JPS61263206A - Magnetizing method - Google Patents

Magnetizing method

Info

Publication number
JPS61263206A
JPS61263206A JP10522385A JP10522385A JPS61263206A JP S61263206 A JPS61263206 A JP S61263206A JP 10522385 A JP10522385 A JP 10522385A JP 10522385 A JP10522385 A JP 10522385A JP S61263206 A JPS61263206 A JP S61263206A
Authority
JP
Japan
Prior art keywords
magnetic flux
motor
magnetic pole
magnetizing
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10522385A
Other languages
Japanese (ja)
Other versions
JPH0746657B2 (en
Inventor
Kiyoshi Kimura
清 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60105223A priority Critical patent/JPH0746657B2/en
Publication of JPS61263206A publication Critical patent/JPS61263206A/en
Publication of JPH0746657B2 publication Critical patent/JPH0746657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To reduce the irregular rotation of a motor by forming the opposed side of magnets of a pole portion in circular shape, and forming the air gap magnetic flux density of the ends of multipolarized ferrite magnets in an approximate sinusoidal wave. CONSTITUTION:The sectional shape of a ringlike axial anisotropic ferrite magnet 4 is formed in a circular shape. When a magnetizing coil 5 is energized, since the section of a pole portion is formed in a circular shape, the end of the pole portion is magnetically saturated. As a result, since relatively large lines of magnetic flux pass the interior of the magnet 4, an air gap magnetic flux density distribution becomes a sinusoidal shape. Thus, the irregular rotation of the motor when the motor rotates at a low speed can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は小型モータの磁気回路に用いられる軸方向異方
性フェライト磁石の端面に多極着磁を施す方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of applying multipolar magnetization to the end face of an axially anisotropic ferrite magnet used in a magnetic circuit of a small motor.

〔従来の技術〕[Conventional technology]

オーディオ機器やビデオ機器などの回転機構には小型マ
グネットモータが使用されている。この小型モータはコ
アレスモータ、ブラシレスモータ及びステッピングモー
タに大別されるが、ステッピングモータと共にブラシレ
スモータの伸びが著しい。
Small magnet motors are used in the rotation mechanisms of audio and video equipment. These small motors are broadly classified into coreless motors, brushless motors, and stepping motors, and brushless motors are growing rapidly along with stepping motors.

このブラシレスモータのうち最も広く使用されているブ
ラシレスDCモータにおいては、第4図(α1 、 (
4)に示すように、カップ状ヨーク6の内壁に軸方向に
異方性を有するリング状フェライト磁石4を固着して磁
気回路を形成して℃・る。
Among these brushless motors, the most widely used brushless DC motor is shown in Fig. 4 (α1, (
4), a ring-shaped ferrite magnet 4 having anisotropy in the axial direction is fixed to the inner wall of the cup-shaped yoke 6 to form a magnetic circuit.

最近はモータの小型化および高性能化の要求が強く、そ
れに伴い上記リング状フェライト磁石も偏平なもの(厚
さ1.5〜4m程度)が使用されている。
Recently, there has been a strong demand for smaller motors and higher performance, and accordingly, flat ring-shaped ferrite magnets (about 1.5 to 4 m thick) are being used.

このリング状軸方向異方性フェライト磁石は、ロータ状
態で端面に4〜8極程度の着磁を施しモータに組み込ま
れる。そのための着磁ヨークとじ【は、例えば第5図(
cL) 、 (h)に示す構造のものが一般に使用され
ている。
This ring-shaped axially anisotropic ferrite magnet is magnetized with about 4 to 8 poles on its end face in a rotor state, and then incorporated into a motor. The magnetizing yoke binding for this purpose is, for example, shown in Figure 5 (
The structures shown in cL) and (h) are generally used.

同図において、1は純鉄等の軟磁性体からなるヨーク本
体であり、軸方向に所定間隔をおいて形成された磁極部
21〜28と、各磁極部を取囲む磁化コイル5とを有し
ている。磁化コイルは公知のパルス磁界発生方式のコン
デンサー型殖磁電源(図示せず)に接続されている。
In the figure, 1 is a yoke body made of a soft magnetic material such as pure iron, and has magnetic pole parts 21 to 28 formed at predetermined intervals in the axial direction, and a magnetizing coil 5 surrounding each magnetic pole part. are doing. The magnetizing coil is connected to a known pulsed magnetic field generating capacitor type magnetizing power source (not shown).

この着磁ヨークによりば、磁極部21〜28の端面とフ
ェライト磁石4の端面を密着せしめてから磁化コイル5
に通電することにより、第6図に示すような磁束の流れ
が生じて着磁が行われる。
According to this magnetizing yoke, after the end faces of the magnetic pole parts 21 to 28 and the end face of the ferrite magnet 4 are brought into close contact with each other, the magnetizing coil 5
By energizing, a magnetic flux flow as shown in FIG. 6 is generated and magnetization is performed.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

従来の着磁ヨークにて着磁を行なった場合、モータの駆
動に必要な有効磁束量は得られるものの、モータの磁気
回路における空隙部での磁束密度分布が第7図に示すよ
うに台形波状となるので、電流リップルが大きくなり、
回転ムラが生ずてしまう。また磁極の中間に凹みが生じ
るので、凹部で空隙部の磁界が急激に変化してしまい、
コギングトルトが大きくなり、モータの振動や騒音を発
生させる原因になる。
When magnetizing is performed using a conventional magnetizing yoke, the effective amount of magnetic flux necessary to drive the motor can be obtained, but the magnetic flux density distribution at the gap in the motor's magnetic circuit is trapezoidal as shown in Figure 7. Therefore, the current ripple becomes large,
This will cause uneven rotation. Also, since a recess is created between the magnetic poles, the magnetic field in the gap changes rapidly at the recess.
Cogging torque becomes large, causing motor vibration and noise.

本発明の目的は、上述した従来技術の問題点を解消し、
電流リップルを少くしうるような空隙磁束密度分布が得
られる着磁方法を提供することである。
The purpose of the present invention is to solve the problems of the prior art described above,
It is an object of the present invention to provide a magnetization method that can obtain an air gap magnetic flux density distribution that can reduce current ripple.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の着磁力法は、リング状軸方向異方性フェライト
磁石の端面に着磁ヨークの磁極部を対向させて多極着磁
を施す方法において、磁極部を取囲む磁化コイルに通電
した時に磁極部の少くとも一部が磁気的に飽和するよう
な形状としだ着磁ヨークを用いるものである。
The magnetizing force method of the present invention is a method in which multipolar magnetization is performed by placing the magnetic pole part of a magnetizing yoke facing the end face of a ring-shaped axially anisotropic ferrite magnet, and when the magnetizing coil surrounding the magnetic pole part is energized. This uses a magnetized yoke with a shape such that at least a portion of the magnetic pole portion is magnetically saturated.

〔作用〕[Effect]

本発明に用いられる着磁ヨークは、磁極部の断面形状を
例えば円弧状としたもので、このような形状の磁極部と
することにより、磁化コイルに通電した時に、磁極部先
端が磁気的に飽和し、正弦波状の波形を得ることができ
る。
In the magnetizing yoke used in the present invention, the cross-sectional shape of the magnetic pole part is, for example, an arc. By having the magnetic pole part in such a shape, when the magnetizing coil is energized, the tip of the magnetic pole part is magnetically A saturated, sinusoidal waveform can be obtained.

〔実施例〕〔Example〕

以下本発明の詳細を図面により説明する。 The details of the present invention will be explained below with reference to the drawings.

第1図(+z) 、 (b)は本発明の一実施例に係る
着磁ヨークの斜視図、第2図は第1図の着磁ヨークに通
電した時の磁束の流れを示寸ための図、第5図は空隙部
の磁束密度波形を示す図である。
Figures 1 (+z) and (b) are perspective views of a magnetizing yoke according to an embodiment of the present invention, and Figure 2 is a diagram showing the flow of magnetic flux when the magnetizing yoke in Figure 1 is energized. FIG. 5 is a diagram showing the magnetic flux density waveform of the air gap.

第1図(α)、 (b)において、1はヨーク本体、2
′1〜28は磁極部、5は磁化コイルである。磁極部は
、第2図に示すように断面が円弧状に形成されている。
In Fig. 1 (α) and (b), 1 is the yoke body, 2
1 to 28 are magnetic pole parts, and 5 is a magnetizing coil. The magnetic pole portion has an arcuate cross section as shown in FIG.

フェライト磁石4と磁極部2′との間には非磁性体から
なるスペーサ5が介装されている。
A spacer 5 made of a non-magnetic material is interposed between the ferrite magnet 4 and the magnetic pole portion 2'.

次に、磁化コイル5に通電すると、各コイルが巻回され
ている磁極部は交互に磁化される。例えば磁極部2′1
の先端がN極になると、両側の磁極部28と2′2はS
極になる。
Next, when the magnetizing coil 5 is energized, the magnetic pole parts around which each coil is wound are alternately magnetized. For example, magnetic pole part 2'1
When the tip of the magnetic pole becomes the N pole, the magnetic pole parts 28 and 2'2 on both sides become S
Become the pole.

ここで、磁極部の断面は円弧状であるため、第2図のよ
うな磁束の流れが生じて、磁極部の先端は磁気的に飽和
する。その結果、7工ライト磁石の内部には、比較的大
回りの磁束線が通過することになり、第5図に示すよう
な正弦波状の空隙磁束密度分布を得ることができる。
Here, since the cross section of the magnetic pole part is arcuate, a flow of magnetic flux occurs as shown in FIG. 2, and the tip of the magnetic pole part becomes magnetically saturated. As a result, magnetic flux lines with a relatively large radius pass through the inside of the 7-piece light magnet, and a sinusoidal air gap magnetic flux density distribution as shown in FIG. 5 can be obtained.

また本発明では、フェライト磁石と磁極部との間にスペ
ーサを設けているが、その厚さが大きすぎると有効磁束
量の低下を招くので、できるだけ薄くすることが望まし
く、具体的にはtOm以下がよい。但し、強度の点から
は約0.5+ma以上は必要である〇 上述したように、本発明の着磁方法によって正弦波状の
空隙磁束密度が得られるため、電流リップルが減少し、
回転ムラを少(できる。特にこのような波形は、モータ
が低速回転(50052000r、p0m0位)する時
に極めて有利である。
Further, in the present invention, a spacer is provided between the ferrite magnet and the magnetic pole part, but if the thickness is too large, the effective amount of magnetic flux will decrease, so it is desirable to make it as thin as possible, and specifically, it is less than tOm. Good. However, from the point of view of strength, approximately 0.5+ma or more is required. As mentioned above, the magnetization method of the present invention provides a sinusoidal air gap magnetic flux density, so current ripple is reduced.
It is possible to reduce rotational unevenness. In particular, such a waveform is extremely advantageous when the motor rotates at low speed (50052000r, p0m0).

〔発明の効果〕〔Effect of the invention〕

以上に記述の如く、本発明によれば、モータの空隙磁束
密度分布を正弦波状にすることができるので、モータ性
能の改善に衡めて有効である。
As described above, according to the present invention, the air gap magnetic flux density distribution of the motor can be made sinusoidal, which is effective in improving motor performance.

【図面の簡単な説明】 第1図(α)及び(hlはそれぞれ本発明に係る着磁ヨ
ークの一例を示す平面図及び側面図、第2図は第1図の
要部拡大断面図、第5図は本発明によって得られた空隙
磁束密度分布を示す図、第4図(α)及び(A)はそれ
ぞれモータ用磁気回路の一例を示す平面図及び断面図、
第5図(α)及びCb)はそれぞれ従来の着磁ヨークの
一例を示す平面図及び側面図、第6図は第5図の要部拡
大断面図、第7図は従来法によって得られた空隙磁束密
度分布を示す図である。 1:ヨーク本体、2.2’、2′:磁極部、5:磁化コ
イル、4:フェライト磁石、5ニスペーサ。 代理人弁理士 高 石 橘 馬  − ゛、゛・二c4−・Z 5′、ン 。、、、  第10 (bツ ク 第2困 第31 第4回 (′″”        <b) 第5固
[Brief Description of the Drawings] Fig. 1 (α) and (hl are respectively a plan view and a side view showing an example of a magnetizing yoke according to the present invention, Fig. 2 is an enlarged sectional view of the main part of Fig. 1, FIG. 5 is a diagram showing the air gap magnetic flux density distribution obtained by the present invention, and FIGS. 4 (α) and (A) are a plan view and a sectional view, respectively, showing an example of a magnetic circuit for a motor.
Figures 5 (α) and Cb) are a plan view and a side view showing an example of a conventional magnetizing yoke, Figure 6 is an enlarged sectional view of the main part of Figure 5, and Figure 7 is an example of a conventional magnetizing yoke obtained by the conventional method. FIG. 3 is a diagram showing an air gap magnetic flux density distribution. 1: Yoke body, 2.2', 2': Magnetic pole part, 5: Magnetizing coil, 4: Ferrite magnet, 5 Ni spacer. Representative Patent Attorney Takaishi Tachibana Ma - ゛,゛・2c4-・Z 5′, N. ,,, 10th (b Tsuku 2nd difficulty 31st 4th ('''"<b) 5th difficulty

Claims (1)

【特許請求の範囲】[Claims] 1、軸方向異方性を有する円板状フェライト磁石の端面
に対向する磁化コイルを巻回した磁極部を複数個有する
着磁ヨークを配設し、前記磁化コイルに通電して、前記
フェライト磁石の端面に多極着磁を施す方法において、
前記磁極部の磁石対向部側を円弧状とし、多極着磁した
フェライト磁石端面の空隙磁束密度を近以正弦波にした
ことを特徴とする着磁方法。
1. A magnetizing yoke having a plurality of magnetic pole parts wound with opposing magnetizing coils is provided on the end face of a disk-shaped ferrite magnet having axial anisotropy, and the magnetizing coils are energized to form the ferrite magnet. In the method of applying multipolar magnetization to the end face of
A method of magnetization, characterized in that the side of the magnetic pole portion facing the magnet is arcuate, and the air gap magnetic flux density at the end face of the multi-pole magnetized ferrite magnet is approximately sinusoidal.
JP60105223A 1985-05-17 1985-05-17 Magnetization method Expired - Fee Related JPH0746657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60105223A JPH0746657B2 (en) 1985-05-17 1985-05-17 Magnetization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60105223A JPH0746657B2 (en) 1985-05-17 1985-05-17 Magnetization method

Publications (2)

Publication Number Publication Date
JPS61263206A true JPS61263206A (en) 1986-11-21
JPH0746657B2 JPH0746657B2 (en) 1995-05-17

Family

ID=14401667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60105223A Expired - Fee Related JPH0746657B2 (en) 1985-05-17 1985-05-17 Magnetization method

Country Status (1)

Country Link
JP (1) JPH0746657B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321818U (en) * 1989-02-20 1991-03-05
JP2002198216A (en) * 2000-12-26 2002-07-12 Hitachi Metals Ltd Sheet magnet and method of magnetizing the same
JP2012208112A (en) * 2011-03-11 2012-10-25 Alps Electric Co Ltd Position sensor, magnet member and manufacturing method for magnet member
CN109616277A (en) * 2018-12-28 2019-04-12 上海三环磁性材料有限公司 A kind of end face multipole permanent magnet sine wave magnetizing clamp
CN115662730A (en) * 2022-11-11 2023-01-31 广东光速动力设备制造有限公司 Single-peak multi-pole magnetizing method in ring and hub motor rotor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344002A (en) * 1976-10-04 1978-04-20 Onkyo Kk Pickup cartridge
JPS5724513A (en) * 1980-07-22 1982-02-09 Tdk Corp Magnetizing method of ring magnet and magnetized yoke
JPS5928866A (en) * 1982-08-11 1984-02-15 Takahashi Yoshiteru Magnetizing yoke

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344002A (en) * 1976-10-04 1978-04-20 Onkyo Kk Pickup cartridge
JPS5724513A (en) * 1980-07-22 1982-02-09 Tdk Corp Magnetizing method of ring magnet and magnetized yoke
JPS5928866A (en) * 1982-08-11 1984-02-15 Takahashi Yoshiteru Magnetizing yoke

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321818U (en) * 1989-02-20 1991-03-05
JP2002198216A (en) * 2000-12-26 2002-07-12 Hitachi Metals Ltd Sheet magnet and method of magnetizing the same
JP2012208112A (en) * 2011-03-11 2012-10-25 Alps Electric Co Ltd Position sensor, magnet member and manufacturing method for magnet member
CN109616277A (en) * 2018-12-28 2019-04-12 上海三环磁性材料有限公司 A kind of end face multipole permanent magnet sine wave magnetizing clamp
CN115662730A (en) * 2022-11-11 2023-01-31 广东光速动力设备制造有限公司 Single-peak multi-pole magnetizing method in ring and hub motor rotor

Also Published As

Publication number Publication date
JPH0746657B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
KR100234587B1 (en) Dc brushless motor and controller
JPS61280744A (en) Rotor with permanent magnet
JP2000050590A (en) Dc brushless motor
JPH0219695B2 (en)
JPS61263206A (en) Magnetizing method
JP2005124335A (en) Switched reluctance motor and control method therefor
JPH1094202A (en) Permanent magnet motor and rotor magnetizing device
JPH10191585A (en) Motor buried with permanent magnet
JP2019216530A (en) Permanent magnet generator
JPS6041822Y2 (en) synchronous machine
JP2912412B2 (en) Surface-facing motor
JPS60167310A (en) Magnetization of anisotropic cylinder magnet
JP2831123B2 (en) Permanent magnet type DC machine
JPS63260118A (en) Magnetizing apparatus of radial anisotropic cylindrical magnet
JPH0297261A (en) Magnetization pattern for motor magnet
JP2875357B2 (en) Magnetizing device
JPS61185051A (en) Ac motor
JPS6248246A (en) Rotary machine of permanent magnet
JPS5967861A (en) Brushless motor
JPH034133Y2 (en)
JPS5961459A (en) Setting method of electric neutral shaft of brush for flat motor
JP2003017323A (en) Magnetization yoke
JPH0510338Y2 (en)
JP2003274581A (en) Synchronous machine
JPS61176977U (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees