が印加されるようにした楕円形状の回転
磁界を印加する磁気装置とをそなえたことを特徴とする
軟磁性薄膜の真空熱処理装置。
[Claims] A soft magnetic thin film fixed on a sample stage in a vacuum chamber. A soft magnetic thin film characterized by comprising: a device for heating the soft magnetic thin film; and a magnetic device for applying an elliptical rotating magnetic field such that a magnetic field stronger than the axis of easy magnetization of the soft magnetic thin film is applied. Vacuum heat treatment equipment.
JP6289884A 1984-03-30 1984-03-30 Vacuum heat-treatment device for soft magnetic thin film Pending JPS60206123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6289884A JPS60206123A (en) 1984-03-30 1984-03-30 Vacuum heat-treatment device for soft magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6289884A JPS60206123A (en) 1984-03-30 1984-03-30 Vacuum heat-treatment device for soft magnetic thin film

Publications (1)

Publication Number Publication Date
JPS60206123A true JPS60206123A (en) 1985-10-17

Family

ID=13213523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6289884A Pending JPS60206123A (en) 1984-03-30 1984-03-30 Vacuum heat-treatment device for soft magnetic thin film

Country Status (1)

Country Link
JP (1) JPS60206123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135543A (en) * 1999-08-26 2001-05-18 Nikko Consulting & Engineering Co Ltd Device for heat treatment
JP2006057055A (en) * 2004-08-23 2006-03-02 Tsunehisa Kimura Method for producing precisely oriented material using magnetic field

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232598A (en) * 1975-09-08 1977-03-11 Mitsubishi Electric Corp Electrodepositing method of high permeability permalloy thin film
JPS58213860A (en) * 1982-06-03 1983-12-12 Matsushita Electric Ind Co Ltd Heat treatment of amorphous magnetic film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232598A (en) * 1975-09-08 1977-03-11 Mitsubishi Electric Corp Electrodepositing method of high permeability permalloy thin film
JPS58213860A (en) * 1982-06-03 1983-12-12 Matsushita Electric Ind Co Ltd Heat treatment of amorphous magnetic film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135543A (en) * 1999-08-26 2001-05-18 Nikko Consulting & Engineering Co Ltd Device for heat treatment
JP2006057055A (en) * 2004-08-23 2006-03-02 Tsunehisa Kimura Method for producing precisely oriented material using magnetic field
JP4658540B2 (en) * 2004-08-23 2011-03-23 恒久 木村 Manufacturing method of precision alignment body by magnetic field

Similar Documents

Publication Publication Date Title
US5671524A (en) Magnetic annealing of amorphous alloy for motor stators
US4475962A (en) Annealing method for amorphous magnetic alloy
JP2001167867A (en) Electromagnetic apparatus for heating metallic element
US2053162A (en) Core for dynamo-electric machines
JPS60206123A (en) Vacuum heat-treatment device for soft magnetic thin film
JP2004328986A (en) Stator core for motor and its manufacturing method
US5503686A (en) Heat treatment method for thin film magnetic head
JPS6293342A (en) Soft magnetic material
JPS61121405A (en) Magnetizing method of permanent magnet
JPS5644746A (en) Amorphous magnetic alloy material for magnetic core for accelerating or controlling charged particle and its manufacture
JPS55110764A (en) Method of thermal treatment for amorphous alloy
JPS61263206A (en) Magnetizing method
JPS60177610A (en) Vacuum heat treatment device for soft magnetic thin film
SU1686626A1 (en) Method for manufacturing electrical machine magnetic circuits
JPS60198716A (en) Vacuum heat treatment device for soft magnetic thin- film
JPS5979515A (en) Manufacture of transformer core
JPS5940503A (en) Heat treatment of toroidal core
JP5979997B2 (en) Method for manufacturing a device having a magnetic core
JPS6396252A (en) Heat treatment of toroidal amorphous magnetic core
SU1198666A1 (en) Method of manufacturing rotor of electric machine
JPH05109022A (en) Thin-film magnetic head and its manufacture
JPS586061A (en) Forming method for field pole of magnet motor
JPS6273413A (en) Method and apparatus for manufacturing magnetic recording medium
JPS60103163A (en) Method and device for treating light-gage amorphous magnetic alloy strip
SU694945A1 (en) Stator for a unipolar electric machine