JP2012208112A - Position sensor, magnet member and manufacturing method for magnet member - Google Patents

Position sensor, magnet member and manufacturing method for magnet member Download PDF

Info

Publication number
JP2012208112A
JP2012208112A JP2012008310A JP2012008310A JP2012208112A JP 2012208112 A JP2012208112 A JP 2012208112A JP 2012008310 A JP2012008310 A JP 2012008310A JP 2012008310 A JP2012008310 A JP 2012008310A JP 2012208112 A JP2012208112 A JP 2012208112A
Authority
JP
Japan
Prior art keywords
magnetic field
magnet member
direction component
magnetic
main magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012008310A
Other languages
Japanese (ja)
Inventor
Ichiro Tokunaga
一郎 徳永
Takeya Inomata
武也 猪俣
Kazuhito Yoshida
和仁 吉田
Yasuhiro Sato
康弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MG Co Ltd
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
MG Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, MG Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2012008310A priority Critical patent/JP2012208112A/en
Priority to DE201210203775 priority patent/DE102012203775A1/en
Publication of JP2012208112A publication Critical patent/JP2012208112A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a variation in linearity of sensor output to a movement position of a detection object and detect the movement position of the detection object with a higher degree of accuracy.SOLUTION: A position sensor (1) of the invention comprises: a magnet member (3) that includes a main magnetic field generation part (31) which generates a main magnetic field (F) and magnetic field correction parts (32) which are adjacent to magnetic pole parts on both ends of the main field generation part (31) and corrects the main magnetic field (F); and a magnetic sensor element that is arranged separately from a surface of the magnet member (3) and outputs signals corresponding to a parallel component and a vertical component of magnetic flux density in the main magnetic field (F). The magnet member (3) is magnetized by a magnetization yoke that includes a convex magnetization surface whose curvature radius is 1/2 or more and 1/1 or less of a magnetization pitch. The position sensor (1) detects a movement position of the magnet member (3) relative to the magnetic sensor element, based on output of the magnetic sensor element.

Description

本発明は、検出対象物の位置を磁気的に検出する位置センサ、これに用いられる磁石部材及び磁石部材の製造方法に関し、特に、車載用の位置センサに関する。   The present invention relates to a position sensor that magnetically detects the position of an object to be detected, a magnet member used for the position sensor, and a method for manufacturing the magnet member, and more particularly to an on-vehicle position sensor.

従来、検出対象物の位置を磁気的に検出する位置センサとして、2極磁石を利用したものが知られている(例えば、特許文献1参照)。この位置センサでは、検出対象物に2極磁石を取り付け、この磁石表面から離間して磁気センサ素子を配置し、検出対象物の直線移動によって変化する磁束密度の磁石表面に対する直交方向成分に応じて検出対象物の位置が検出される。磁気センサ素子に対向する磁石表面は、移動方向に沿う側面視においてラウンド状に膨出して形成されている。これにより、磁気センサ素子に作用する磁束密度を、検出対象物の移動位置に対してリニアに変化させている。   2. Description of the Related Art Conventionally, a position sensor that uses a dipole magnet is known as a position sensor that magnetically detects the position of a detection target (see, for example, Patent Document 1). In this position sensor, a dipole magnet is attached to a detection object, a magnetic sensor element is arranged away from the magnet surface, and the magnetic flux density that changes due to the linear movement of the detection object corresponds to a component perpendicular to the magnet surface. The position of the detection object is detected. The magnet surface facing the magnetic sensor element is formed to bulge in a round shape in a side view along the moving direction. As a result, the magnetic flux density acting on the magnetic sensor element is changed linearly with respect to the movement position of the detection object.

特開2010−60338号公報JP 2010-60338 A

しかしながら、上記したような従来の位置センサは、磁束密度の直交方向成分により検出対象物の位置が検出されるため、磁石と磁気センサ素子とのギャップ変動に対して、磁束密度の直交方向成分が大きく変動する。このため、検出対象物の移動位置に対するセンサ出力のリニアリティが、磁石と磁気センサ素子とのギャップ変動に応じて大きく変動するという問題があった。   However, in the conventional position sensor as described above, since the position of the detection target is detected by the orthogonal component of the magnetic flux density, the orthogonal component of the magnetic flux density is not affected by the gap variation between the magnet and the magnetic sensor element. It fluctuates greatly. For this reason, there has been a problem that the linearity of the sensor output with respect to the movement position of the detection object varies greatly according to the gap variation between the magnet and the magnetic sensor element.

本発明はこのような実情に鑑みてなされたものであり、検出対象物の移動位置に対するセンサ出力のリニアリティの変動を抑制して、検出対象物の移動位置をより高精度に検出することができる位置センサ、磁石部材及び磁石部材の製造方法を提供することを目的とする。   The present invention has been made in view of such a situation, and can suppress the fluctuation of the linearity of the sensor output with respect to the movement position of the detection target object and detect the movement position of the detection target object with higher accuracy. It aims at providing a manufacturing method of a position sensor, a magnet member, and a magnet member.

本発明の位置センサは、直線状に交互に異極となるように等間隔で着磁された複数の磁極部によって主磁場を形成する主磁場発生部と、前記主磁場発生部の両端の磁極部に隣接し、前記主磁場を補正するように着磁された磁場補正部とを有する磁石部材と、前記磁石部材の表面から離間して配置され、前記主磁場の磁束密度における前記磁石部材の磁極部の並びの方向に平行な平行方向成分と前記磁石部材の表面に垂直な垂直方向成分とに応じた信号を出力する磁気センサ素子とを備え、前記平行方向成分に応じた信号の周期と前記垂直方向成分に応じた信号の周期とが略一致するとともに、前記平行方向成分に応じた信号の振幅と前記垂直方向成分に応じた信号の振幅とが略一致するように、前記磁石部材が着磁されており、前記磁気センサ素子の出力に基づいて、前記磁極部の並びの方向における前記磁石部材と前記磁気センサ素子との相対位置を検出することを特徴とする。   The position sensor of the present invention includes a main magnetic field generator that forms a main magnetic field by a plurality of magnetic poles magnetized at equal intervals so as to have different polarities alternately in a straight line, and magnetic poles at both ends of the main magnetic field generator A magnet member having a magnetic field correction unit magnetized so as to correct the main magnetic field, and spaced apart from the surface of the magnet member, the magnet member at a magnetic flux density of the main magnetic field A magnetic sensor element that outputs a signal corresponding to a parallel direction component parallel to the direction of arrangement of the magnetic pole portions and a vertical direction component perpendicular to the surface of the magnet member, and a period of the signal corresponding to the parallel direction component; The magnet member is arranged so that the period of the signal according to the vertical direction component substantially matches, and the amplitude of the signal according to the parallel direction component substantially matches the amplitude of the signal according to the vertical direction component. Magnetized and the magnetic sensor Based on the output of the device, and detecting a relative position between said magnet member and the magnetic sensor element in the direction of arrangement of the magnetic pole portions.

本発明の磁石部材は、磁気センサ素子に対向して配され、位置センサを構成するための磁石部材において、主磁場を形成するための、直線状に交互に異極となるように配された複数の磁極部を有する主磁場発生部と、前記主磁場発生部による主磁場を補正するための、前記主磁場発生部の両端の磁極部に対してそれぞれ異極となる一対の磁極部を有する磁場補正部とを備え、前記磁気センサ素子から出力される平行方向成分に応じた信号の周期と垂直方向成分に応じた信号の周期とが略一致するとともに、前記平行方向成分に応じた信号の振幅と前記垂直方向成分に応じた信号の振幅とが略一致するように、着磁されていることを特徴とする。   The magnet member of the present invention is arranged so as to face the magnetic sensor element, and in the magnet member for constituting the position sensor, it is arranged so as to be alternately different in a straight line for forming the main magnetic field. A main magnetic field generator having a plurality of magnetic pole portions, and a pair of magnetic pole portions each having a different polarity with respect to the magnetic pole portions at both ends of the main magnetic field generator for correcting the main magnetic field generated by the main magnetic field generator A magnetic field correction unit, and the period of the signal corresponding to the parallel direction component output from the magnetic sensor element substantially coincides with the period of the signal corresponding to the vertical direction component, and the signal corresponding to the parallel direction component It is characterized in that the amplitude and the amplitude of the signal corresponding to the vertical direction component are substantially matched.

本発明の磁石部材の製造方法は、磁気センサ素子に対向して配され、位置センサを構成するための磁石部材の製造方法において、主磁場を形成するための、直線状に交互に異極となるように配された複数の磁極部を有する主磁場発生部と、前記主磁場を補正するための、前記主磁場発生部の両端の磁極部に対してそれぞれ異極となる一対の磁極部を有する磁場補正部とを、前記主磁場発生部における隣接する異極間距離を着磁ピッチとしたとき、曲率半径が前記着磁ピッチの1/2以上1/1以下の凸面状の着磁面を有する着磁ヨークによって、前記磁気センサ素子から出力される平行方向成分に応じた信号の周期と垂直方向成分に応じた信号の周期とが略一致するとともに、前記平行方向成分に応じた信号の振幅と前記垂直方向成分に応じた信号の振幅とが略一致するように着磁したことを特徴とする。   The method for manufacturing a magnet member according to the present invention is a method for manufacturing a magnet member that is arranged to face a magnetic sensor element and constitutes a position sensor. A main magnetic field generating unit having a plurality of magnetic poles arranged so as to be, and a pair of magnetic poles different from the magnetic poles at both ends of the main magnetic field generating unit for correcting the main magnetic field When the magnetic field correction unit has a magnetized pitch as a distance between adjacent different poles in the main magnetic field generating unit, a convex magnetized surface having a radius of curvature of 1/2 or more and 1/1 or less of the magnetization pitch The period of the signal corresponding to the parallel direction component output from the magnetic sensor element substantially coincides with the period of the signal corresponding to the vertical direction component, and the signal corresponding to the parallel direction component is Depending on amplitude and vertical component Wherein the signal amplitude is magnetized so as to be substantially coincident.

これらの構成によれば、磁場補正部により主磁場が補正され、主磁場による磁束密度の平行方向成分及び垂直方向成分が所望の周期及び振幅の正弦波状又は余弦波状に近付けられる。よって、磁束密度の平行方向成分及び垂直方向成分に応じた信号に基づいて、磁石部材と磁気センサ素子との相対位置が精度よく検出される。この場合、磁石部材と磁気センサ素子とのギャップが変動しても、磁束密度の平行方向成分及び垂直方向成分の振幅比率が変わらないため、センサ出力のリニアリティの変動を抑制できる。   According to these configurations, the main magnetic field is corrected by the magnetic field correction unit, and the parallel direction component and the vertical direction component of the magnetic flux density due to the main magnetic field are brought close to a sine wave shape or cosine wave shape having a desired period and amplitude. Therefore, the relative position between the magnet member and the magnetic sensor element is detected with high accuracy based on the signals corresponding to the parallel direction component and the vertical direction component of the magnetic flux density. In this case, even if the gap between the magnet member and the magnetic sensor element changes, the amplitude ratio of the parallel direction component and the vertical direction component of the magnetic flux density does not change, so that the change in linearity of the sensor output can be suppressed.

また、本発明の上記位置センサにおいて、前記磁場補正部は、前記主磁場発生部の前記両端の磁極部に対して異極となるように着磁された一対の磁極部により、前記主磁場を補正できる。この構成によれば、簡易な構成により主磁場を補正できる。   In the position sensor of the present invention, the magnetic field correction unit may be configured to cause the main magnetic field to be generated by a pair of magnetic pole portions magnetized so as to have different polarities from the magnetic pole portions at both ends of the main magnetic field generation unit. Can be corrected. According to this configuration, the main magnetic field can be corrected with a simple configuration.

また、本発明の上記位置センサにおいて、前記磁場補正部は、前記磁極部の並びの方向において、前記主磁場発生部の着磁ピッチよりも狭く形成できる。この構成によれば、磁石部材の磁極の並びの方向の寸法を小さくして小型化できる。   In the position sensor of the present invention, the magnetic field correction unit can be formed narrower than the magnetization pitch of the main magnetic field generation unit in the direction in which the magnetic pole units are arranged. According to this configuration, it is possible to reduce the size by reducing the dimension in the direction of the arrangement of the magnetic poles of the magnet member.

また、本発明の上記位置センサにおいて、前記磁石部材は、前記磁気センサ素子に対して前記磁極部の並びの方向に移動可能である。この構成によれば、磁石部材が設けられた検出対象物の位置を精度よく検出できる。   In the position sensor of the present invention, the magnet member is movable in the direction in which the magnetic pole portions are arranged with respect to the magnetic sensor element. According to this configuration, the position of the detection object provided with the magnet member can be detected with high accuracy.

また、本発明の上記位置センサにおいて、前記磁気センサ素子の出力に対する信号処理が可能な算出ユニットを有しており、前記磁石部材は、前記算出ユニットの信号処理によって前記平行方向成分に応じた信号の振幅と前記垂直方向成分に応じた信号の振幅とが略一致するように着磁される。この構成によれば、算出ユニットの信号処理によって補正可能な範囲で、平行方向成分に応じた信号と垂直方向成分に応じた信号を得ることができる。   Further, the position sensor of the present invention has a calculation unit capable of performing signal processing on the output of the magnetic sensor element, and the magnet member is a signal corresponding to the parallel direction component by signal processing of the calculation unit. And the amplitude of the signal corresponding to the vertical direction component are substantially magnetized. According to this configuration, it is possible to obtain a signal corresponding to the parallel component and a signal corresponding to the vertical component within a range that can be corrected by the signal processing of the calculation unit.

また、本発明の上記位置センサにおいて、前記垂直方向成分に応じた信号の振幅の正負それぞれの最大値は、前記平行方向成分に応じた信号の振幅の正負それぞれの最大値を基準とした所定の範囲に収まっている。この構成によれば、補正のための信号処理によって垂直方向成分に応じた信号の振幅を平行方向成分に応じた信号の振幅に容易に合わせることができる。   In the position sensor of the present invention, the maximum value of each of the positive and negative amplitudes of the signal corresponding to the vertical direction component is a predetermined value based on the maximum value of each of the positive and negative amplitudes of the signal corresponding to the parallel direction component. It is in range. According to this configuration, it is possible to easily match the amplitude of the signal corresponding to the vertical component with the amplitude of the signal corresponding to the parallel component by signal processing for correction.

また、本発明の上記位置センサにおいて、前記磁石部材は、前記主磁場発生部における隣接する異極間距離を着磁ピッチとしたとき、曲率半径が前記着磁ピッチの1/2以上1/1以下の凸面状の着磁面を有する着磁ヨークにより着磁される。この構成によれば、磁石部材から正弦波形状の磁場分布を得ることができる。   In the position sensor of the present invention, the magnet member may have a radius of curvature that is 1/2 or more of the magnetization pitch 1/1 when the distance between adjacent different poles in the main magnetic field generation unit is a magnetization pitch. It is magnetized by a magnetizing yoke having the following convex magnetized surface. According to this configuration, a sinusoidal magnetic field distribution can be obtained from the magnet member.

また、本発明の上記位置センサにおいて、前記磁石部材の前記主磁場発生部は、前記磁気センサ素子に対して相対的に移動可能な範囲に対応するように配されている。この構成によれば、主磁場から磁石部材と磁気センサ素子との相対位置を容易に算出できる。   In the position sensor of the present invention, the main magnetic field generation unit of the magnet member is arranged so as to correspond to a range that can move relatively with respect to the magnetic sensor element. According to this configuration, the relative position between the magnet member and the magnetic sensor element can be easily calculated from the main magnetic field.

本発明によれば、検出対象物の移動位置に対するセンサ出力のリニアリティの変動を抑制して、検出対象物の移動位置をより高精度に検出することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fluctuation | variation of the linearity of the sensor output with respect to the movement position of a detection target object can be suppressed, and the movement position of a detection target object can be detected more accurately.

本実施の形態に係る位置センサの全体構成図である。It is a whole block diagram of the position sensor which concerns on this Embodiment. 本実施の形態に係る移動距離に対する磁束密度の変化を示す説明図である。It is explanatory drawing which shows the change of the magnetic flux density with respect to the movement distance which concerns on this Embodiment. 比較例に係る移動距離に対する磁束密度の変化を示す説明図である。It is explanatory drawing which shows the change of the magnetic flux density with respect to the movement distance which concerns on a comparative example. 本実施の形態に係る着磁ヨークによる着磁構成の説明図である。It is explanatory drawing of the magnetization structure by the magnetizing yoke which concerns on this Embodiment. 着磁ヨークの曲率半径と位置センサの検出精度との関係を示す図である。It is a figure which shows the relationship between the curvature radius of a magnetizing yoke, and the detection accuracy of a position sensor. 本実施の形態に係る出力電圧と磁石部材の移動位置との関係を示す図である。It is a figure which shows the relationship between the output voltage which concerns on this Embodiment, and the movement position of a magnet member. 磁石部材の変形例を示す図である。It is a figure which shows the modification of a magnet member. 磁束密度の垂直方向成分により検出対象物の移動位置の検出方法の説明図である。It is explanatory drawing of the detection method of the movement position of a detection target object by the perpendicular direction component of magnetic flux density. 本実施の形態に係る算出ユニットによる信号処理の一例を示す図である。It is a figure which shows an example of the signal processing by the calculation unit which concerns on this Embodiment. 本実施の形態に係る算出ユニットによる信号処理後のリニアリティ誤差の算出結果の一例を示す図である。It is a figure which shows an example of the calculation result of the linearity error after the signal processing by the calculation unit which concerns on this Embodiment. 本実施の形態に係る余弦波信号の振幅比率に対するリニアリティ誤差の変化の一例を示す図である。It is a figure which shows an example of the change of the linearity error with respect to the amplitude ratio of the cosine wave signal which concerns on this Embodiment.

位置センサ等においては、磁気センサから垂直に離間して配置された検出対象物に磁石部材を取り付け、検出対象物が磁気センサに対して平行移動するときの移動位置を高精度に検出することが望まれている。この場合、図8Aに示すように、磁束密度の垂直方向成分により磁石部材73の移動位置を検出する方法では、磁気センサ74と磁石部材73間のギャップ変動に応じて磁束密度が大きく変化して、リニアリティが大きく変動して十分な検出精度が得られなかった。   In a position sensor or the like, a magnet member is attached to a detection object that is vertically separated from the magnetic sensor, and the movement position when the detection object moves in parallel with respect to the magnetic sensor can be detected with high accuracy. It is desired. In this case, as shown in FIG. 8A, in the method of detecting the moving position of the magnet member 73 based on the vertical direction component of the magnetic flux density, the magnetic flux density greatly changes according to the gap fluctuation between the magnetic sensor 74 and the magnet member 73. The linearity fluctuated greatly, and sufficient detection accuracy could not be obtained.

例えば、磁石部材73の極ピッチ(隣接するN極-S極間距離)を28[mm]、磁石部材73と磁気センサ74との相対的なストロークを±14[mm]としたとき、磁石部材73と磁気センサ74間のギャップを1.0[mm]単位で変化させて、磁束密度と磁石部材73の位置との関係を調べたところ、図8Bに示すような結果が得られた。ここでは、磁気センサ74と磁石部材73間のギャップが4.0[mm]から±1[mm]変動すると、リニアリティの変動量が±11%となり検出精度が大きく低下している。このため、本件発明者により磁束密度の平行方向成分と垂直方向成分とからアークタンジェントを求めることで、検出対象物の移動位置を検出する方法が考案された。   For example, when the pole pitch (adjacent N pole-S pole distance) of the magnet member 73 is 28 [mm] and the relative stroke between the magnet member 73 and the magnetic sensor 74 is ± 14 [mm], the magnet member When the relationship between the magnetic flux density and the position of the magnet member 73 was examined by changing the gap between the magnetic sensor 73 and the magnetic sensor 74 in units of 1.0 [mm], the result shown in FIG. 8B was obtained. Here, when the gap between the magnetic sensor 74 and the magnet member 73 fluctuates from 4.0 [mm] to ± 1 [mm], the variation amount of the linearity becomes ± 11%, and the detection accuracy greatly decreases. For this reason, the present inventors have devised a method for detecting the moving position of the detection object by obtaining the arc tangent from the parallel direction component and the vertical direction component of the magnetic flux density.

この方法では、ギャップ変動によって磁束密度の平行方向成分及び垂直方向成分が同時に変化し、振幅比率が変わらないためリニアリティの変動が抑制される。しかしながら、リニアリティの変動を抑えるためには、磁束密度の平行方向成分が適切な正弦波状、垂直方向成分が適切な余弦波状に変化するように磁石部材を着磁する必要があった。そこで、本発明者らは、磁石部材の着磁極数について調べた結果、主磁場を形成する3つの磁極部の両外側に主磁場を収束させる磁極部を設けることで、ギャップ変動があっても、磁束密度の平行方向成分及び垂直方向成分を適切に変化できることを発見した。   In this method, the parallel component and the vertical component of the magnetic flux density change at the same time due to the gap variation, and the amplitude ratio does not change, so that the variation in linearity is suppressed. However, in order to suppress the variation in linearity, it is necessary to magnetize the magnet member so that the parallel component of the magnetic flux density changes to an appropriate sine wave shape and the vertical component changes to an appropriate cosine wave shape. Therefore, as a result of investigating the number of magnetic poles of the magnet member, the present inventors have provided magnetic pole portions for converging the main magnetic field on both outer sides of the three magnetic pole portions forming the main magnetic field. It was discovered that the parallel direction component and the vertical direction component of the magnetic flux density can be appropriately changed.

また、本発明者らは、着磁ヨークについて調べた結果、曲率半径が着磁ピッチの1/2以上1/1以下となる凸面状の着磁面により磁石部材を着磁することで、磁石部材から正弦波形状の磁場分布が得られることを発見した。すなわち、本発明の骨子は、この着磁面を有する着磁ヨークを用いて着磁すると共に、補正用の磁極部を有する磁石部材を用いることで、センサ出力のリニアリティの変動を抑制し、検出対象物の移動位置を高精度に検出することである。   Further, as a result of examining the magnetized yoke, the present inventors have magnetized the magnet member with a convex magnetized surface having a radius of curvature of 1/2 or more and 1/1 or less of the magnetization pitch. It was discovered that a sinusoidal magnetic field distribution can be obtained from the member. That is, the gist of the present invention is magnetized by using a magnetized yoke having this magnetized surface, and by using a magnet member having a magnetic pole part for correction, the variation in sensor output linearity is suppressed and detected. It is to detect the movement position of the object with high accuracy.

以下、実施の形態について添付図面を参照して詳細に説明する。以下の説明では、説明の便宜上、同一の名称には同一の符号を付して説明する。図1を参照して、位置センサの全体構成について説明する。図1は、本発明の実施の形態に係る位置センサの全体構成図である。なお、図1では、磁石部材を側方から見ており、磁石部材の長手方向をX方向、厚み方向をY方向としている。   Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. In the following description, for convenience of explanation, the same name is given the same reference numeral. The overall configuration of the position sensor will be described with reference to FIG. FIG. 1 is an overall configuration diagram of a position sensor according to an embodiment of the present invention. In FIG. 1, the magnet member is viewed from the side, and the longitudinal direction of the magnet member is the X direction and the thickness direction is the Y direction.

図1に示すように、位置センサ1は、検出対象物2に取り付けられた磁石部材3と、磁石部材3の表面から垂直方向(Y方向)に離間して配置された磁気センサ4とを有し、磁気センサ4に対する検出対象物2の平行移動を検出するように構成されている。磁気センサ4には、算出ユニット5が接続され、この算出ユニット5において検出対象物2の平行方向(X方向)における移動位置が算出される。   As shown in FIG. 1, the position sensor 1 has a magnet member 3 attached to the detection target 2 and a magnetic sensor 4 arranged away from the surface of the magnet member 3 in the vertical direction (Y direction). The parallel movement of the detection object 2 with respect to the magnetic sensor 4 is detected. A calculation unit 5 is connected to the magnetic sensor 4, and the movement position of the detection target 2 in the parallel direction (X direction) is calculated in the calculation unit 5.

磁石部材3は、上面視長方形状に形成された5極着磁の平板磁石であり、磁気センサ4に対向する検出対象物2の表面に固定されている。また、磁石部材3は、磁気センサ4に対向する表面にN極とS極とを長手方向に等ピッチで交互に着磁して構成されている。磁石部材3の着磁ピッチは、検出対象物2の半ストローク(本実施の形態では14[mm])に合わせられている。磁石部材3の隣り合う異極間では、N極からS極に至る円弧状の磁場が発生している。   The magnet member 3 is a 5-pole magnetized flat plate magnet formed in a rectangular shape when viewed from above, and is fixed to the surface of the detection object 2 facing the magnetic sensor 4. The magnet member 3 is configured by alternately magnetizing N poles and S poles on the surface facing the magnetic sensor 4 at equal pitches in the longitudinal direction. The magnetizing pitch of the magnet member 3 is set to the half stroke (14 [mm] in the present embodiment) of the detection object 2. An arc-shaped magnetic field from the N pole to the S pole is generated between adjacent different poles of the magnet member 3.

磁石部材3において、中央の3つの磁極部は主磁場Fを発生する主磁場発生部31として機能し、両端の一対の磁極部は主磁場Fを補正する磁場補正部32として機能する。位置センサ1では、主磁場発生部31の両端の同極ピッチ間で検出対象物2を移動させ、主磁場Fの磁束密度に応じて検出対象物2の移動位置を検出する。磁場補正部32は、主磁場発生部31の両端の磁極部から外側に広がる磁場を収束させ、主磁場Fを適切な範囲で分布させている。   In the magnet member 3, the three magnetic pole portions at the center function as the main magnetic field generating portion 31 that generates the main magnetic field F, and the pair of magnetic pole portions at both ends function as the magnetic field correcting portion 32 that corrects the main magnetic field F. In the position sensor 1, the detection object 2 is moved between the same polar pitches at both ends of the main magnetic field generation unit 31, and the movement position of the detection object 2 is detected according to the magnetic flux density of the main magnetic field F. The magnetic field correction unit 32 converges the magnetic field spreading outward from the magnetic poles at both ends of the main magnetic field generation unit 31, and distributes the main magnetic field F in an appropriate range.

磁気センサ4は、磁石部材3の表面に対向するように不図示の筐体に配置されており、ホール素子や磁気抵抗効果素子などの磁気センサ素子で構成される。磁気抵抗効果素子は、基本的な構成として、反強磁性層、ピン層、中間層およびフリー層を図示しないウエハー上に積層して形成されている。ピン層は反強磁性層により磁化方向が一方向に固定され、フリー層は外部磁場に反応して磁化方向が変化される。そして、磁石部材3の形成する磁場によりフリー層の磁化方向が変化され、ピン層の磁化方向とのなす角度で抵抗変化率が可変されることにより、これを反映した出力信号が出力される。   The magnetic sensor 4 is disposed in a housing (not shown) so as to face the surface of the magnet member 3, and is composed of a magnetic sensor element such as a Hall element or a magnetoresistive effect element. As a basic configuration, the magnetoresistive effect element is formed by laminating an antiferromagnetic layer, a pinned layer, an intermediate layer, and a free layer on a wafer (not shown). In the pinned layer, the magnetization direction is fixed in one direction by an antiferromagnetic layer, and in the free layer, the magnetization direction is changed in response to an external magnetic field. Then, the magnetization direction of the free layer is changed by the magnetic field formed by the magnet member 3, and the resistance change rate is varied according to the angle formed with the magnetization direction of the pinned layer, so that an output signal reflecting this is output.

算出ユニット5は、磁気センサ4から出力された正弦波信号および余弦波信号を増幅する増幅器51、52と、増幅器51、52に増幅された出力信号に基づいて磁石部材3の移動位置を算出する位置算出部53とを有している。位置算出部53は、増幅器51、52を介して入力された正弦波信号及び余弦波信号のアークタンジェントを求めて磁場角度を算出し、この算出した磁場角度から磁石部材3の移動位置を算出する。   The calculation unit 5 calculates the moving position of the magnet member 3 based on the amplifiers 51 and 52 that amplify the sine wave signal and the cosine wave signal output from the magnetic sensor 4 and the output signals amplified by the amplifiers 51 and 52. A position calculation unit 53. The position calculation unit 53 calculates an arc tangent of the sine wave signal and the cosine wave signal input via the amplifiers 51 and 52, calculates a magnetic field angle, and calculates a moving position of the magnet member 3 from the calculated magnetic field angle. .

なお、算出ユニット5は、位置センサ1の各種処理を実行するプロセッサや、メモリ等により構成されている。   The calculation unit 5 includes a processor that executes various processes of the position sensor 1, a memory, and the like.

図2及び図3を参照して、磁石部材の移動距離に対する磁束密度の変化について説明する。図2は、本実施の形態に係る移動距離に対する磁束密度の変化を示す説明図である。図3は、比較例に係る移動距離に対する磁束密度の変化を示す説明図である。なお、比較例は、磁石部材が3極磁石である点において、本実施の形態と相違する。図2A及び図3Aは、主に磁石部材の側面模式図を示し、図2B及び図3Bは、磁束密度の変化を示している。また、図2B及び図3Bでは、縦軸が磁束密度、横軸が検出位置、実線W1が磁束密度の垂直方向成分、破線W2が磁束密度の平行方向成分をそれぞれ示している。   With reference to FIG.2 and FIG.3, the change of the magnetic flux density with respect to the moving distance of a magnet member is demonstrated. FIG. 2 is an explanatory diagram showing changes in the magnetic flux density with respect to the moving distance according to the present embodiment. FIG. 3 is an explanatory diagram showing a change in magnetic flux density with respect to a moving distance according to a comparative example. The comparative example is different from the present embodiment in that the magnet member is a tripolar magnet. 2A and 3A mainly show schematic side views of the magnet member, and FIGS. 2B and 3B show changes in magnetic flux density. 2B and 3B, the vertical axis represents the magnetic flux density, the horizontal axis represents the detection position, the solid line W1 represents the vertical component of the magnetic flux density, and the broken line W2 represents the parallel component of the magnetic flux density.

図2Aに示すように、本実施の形態に係る磁石部材3においては、N極から隣接するS極に向って磁場が発生しており、N極からS極に向う間に磁場が180度回転する。このとき、中央の主磁場発生部31から発生する主磁場Fは、両端の磁場補正部32によって補正される。具体的には、主磁場発生部31の両端の磁極部(S極)において、外方への磁場の膨らみが隣接する磁場補正部32の磁極部(N極)によって抑えられる。これにより、主磁場Fの分布範囲が、着磁ピッチの2ピッチ分、すなわち検出対象物2の移動範囲に合わされる。   As shown in FIG. 2A, in the magnet member 3 according to the present embodiment, a magnetic field is generated from the N pole toward the adjacent S pole, and the magnetic field rotates 180 degrees while moving from the N pole to the S pole. To do. At this time, the main magnetic field F generated from the central main magnetic field generator 31 is corrected by the magnetic field correction units 32 at both ends. Specifically, in the magnetic pole portions (S poles) at both ends of the main magnetic field generator 31, the outward magnetic field bulge is suppressed by the adjacent magnetic pole portions (N poles) of the magnetic field correction unit 32. As a result, the distribution range of the main magnetic field F is matched to the two pitches of the magnetization pitch, that is, the movement range of the detection target 2.

したがって、主磁場Fは、主磁場発生部31の中心位置から一方向側に向う1磁極間L1で時計回りに180度回転し、主磁場発生部31の中心位置から他方向側に向う1磁極間L1で反時計回りに180度回転する。磁気センサ4は、主磁場Fの回転による磁束密度の水平方向成分及び垂直方向成分の変化により、検出対象物2の移動位置に応じた信号を出力する。磁束密度の垂直方向成分は、余弦波の出力信号として出力され、磁束密度の水平方向成分は、正弦波の出力信号として出力される。   Therefore, the main magnetic field F rotates 180 degrees clockwise between one magnetic pole L1 directed in one direction from the center position of the main magnetic field generating unit 31 and one magnetic pole directed in the other direction from the center position of the main magnetic field generating unit 31. It rotates 180 degrees counterclockwise in the interval L1. The magnetic sensor 4 outputs a signal corresponding to the moving position of the detection target object 2 by the change in the horizontal direction component and the vertical direction component of the magnetic flux density due to the rotation of the main magnetic field F. The vertical component of the magnetic flux density is output as a cosine wave output signal, and the horizontal component of the magnetic flux density is output as a sine wave output signal.

図2Bに示すように、実線W1の余弦波状に変化する磁束密度の垂直方向成分は、検出対象物2の移動範囲に一致した周期で振動している。検出対象物2の移動範囲においては、正方向の振幅と負方向の振幅とに振幅差が生じているが、検出結果に大きな影響を与えない程度に抑えられている。また、破線W2の正弦波で示される磁束密度の平行方向成分も同様に、検出対象物2の移動範囲に一致した周期で振動している。磁束密度の水平方向成分では、正方向の振幅と負方向の振幅とに振幅差が生じていない。   As shown in FIG. 2B, the vertical direction component of the magnetic flux density that changes in the cosine wave shape of the solid line W <b> 1 vibrates at a period that matches the moving range of the detection target 2. In the movement range of the detection object 2, there is an amplitude difference between the amplitude in the positive direction and the amplitude in the negative direction, but it is suppressed to the extent that the detection result is not greatly affected. Similarly, the parallel direction component of the magnetic flux density indicated by the sine wave of the broken line W2 is also oscillating at a period that coincides with the movement range of the detection target 2. In the horizontal component of the magnetic flux density, there is no amplitude difference between the positive amplitude and the negative amplitude.

例えば、磁石部材3の着磁ピッチ(検出対象物2の移動範囲)を±14[mm]とし、磁石部材3と磁気センサ素子とのギャップを6[mm]としたところ、実線W1において、磁束密度の垂直方向成分の正方向の振幅と負方向の振幅の振幅差が50[gauss]程度に抑えられ、実線W1及び破線W2のそれぞれにおいて磁束密度の水平方向成分の周期が28[mm](±14[mm])となった。このように、本実施の形態に係る磁石部材3を用いた場合には、主磁場Fによる磁束密度の変化に基づいて、適切な周期及び振幅の正弦波信号及び余弦波信号が得られる。   For example, when the magnetization pitch of the magnet member 3 (movement range of the detection target 2) is ± 14 [mm] and the gap between the magnet member 3 and the magnetic sensor element is 6 [mm], the magnetic flux is indicated by the solid line W1. The amplitude difference between the positive and negative amplitudes of the vertical component of the density is suppressed to about 50 [gauss], and the period of the horizontal component of the magnetic flux density is 28 [mm] in each of the solid line W1 and the broken line W2. ± 14 [mm]). Thus, when the magnet member 3 according to the present embodiment is used, a sine wave signal and a cosine wave signal having an appropriate period and amplitude are obtained based on a change in magnetic flux density due to the main magnetic field F.

一方、図3Aに示すように、比較例に係る磁石部材3においては、3つの磁極部によって主磁場Fが発生する。このとき、磁石部材3には、両端の磁極部(S極)の磁場を抑制する磁極部が設けられていないため、両端の磁極部における磁場が外方に膨らむ。これにより、主磁場Fの分布範囲が、検出対象物2の移動範囲から外側に位置ズレする。よって、主磁場Fは、磁石部材3の中心位置から一方向側に向って、1磁極間L1よりも広い間隔L2で時計回りに180度回転し、磁石部材3の中心位置から他方向側に向って、1磁極間L1よりも広い間隔L2で反時計回りに180度回転する。   On the other hand, as shown in FIG. 3A, in the magnet member 3 according to the comparative example, the main magnetic field F is generated by the three magnetic pole portions. At this time, the magnet member 3 is not provided with a magnetic pole portion that suppresses the magnetic field of the magnetic pole portions (S poles) at both ends, so that the magnetic field at the magnetic pole portions at both ends expands outward. As a result, the distribution range of the main magnetic field F is shifted outward from the movement range of the detection target 2. Therefore, the main magnetic field F rotates 180 degrees clockwise from the center position of the magnet member 3 at a distance L2 wider than one magnetic pole L1 from the center position to the other direction side from the center position of the magnet member 3. On the other hand, it rotates 180 degrees counterclockwise at an interval L2 wider than L1 between the magnetic poles.

図3Bに示すように、実線W1の余弦波状に変化する磁束密度の垂直方向成分は、検出対象物2の移動範囲に一致した周期で振動している。検出対象物2の移動範囲においては、正方向及び負方向の振幅差が、上記した本実施の形態に係る振幅差よりも大きくなっている。また、破線W2の正弦波状に変化する磁束密度の平行方向成分は、検出対象物2の移動範囲よりも大きな周期で振幅している。   As shown in FIG. 3B, the vertical component of the magnetic flux density that changes in the cosine wave shape of the solid line W <b> 1 vibrates at a period that matches the moving range of the detection target 2. In the movement range of the detection object 2, the amplitude difference between the positive direction and the negative direction is larger than the amplitude difference according to the present embodiment described above. Further, the parallel direction component of the magnetic flux density that changes in a sine wave shape of the broken line W2 has an amplitude larger than the moving range of the detection target object 2.

例えば、磁石部材3の着磁ピッチを14[mm]、検出対象物2の移動範囲を±14[mm]とし、磁石部材3と磁気センサ素子とのギャップを6[mm]としたところ、実線W1において、磁束密度の垂直方向成分の正方向の振幅と負方向の振幅の振幅差が150[gauss]程度となり、破線W2において、磁束密度の水平方向成分の周期が30[mm](±15[mm])となった。比較例に係る磁石部材3を用いた場合には、本実施の形態に係る磁石部材3を用いた場合と比較して、実線W1における磁束密度の垂直方向成分の振幅差が約3倍となり、破線W2における磁束密度の水平方向成分の周期が外側に1[mm]大きくなっている。よって、比較例に係る磁石部材3を用いた場合には、主磁場Fによる磁束密度の変化に基づいて、適切な周期及び振幅の正弦波信号及び余弦波信号を得ることができない。   For example, when the magnetization pitch of the magnet member 3 is 14 [mm], the movement range of the detection target 2 is ± 14 [mm], and the gap between the magnet member 3 and the magnetic sensor element is 6 [mm], a solid line At W1, the amplitude difference between the positive and negative amplitudes of the vertical component of the magnetic flux density is about 150 [gauss], and at the broken line W2, the period of the horizontal component of the magnetic flux density is 30 [mm] (± 15 [Mm]). When the magnet member 3 according to the comparative example is used, the amplitude difference of the vertical direction component of the magnetic flux density at the solid line W1 is about three times as compared with the case where the magnet member 3 according to the present embodiment is used. The period of the horizontal component of the magnetic flux density at the broken line W2 is increased by 1 [mm] on the outside. Therefore, when the magnet member 3 according to the comparative example is used, a sine wave signal and a cosine wave signal having an appropriate period and amplitude cannot be obtained based on a change in magnetic flux density due to the main magnetic field F.

このように、本実施の形態の磁石部材3では、3つの磁極部からなる主磁場発生部31の両外側に、一対の磁極部からなる磁場補正部32を設けることで、主磁場Fの外方への膨らみを抑えている。このため、磁束密度の垂直方向成分の振幅差を小さくすると共に、磁束密度の水平方向成分の周期を検出対象物2の移動範囲に一致させることができ、適切な正弦波信号及び余弦波信号を得ることが可能となっている。   As described above, in the magnet member 3 according to the present embodiment, the magnetic field correction unit 32 including a pair of magnetic pole portions is provided on both outer sides of the main magnetic field generation unit 31 including the three magnetic pole portions, so The bulge to the direction is suppressed. For this reason, while the amplitude difference of the vertical direction component of magnetic flux density can be made small, the period of the horizontal direction component of magnetic flux density can be made to correspond to the movement range of detection object 2, and an appropriate sine wave signal and cosine wave signal can be obtained. It is possible to obtain.

次に、図4及び図5を参照して、着磁ヨークによる磁石部材の着磁方法について説明する。図4は、本実施の形態に係る着磁ヨークによる着磁構成の説明図である。図5は、本実施の形態に係る着磁ヨークの曲率半径と位置センサの検出精度との関係を示す図である。図4Aは、本実施の形態に係る着磁ヨークを示し、図4Bから図4Dは、磁石部材が発生する磁場分布を示す。図5Aは、曲率半径とリニアリティの変動量及び振幅比との関係を示し、図5Bは、曲率半径と磁束密度との関係を示す。   Next, a magnetizing method of the magnet member by the magnetizing yoke will be described with reference to FIGS. FIG. 4 is an explanatory diagram of a magnetizing configuration by the magnetizing yoke according to the present embodiment. FIG. 5 is a diagram showing a relationship between the radius of curvature of the magnetized yoke according to the present embodiment and the detection accuracy of the position sensor. FIG. 4A shows a magnetized yoke according to the present embodiment, and FIGS. 4B to 4D show magnetic field distributions generated by the magnet member. FIG. 5A shows the relationship between the radius of curvature, the amount of change in linearity, and the amplitude ratio, and FIG. 5B shows the relationship between the radius of curvature and the magnetic flux density.

図4Aに示すように、本実施の形態に係る着磁ヨーク6は、磁石部材3に対応して上面視長方形状に形成されており、長手方向に等間隔に配置された凸状の複数の着磁部61と、各着磁部61に巻回された巻き線62とを有している。着磁部61の突出端側は、断面視円弧状の着磁面63となっている。そして、巻き線62が通電されると、着磁部61がS極とN極とに交互に磁化される。着磁面63の断面が円弧状であるため、磁石部材3の内部に比較的大回りの磁束線が通過する。   As shown in FIG. 4A, the magnetizing yoke 6 according to the present embodiment is formed in a rectangular shape in a top view corresponding to the magnet member 3, and has a plurality of convex shapes arranged at equal intervals in the longitudinal direction. It has a magnetized portion 61 and a winding 62 wound around each magnetized portion 61. The protruding end side of the magnetized portion 61 is a magnetized surface 63 having an arc shape in cross section. When the winding 62 is energized, the magnetized portion 61 is alternately magnetized to the S pole and the N pole. Since the cross section of the magnetized surface 63 is arcuate, relatively large magnetic flux lines pass through the magnet member 3.

ここで、本件発明者が、磁石部材3の着磁ピッチLに対して、着磁面63の曲率半径rの大きさを変化させたところ、図4Bに示すように、曲率半径rが着磁ピッチLの1/2以上1/1以下の範囲で磁石部材3の磁場分布が略正弦波状になることを発見した。そして、磁場分布は、曲率半径rが着磁ピッチLの1/1よりも大きくなると、図4Cに示すように台形波状に近づき、曲率半径rが着磁ピッチLの1/2よりも小さくなると、図4Dに示すように三角波形状に近づくことが判明した。   Here, when the inventor changed the magnitude of the radius of curvature r of the magnetized surface 63 with respect to the magnetization pitch L of the magnet member 3, as shown in FIG. 4B, the radius of curvature r was magnetized. It has been found that the magnetic field distribution of the magnet member 3 is substantially sinusoidal in the range of 1/2 to 1/1 of the pitch L. The magnetic field distribution approaches a trapezoidal wave shape as shown in FIG. 4C when the radius of curvature r is larger than 1/1 of the magnetization pitch L, and when the radius of curvature r is smaller than 1/2 of the magnetization pitch L. As shown in FIG. 4D, it has been found that it approaches a triangular wave shape.

また、着磁ピッチL=14[mm]として、このときの曲率半径と位置センサとの関係を調べたところ、図5に示すような結果が得られた。図5Aに示すように、曲率半径rが着磁ピッチLの1/1(14[mm])よりも大きくなると、リニアリティの変動量が大きくなる。また、曲率半径rが着磁ピッチLの1/2(7[mm])よりも小さくなると、振幅比が下がり位置算出部53による算出精度が低下する。さらに、図5Bに示すように、曲率半径rが着磁ピッチLの1/2(7[mm])よりも小さくなると、磁束密度の垂直方向成分及び水平方向成分が急激に下がり、検出感度が低下する。   Further, when the relationship between the radius of curvature and the position sensor was examined with the magnetization pitch L = 14 [mm], the result shown in FIG. 5 was obtained. As shown in FIG. 5A, when the curvature radius r is larger than 1/1 (14 [mm]) of the magnetization pitch L, the amount of change in linearity increases. Further, when the radius of curvature r is smaller than 1/2 (7 [mm]) of the magnetization pitch L, the amplitude ratio is lowered and the calculation accuracy by the position calculation unit 53 is decreased. Furthermore, as shown in FIG. 5B, when the radius of curvature r is smaller than 1/2 (7 [mm]) of the magnetization pitch L, the vertical direction component and the horizontal direction component of the magnetic flux density are drastically lowered, and the detection sensitivity is increased. descend.

このように、本実施の形態では、曲率半径rが着磁ピッチLの1/2以上1/1以下の着磁面63を有する着磁ヨーク6によって磁石部材3を着磁することで、磁石部材3に適切な磁場分布を発生させている。   As described above, in this embodiment, the magnet member 3 is magnetized by the magnetizing yoke 6 having the magnetized surface 63 having the radius of curvature r of 1/2 or more and 1/1 or less of the magnetization pitch L. An appropriate magnetic field distribution is generated in the member 3.

以上のようにして着磁された磁石部材3を用いることにより、磁束密度の各方向成分が図2Bに示すように正弦波状及び余弦波状に変化し、磁気センサ4から正弦波信号及び余弦波信号が算出ユニット5に出力される。算出ユニット5では、これら出力信号からアークタンジェントが求められ、磁石部材3の移動位置に対応した出力電圧が算出される。ここで、出力電圧と磁石部材3の移動位置との関係を調べたところ、図6に示す結果が得られた。   By using the magnet member 3 magnetized as described above, each direction component of the magnetic flux density changes into a sine wave shape and a cosine wave shape as shown in FIG. 2B, and the sine wave signal and the cosine wave signal from the magnetic sensor 4. Is output to the calculation unit 5. In the calculation unit 5, an arc tangent is obtained from these output signals, and an output voltage corresponding to the moving position of the magnet member 3 is calculated. Here, when the relationship between the output voltage and the moving position of the magnet member 3 was examined, the result shown in FIG. 6 was obtained.

図6は、本実施の形態に係る出力電圧と磁石部材の移動位置との関係を示す図である。なお、図6においては、左縦軸が出力電圧、右縦軸がリニアリティの変動量、横軸が磁石部材の移動位置を示している。また、図6において、実線W3が理想的な出力特性(基準直線)、破線W4が磁石部材と磁気センサ素子間のギャップを4.5[mm]とした場合の出力特性、破線W5が磁石部材と磁気センサ素子間のギャップを5.5[mm]とした場合の出力特性、破線W6が磁石部材と磁気センサ素子間のギャップを6.5[mm]とした場合の出力特性を示している。   FIG. 6 is a diagram showing the relationship between the output voltage and the moving position of the magnet member according to the present embodiment. In FIG. 6, the left vertical axis represents the output voltage, the right vertical axis represents the amount of change in linearity, and the horizontal axis represents the moving position of the magnet member. In FIG. 6, a solid line W3 is an ideal output characteristic (reference straight line), a broken line W4 is an output characteristic when the gap between the magnet member and the magnetic sensor element is 4.5 [mm], and a broken line W5 is a magnet member. The output characteristics when the gap between the magnetic sensor element and the magnetic sensor element is 5.5 [mm], and the broken line W6 indicates the output characteristics when the gap between the magnet member and the magnetic sensor element is 6.5 [mm]. .

図6に示すように、本実施の形態に係る位置センサ1では、磁石部材3と磁気センサ4の磁気センサ素子間のギャップを変動させた場合であっても、実線W3の理想的なリニア特性に略重なるようなリニア特性が得られる。このときのリニアリティの変動量は、破線W4−W6に示すようにギャップが5.5[mm]から±1[mm]変動した場合であっても±0.5%以下に抑えられている。したがって、図8Bに示す磁束密度の垂直方向成分により検出対象物2の移動位置を検出する方法と比較して、大幅にリニアリティの変動量が抑えられている。   As shown in FIG. 6, in the position sensor 1 according to the present embodiment, even when the gap between the magnetic sensor element of the magnet member 3 and the magnetic sensor 4 is changed, the ideal linear characteristic of the solid line W3. A linear characteristic that substantially overlaps with the above can be obtained. The amount of change in linearity at this time is suppressed to ± 0.5% or less even when the gap changes from 5.5 [mm] to ± 1 [mm] as indicated by the broken line W4-W6. Therefore, compared with the method of detecting the moving position of the detection target object 2 by the vertical direction component of the magnetic flux density shown in FIG.

このように、本実施の形態では磁石部材3に対して理想的な着磁条件を発見し、この磁石部材3を用いることでギャップ変動に対するリニアリティの変動を抑制している。この場合、磁石部材3は、主磁場Fを発生する複数の磁極部の外側に補正用の磁極部が着磁されればよい。例えば、4つ以上の磁極部により主磁場Fを発生してもよいし、2つ以上の磁極部で主磁場Fを補正してもよい。また、図7Aに示すように、磁石部材3において、主磁場発生部31と磁場補正部32とが別体で形成されてもよい。さらに、図7Bに示すように、磁石部材3の長手方向において、磁場補正部32の幅が、主磁場発生部31の着磁ピッチよりも狭く形成されてもよく、例えば、着磁ピッチの1/2以下でもよい。   As described above, in this embodiment, an ideal magnetization condition is found for the magnet member 3, and by using this magnet member 3, the variation in linearity with respect to the gap variation is suppressed. In this case, the magnet member 3 only needs to have the correction magnetic pole portion magnetized outside the plurality of magnetic pole portions that generate the main magnetic field F. For example, the main magnetic field F may be generated by four or more magnetic pole portions, or the main magnetic field F may be corrected by two or more magnetic pole portions. 7A, in the magnet member 3, the main magnetic field generation unit 31 and the magnetic field correction unit 32 may be formed separately. Furthermore, as shown in FIG. 7B, the width of the magnetic field correction unit 32 may be formed narrower than the magnetization pitch of the main magnetic field generation unit 31 in the longitudinal direction of the magnet member 3. / 2 or less may be sufficient.

ところで、上記した磁石部材3を用いることでリニアリティの変動量を小さく抑えることができるが、位置センサ1に求められる仕様によっては磁石部材3だけでリニアリティを所望の変動量に抑えることは難しい場合がある。算出ユニット5においてリニアリティの変動量が許容範囲内に収まっていないと判定した場合には、算出ユニット5において磁気センサ4からの出力が補正されることで、リニアリティの変動量が調整される。この場合、算出ユニット5では、リニアリティの変動量が許容範囲内に収まるように、磁束密度の垂直方向成分を示す余弦波信号と磁束密度の平行方向成分を示す正弦波信号との振幅差が小さくなるように補正される。よって、磁石部材3は、算出ユニット5の補正のための信号処理によって調整可能な範囲内であれば、磁束密度の垂直方向成分と水平方向成分とで振幅差が生じてもよい。   By the way, although the amount of fluctuation of linearity can be suppressed small by using the above-described magnet member 3, depending on the specifications required for the position sensor 1, it may be difficult to suppress the linearity to a desired amount of fluctuation only by the magnet member 3. is there. When the calculation unit 5 determines that the linearity fluctuation amount is not within the allowable range, the linearity fluctuation amount is adjusted by correcting the output from the magnetic sensor 4 in the calculation unit 5. In this case, the calculation unit 5 has a small amplitude difference between the cosine wave signal indicating the vertical direction component of the magnetic flux density and the sine wave signal indicating the parallel direction component of the magnetic flux density so that the fluctuation amount of the linearity falls within the allowable range. It is corrected so that Therefore, the magnet member 3 may have an amplitude difference between the vertical direction component and the horizontal direction component of the magnetic flux density as long as it is within a range that can be adjusted by the signal processing for correction of the calculation unit 5.

以下、図9から図11を参照して、算出ユニットによる補正のための信号処理について説明する。図9は、本実施の形態に係る算出ユニットによる信号処理の一例を示す図である。図9では、左縦軸が磁束密度、横軸が磁石部材の移動位置を示している。なお、図9では、正弦波信号に対して余弦波信号の振幅を補正する一例を示すが、余弦波信号に対して正弦波信号の振幅を補正してもよいし、余弦波信号及び正弦波信号の両方を補正してもよい。   Hereinafter, signal processing for correction by the calculation unit will be described with reference to FIGS. 9 to 11. FIG. 9 is a diagram illustrating an example of signal processing by the calculation unit according to the present embodiment. In FIG. 9, the left vertical axis indicates the magnetic flux density, and the horizontal axis indicates the moving position of the magnet member. Although FIG. 9 shows an example of correcting the amplitude of the cosine wave signal with respect to the sine wave signal, the amplitude of the sine wave signal may be corrected with respect to the cosine wave signal, or the cosine wave signal and the sine wave may be corrected. Both of the signals may be corrected.

図9Aに示す磁束密度分布では、余弦波信号及び正弦波信号の振幅(磁束密度)が正負で対称となっている。この場合、正側における余弦波信号と正弦波信号の振幅差が、負側における余弦波信号と正弦波信号の振幅差に一致している。また、算出ユニット5は、信号波形の振幅を全体的に伸縮させることでゲイン調整(補正)するよう構成されている。このため、算出ユニット5で余弦波信号の振幅をゲイン調整(補正)することで、正負両側において余弦波信号と正弦波信号との振幅が揃えられる。これにより、リニアリティの変動がより小さく抑えられる。   In the magnetic flux density distribution shown in FIG. 9A, the amplitude (magnetic flux density) of the cosine wave signal and the sine wave signal is positive and negative and symmetric. In this case, the amplitude difference between the cosine wave signal and the sine wave signal on the positive side matches the amplitude difference between the cosine wave signal and the sine wave signal on the negative side. The calculation unit 5 is configured to perform gain adjustment (correction) by expanding and contracting the amplitude of the signal waveform as a whole. For this reason, the amplitude of the cosine wave signal and the sine wave signal are aligned on both the positive and negative sides by adjusting (correcting) the amplitude of the cosine wave signal in the calculation unit 5. Thereby, the fluctuation | variation of a linearity is suppressed smaller.

一方、図9Bに示す磁束密度分布では、余弦波信号及び正弦波信号の振幅(磁束密度)が正負で非対称となっている。この場合、正側では余弦波信号よりも正弦波信号の振幅が大きく、負側では余弦波信号と正弦波信号の振幅が一致している。すなわち、正側における余弦波信号と正弦波信号の振幅差が、負側における余弦波信号と正弦波信号の振幅差に一致していない。上記したように、算出ユニット5は信号波形の振幅を全体的に伸縮させるため、算出ユニット5で余弦波信号の振幅をゲイン調整しても、正負両側において余弦波信号と正弦波信号の振幅が揃わない。   On the other hand, in the magnetic flux density distribution shown in FIG. 9B, the amplitude (magnetic flux density) of the cosine wave signal and the sine wave signal is positive and negative and asymmetric. In this case, the amplitude of the sine wave signal is larger than that of the cosine wave signal on the positive side, and the amplitudes of the cosine wave signal and the sine wave signal match on the negative side. That is, the amplitude difference between the cosine wave signal and the sine wave signal on the positive side does not match the amplitude difference between the cosine wave signal and the sine wave signal on the negative side. As described above, since the calculation unit 5 generally expands and contracts the amplitude of the signal waveform, even if the gain of the cosine wave signal is adjusted by the calculation unit 5, the amplitudes of the cosine wave signal and the sine wave signal are positive and negative. Not complete.

図9Bの例では、正側で余弦波信号の振幅が正弦波信号の振幅に近付くと、負側で余弦波信号の振幅が正弦波信号の振幅から離れるように補正される。しかしながら、このような補正でも、余弦波信号と正弦波信号の振幅差を小さくなることで、リニアリティの変動をある程度抑えることが可能である。   In the example of FIG. 9B, when the amplitude of the cosine wave signal approaches the amplitude of the sine wave signal on the positive side, the amplitude of the cosine wave signal is corrected so as to deviate from the amplitude of the sine wave signal on the negative side. However, even with such correction, the fluctuation in linearity can be suppressed to some extent by reducing the amplitude difference between the cosine wave signal and the sine wave signal.

次に、余弦波信号と正弦波信号の振幅差とリニアリティ誤差との関係について説明する。図10は、本実施の形態に係る算出ユニットによる信号処理後のリニアリティ誤差の算出結果の一例を示す図である。図10の左図及び中央図では、左縦軸が磁束密度、横軸が磁石部材の移動位置を示している。また、図10の右図では、左縦軸が磁場角度、右縦軸がリニアリティの変動量、横軸が磁石部材の移動位置を示している。なお、図10では、正弦波信号に対して余弦波信号の振幅を補正する一例を示すが、余弦波信号に対して正弦波信号の振幅を補正してもよいし、余弦波信号及び正弦波信号の両方を補正してもよい。   Next, the relationship between the amplitude difference between the cosine wave signal and the sine wave signal and the linearity error will be described. FIG. 10 is a diagram illustrating an example of a calculation result of linearity error after signal processing by the calculation unit according to the present embodiment. In the left and center diagrams of FIG. 10, the left vertical axis indicates the magnetic flux density, and the horizontal axis indicates the moving position of the magnet member. In the right diagram of FIG. 10, the left vertical axis indicates the magnetic field angle, the right vertical axis indicates the amount of change in linearity, and the horizontal axis indicates the moving position of the magnet member. 10 shows an example of correcting the amplitude of the cosine wave signal with respect to the sine wave signal, the amplitude of the sine wave signal may be corrected with respect to the cosine wave signal, or the cosine wave signal and the sine wave may be corrected. Both of the signals may be corrected.

また図10では、説明の便宜上、負側において余弦波信号と正弦波信号の振幅を一致させた状態で余弦波信号の振幅を補正する一例を示すが、これに限定されない。図10の磁束密度分布に関わらず、リニアリティ誤差は、余弦波信号と正弦波信号の振幅差に応じて算出される。   For convenience of explanation, FIG. 10 shows an example in which the amplitude of the cosine wave signal is corrected in a state where the amplitudes of the cosine wave signal and the sine wave signal are matched on the negative side, but the present invention is not limited to this. Regardless of the magnetic flux density distribution of FIG. 10, the linearity error is calculated according to the amplitude difference between the cosine wave signal and the sine wave signal.

図10Aは、正弦波信号に対する余弦波信号の正側の振幅比率が70%の波形を示している。余弦波信号の振幅は、正側において正弦波信号の振幅よりも30%小さく、負側において正弦波信号の振幅に一致している。算出ユニット5においては、余弦波信号の振幅が±15%大きくなるようにゲイン調整される。このとき、正側では余弦波信号の振幅が正弦波信号の振幅に15%近付けられ、負側では余弦波信号の振幅が正弦波信号の振幅から15%離される。そして、ゲイン調整後の余弦波信号と正弦波信号のアークタンジェントが求められることで、磁石部材3の移動位置に対応した出力特性が算出される。このときのリニアリティ誤差は、理想直線に対して±1.25%程度になっている。   FIG. 10A shows a waveform in which the positive amplitude ratio of the cosine wave signal to the sine wave signal is 70%. The amplitude of the cosine wave signal is 30% smaller than the amplitude of the sine wave signal on the positive side and matches the amplitude of the sine wave signal on the negative side. In the calculation unit 5, the gain is adjusted so that the amplitude of the cosine wave signal is increased by ± 15%. At this time, the amplitude of the cosine wave signal is close to 15% of the amplitude of the sine wave signal on the positive side, and the amplitude of the cosine wave signal is separated from the amplitude of the sine wave signal by 15% on the negative side. Then, the arc tangent of the cosine wave signal and sine wave signal after gain adjustment is obtained, whereby the output characteristic corresponding to the moving position of the magnet member 3 is calculated. The linearity error at this time is about ± 1.25% with respect to the ideal straight line.

図10Bは、正弦波信号に対する余弦波信号の正側の振幅比率が85%の波形を示している。余弦波信号の振幅は、正側において正弦波信号の振幅よりも15%小さく、負側において正弦波信号の振幅に一致している。算出ユニット5においては、余弦波信号の振幅が±7.5%大きくなるようにゲイン調整される。このとき、正側では余弦波信号の振幅が正弦波信号の振幅に7.5%近付けられ、負側では余弦波信号の振幅が正弦波信号の振幅から7.5%離される。そして、ゲイン調整後の余弦波信号と正弦波信号のアークタンジェントが求められることで、磁石部材3の移動位置に対応した出力特性が算出される。このときのリニアリティ誤差は、理想直線に対して±0.65%程度になっている。   FIG. 10B shows a waveform in which the positive amplitude ratio of the cosine wave signal to the sine wave signal is 85%. The amplitude of the cosine wave signal is 15% smaller than the amplitude of the sine wave signal on the positive side and matches the amplitude of the sine wave signal on the negative side. In the calculation unit 5, the gain is adjusted so that the amplitude of the cosine wave signal is increased by ± 7.5%. At this time, the amplitude of the cosine wave signal is close to 7.5% of the amplitude of the sine wave signal on the positive side, and the amplitude of the cosine wave signal is separated from the amplitude of the sine wave signal by 7.5% on the negative side. Then, the arc tangent of the cosine wave signal and sine wave signal after gain adjustment is obtained, whereby the output characteristic corresponding to the moving position of the magnet member 3 is calculated. The linearity error at this time is about ± 0.65% with respect to the ideal straight line.

この正弦波信号に対する余弦波信号の振幅比率とリニアリティ誤差を調べた結果、図11に示すような関係が得られた。図11は、本実施の形態に係る余弦波信号の振幅比率に対するリニアリティ誤差の変化の一例を示す図である。図11では、左縦軸がリニアリティ誤差、横軸が余弦波信号の振幅比率を示している。   As a result of examining the amplitude ratio of the cosine wave signal to the sine wave signal and the linearity error, the relationship shown in FIG. 11 was obtained. FIG. 11 is a diagram illustrating an example of a change in linearity error with respect to the amplitude ratio of the cosine wave signal according to the present embodiment. In FIG. 11, the left vertical axis indicates the linearity error, and the horizontal axis indicates the amplitude ratio of the cosine wave signal.

図11に示すように、余弦波信号の振幅比率とリニアリティ誤差とが比例関係を有している。上記したように、余弦波信号の振幅比率70%の場合にはリニアリティ誤差が±1.25%であり、余弦波信号の振幅比率85%の場合にはリニアリティ誤差が±0.65%になっている。このような比例関係から、位置センサ1に求められる仕様に応じて適切な余弦波信号の振幅比率が求められる。例えば、位置センサ1に求められる仕様がリニアリティ誤差±0.5%の場合には、余弦波信号の振幅比率が89%以上に設定される必要がある。すなわち、余弦波信号と正弦波信号との振幅差が±5.5%(11%)以内に補正可能なように磁石部材3が着磁されていれば、算出ユニット5の信号処理によって位置センサ1の仕様が満たされる。   As shown in FIG. 11, the amplitude ratio of the cosine wave signal and the linearity error have a proportional relationship. As described above, when the amplitude ratio of the cosine wave signal is 70%, the linearity error is ± 1.25%, and when the amplitude ratio of the cosine wave signal is 85%, the linearity error is ± 0.65%. ing. From such a proportional relationship, an appropriate amplitude ratio of the cosine wave signal is obtained according to the specifications required for the position sensor 1. For example, when the specification required for the position sensor 1 is a linearity error of ± 0.5%, the amplitude ratio of the cosine wave signal needs to be set to 89% or more. That is, if the magnet member 3 is magnetized so that the amplitude difference between the cosine wave signal and the sine wave signal can be corrected within ± 5.5% (11%), the position sensor is processed by the signal processing of the calculation unit 5. 1 specification is satisfied.

このように、磁石部材3は、算出ユニット5の補正のための信号処理によって位置センサ1の仕様を満たす範囲内に、磁束密度の垂直方向成分と平行方向成分との振幅差が収まるように着磁されていればよい。なお、図11では、余弦波信号の振幅比率に対するリニアリティ誤差を例示したが、正弦波信号の振幅比率に対するリニアリティ誤差も同様な比例関係を有している。なお、算出ユニット5による補正のための信号処理は、位置算出部53で行われてもよいし、増幅器51、52で行われてもよい。また、算出ユニット5に信号処理部を設けて、信号処理部で補正のための信号処理が行われてもよい。   Thus, the magnet member 3 is worn so that the amplitude difference between the vertical direction component and the parallel direction component of the magnetic flux density is within the range satisfying the specifications of the position sensor 1 by the signal processing for correction of the calculation unit 5. It only has to be magnetized. 11 illustrates the linearity error with respect to the amplitude ratio of the cosine wave signal, the linearity error with respect to the amplitude ratio of the sine wave signal has a similar proportional relationship. The signal processing for correction by the calculation unit 5 may be performed by the position calculation unit 53 or may be performed by the amplifiers 51 and 52. Further, the calculation unit 5 may be provided with a signal processing unit, and the signal processing unit may perform signal processing for correction.

以上のように、本実施の形態に係る位置センサ1によれば、着磁ピッチの1/2以上1/1以下の曲率半径rを有する着磁面63により着磁され、両端の磁極部により主磁場Fが抑制されることで、主磁場Fによる磁束密度の平行方向成分及び垂直方向成分が所望の周期及び振幅の正弦波状又余弦波状に変化する。よって、磁束密度の平行方向成分及び垂直方向成分に応じた信号に基づいて、磁石部材3の位置が精度よく検出される。   As described above, according to the position sensor 1 according to the present embodiment, the position sensor 1 is magnetized by the magnetized surface 63 having the radius of curvature r of 1/2 or more and 1/1 or less of the magnetization pitch, and the magnetic pole portions at both ends. By suppressing the main magnetic field F, the parallel direction component and the vertical direction component of the magnetic flux density due to the main magnetic field F change to a sine wave shape or a cosine wave shape having a desired period and amplitude. Therefore, the position of the magnet member 3 is accurately detected based on the signal corresponding to the parallel direction component and the vertical direction component of the magnetic flux density.

なお、上記した実施の形態においては、磁気センサ素子をホール素子やGMR素子(巨大磁気抵抗効果素子)などの磁気抵抗効果素子とする構成としたが、この構成に限定されるものではない。磁石部材の発生する磁場において、磁束密度の水平方向成分及び垂直方向成分に応じた信号を出力可能なものであれが、どのようなものでもよい。   In the above-described embodiment, the magnetic sensor element is configured as a magnetoresistive effect element such as a Hall element or a GMR element (giant magnetoresistive effect element). However, the present invention is not limited to this configuration. Any magnetic field generated by the magnet member may be used as long as it can output a signal corresponding to the horizontal component and the vertical component of the magnetic flux density.

また、上記した実施の形態においては、算出ユニット5によって磁束密度の垂直方向成分と平行方向成分とをアークタンジェント演算して、検出対象物2の移動位置を検出する構成としたが、これに限定されない。算出ユニット5は、磁束密度の垂直方向成分と平行方向成分とから検出対象物2の移動位置を算出可能であれば、どのような演算をしてもよい。   In the above-described embodiment, the calculation unit 5 performs arctangent calculation on the vertical direction component and the parallel direction component of the magnetic flux density to detect the moving position of the detection target 2. However, the present invention is not limited to this. Not. The calculation unit 5 may perform any calculation as long as the movement position of the detection target 2 can be calculated from the vertical direction component and the parallel direction component of the magnetic flux density.

また、上記した実施の形態においては、位置センサ1が磁気センサ素子に対して平行移動する磁石部材3の移動位置を検出する構成としたが、これに限定されない。位置センサ1は、磁気センサ素子と磁石部材との相対位置を検出するものであり、例えば、磁石部材3に対して平行移動する磁気センサ素子の移動位置を検出してもよいし、磁石部材3と磁気センサ素子とが平行移動する場合の相対的な移動位置を検出してもよい。   In the above-described embodiment, the position sensor 1 detects the moving position of the magnet member 3 that moves parallel to the magnetic sensor element. However, the present invention is not limited to this. The position sensor 1 detects a relative position between the magnetic sensor element and the magnet member. For example, the position sensor 1 may detect a moving position of the magnetic sensor element that moves in parallel with the magnet member 3. The relative movement position when the magnetic sensor element and the magnetic sensor element move in parallel may be detected.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   In addition, this invention is not limited to the said embodiment, It can change and implement variously. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

以上説明したように、本発明は、検出対象物の移動位置に対するセンサ出力のリニアリティの変動を抑制して、検出対象物の移動位置をより高精度に検出することができるという効果を有し、特に、検出対象物の位置を磁気的に検出する車載用の位置センサに有用である。   As described above, the present invention has an effect that the movement position of the detection target object can be detected with higher accuracy by suppressing the fluctuation of the linearity of the sensor output with respect to the movement position of the detection target object. In particular, it is useful for a vehicle-mounted position sensor that magnetically detects the position of a detection target.

1 位置センサ
2 検出対象物
3 磁石部材
31 主磁場発生部
32 磁場補正部
4 磁気センサ
5 算出ユニット
51、52 増幅器
53 位置算出部
6 着磁ヨーク
61 着磁部
62 巻き線
63 着磁面
DESCRIPTION OF SYMBOLS 1 Position sensor 2 Object to be detected 3 Magnet member 31 Main magnetic field generation part 32 Magnetic field correction part 4 Magnetic sensor 5 Calculation unit 51, 52 Amplifier 53 Position calculation part 6 Magnetization yoke 61 Magnetization part 62 Winding 63 Magnetization surface

Claims (10)

直線状に交互に異極となるように等間隔で着磁された複数の磁極部によって主磁場を形成する主磁場発生部と、前記主磁場発生部の両端の磁極部に隣接し、前記主磁場を補正するように着磁された磁場補正部とを有する磁石部材と、
前記磁石部材の表面から離間して配置され、前記主磁場の磁束密度における前記磁石部材の磁極部の並びの方向に平行な平行方向成分と前記磁石部材の表面に垂直な垂直方向成分とに応じた信号を出力する磁気センサ素子とを備え、
前記平行方向成分に応じた信号の周期と前記垂直方向成分に応じた信号の周期とが略一致するとともに、前記平行方向成分に応じた信号の振幅と前記垂直方向成分に応じた信号の振幅とが略一致するように、前記磁石部材が着磁されており、
前記磁気センサ素子の出力に基づいて、前記磁極部の並びの方向における前記磁石部材と前記磁気センサ素子との相対位置を検出することを特徴とする位置センサ。
A main magnetic field generating section for forming a main magnetic field by a plurality of magnetic pole sections magnetized at equal intervals so as to have different polarities alternately in a straight line; and adjacent to the magnetic pole sections at both ends of the main magnetic field generating section; A magnet member having a magnetic field correction unit magnetized to correct the magnetic field;
Depending on the parallel direction component parallel to the direction of the arrangement of the magnetic pole portions of the magnet member and the vertical direction component perpendicular to the surface of the magnet member in the magnetic flux density of the main magnetic field, spaced apart from the surface of the magnet member A magnetic sensor element that outputs
The period of the signal according to the parallel direction component and the period of the signal according to the vertical direction component substantially coincide, and the amplitude of the signal according to the parallel direction component and the amplitude of the signal according to the vertical direction component Are magnetized so that they substantially match,
A position sensor that detects a relative position between the magnet member and the magnetic sensor element in a direction in which the magnetic pole portions are arranged based on an output of the magnetic sensor element.
前記磁場補正部は、前記主磁場発生部の前記両端の磁極部に対して異極となるように着磁された一対の磁極部により、前記主磁場を補正することを特徴とする請求項1に記載の位置センサ。   2. The magnetic field correction unit corrects the main magnetic field by a pair of magnetic pole portions magnetized so as to be different in polarity from the magnetic pole portions at both ends of the main magnetic field generation unit. The position sensor described in 1. 前記磁場補正部は、前記磁極部の並びの方向において、前記主磁場発生部の着磁ピッチよりも狭く形成されたことを特徴とする請求項1又は請求項2に記載の位置センサ。   3. The position sensor according to claim 1, wherein the magnetic field correction unit is formed narrower than a magnetization pitch of the main magnetic field generation unit in a direction in which the magnetic pole units are arranged. 前記磁石部材は、前記磁気センサ素子に対して前記磁極部の並びの方向に移動可能であることを特徴とする請求項1から請求項3のいずれかに記載の位置センサ。   4. The position sensor according to claim 1, wherein the magnet member is movable in a direction in which the magnetic pole portions are arranged with respect to the magnetic sensor element. 5. 前記磁気センサ素子の出力に対する信号処理が可能な算出ユニットを有しており、
前記磁石部材は、前記算出ユニットの信号処理によって前記平行方向成分に応じた信号の振幅と前記垂直方向成分に応じた信号の振幅とが略一致するように着磁されることを特徴とする請求項1に記載の位置センサ。
A calculation unit capable of performing signal processing on the output of the magnetic sensor element;
The magnet member is magnetized so that an amplitude of a signal corresponding to the parallel direction component and an amplitude of a signal corresponding to the vertical direction component are substantially matched by signal processing of the calculation unit. Item 2. The position sensor according to Item 1.
前記垂直方向成分に応じた信号の振幅の正負それぞれの最大値は、前記平行方向成分に応じた信号の振幅の正負それぞれの最大値を基準とした所定の範囲に収まっていることを特徴とする請求項1から請求項5のいずれかに記載の位置センサ。   The maximum value of each of the positive and negative amplitudes of the signal corresponding to the vertical direction component is within a predetermined range based on the maximum value of each of the positive and negative amplitudes of the signal corresponding to the parallel direction component. The position sensor according to any one of claims 1 to 5. 前記磁石部材は、前記主磁場発生部における隣接する異極間距離を着磁ピッチとしたとき、曲率半径が前記着磁ピッチの1/2以上1/1以下の凸面状の着磁面を有する着磁ヨークにより着磁されることを特徴とする請求項1から請求項6のいずれかに記載の位置センサ。   The magnet member has a convex magnetized surface having a radius of curvature of ½ or more and 1/1 or less of the magnetization pitch when a distance between adjacent different poles in the main magnetic field generation unit is a magnetization pitch. The position sensor according to claim 1, wherein the position sensor is magnetized by a magnetizing yoke. 前記磁石部材の前記主磁場発生部は、前記磁気センサ素子に対して相対的に移動可能な範囲に対応するように配されていることを特徴とする請求項4に記載の位置センサ。   The position sensor according to claim 4, wherein the main magnetic field generation unit of the magnet member is arranged so as to correspond to a range in which the main magnetic field generation unit can move relative to the magnetic sensor element. 磁気センサ素子に対向して配され、位置センサを構成するための磁石部材において、
主磁場を形成するための、直線状に交互に異極となるように配された複数の磁極部を有する主磁場発生部と、
前記主磁場発生部による主磁場を補正するための、前記主磁場発生部の両端の磁極部に対してそれぞれ異極となる一対の磁極部を有する磁場補正部とを備え、
前記磁気センサ素子から出力される平行方向成分に応じた信号の周期と垂直方向成分に応じた信号の周期とが略一致するとともに、前記平行方向成分に応じた信号の振幅と前記垂直方向成分に応じた信号の振幅とが略一致するように、着磁されていることを特徴とする磁石部材。
In the magnet member arranged to face the magnetic sensor element and constituting the position sensor,
A main magnetic field generator having a plurality of magnetic pole portions arranged to be different from each other in a straight line to form a main magnetic field;
A magnetic field correction unit having a pair of magnetic pole parts different from the magnetic pole parts at both ends of the main magnetic field generation part for correcting the main magnetic field by the main magnetic field generation part,
The period of the signal corresponding to the parallel direction component output from the magnetic sensor element and the period of the signal corresponding to the vertical direction component substantially coincide with each other, and the amplitude of the signal corresponding to the parallel direction component and the vertical direction component are A magnet member that is magnetized so that the amplitude of the corresponding signal is substantially the same.
磁気センサ素子に対向して配され、位置センサを構成するための磁石部材の製造方法において、
主磁場を形成するための、直線状に交互に異極となるように配された複数の磁極部を有する主磁場発生部と、前記主磁場を補正するための、前記主磁場発生部の両端の磁極部に対してそれぞれ異極となる一対の磁極部を有する磁場補正部とを、
前記主磁場発生部における隣接する異極間距離を着磁ピッチとしたとき、曲率半径が前記着磁ピッチの1/2以上1/1以下の凸面状の着磁面を有する着磁ヨークによって、
前記磁気センサ素子から出力される平行方向成分に応じた信号の周期と垂直方向成分に応じた信号の周期とが略一致するとともに、前記平行方向成分に応じた信号の振幅と前記垂直方向成分に応じた信号の振幅とが略一致するように着磁したことを特徴とする磁石部材の製造方法。
In the manufacturing method of the magnet member for arranging the position sensor, facing the magnetic sensor element,
A main magnetic field generating unit having a plurality of magnetic pole portions arranged to be alternately different in a straight line to form a main magnetic field, and both ends of the main magnetic field generating unit for correcting the main magnetic field A magnetic field correction unit having a pair of magnetic poles each having a different polarity with respect to the magnetic poles of
When the distance between adjacent different poles in the main magnetic field generating portion is a magnetization pitch, a magnetizing yoke having a convex magnetized surface having a radius of curvature of 1/2 or more and 1/1 or less of the magnetization pitch,
The period of the signal corresponding to the parallel direction component output from the magnetic sensor element and the period of the signal corresponding to the vertical direction component substantially coincide with each other, and the amplitude of the signal corresponding to the parallel direction component and the vertical direction component are A method for manufacturing a magnet member, wherein the magnets are magnetized so that the amplitudes of the corresponding signals are substantially the same.
JP2012008310A 2011-03-11 2012-01-18 Position sensor, magnet member and manufacturing method for magnet member Withdrawn JP2012208112A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012008310A JP2012208112A (en) 2011-03-11 2012-01-18 Position sensor, magnet member and manufacturing method for magnet member
DE201210203775 DE102012203775A1 (en) 2011-03-11 2012-03-09 Position sensor for use in vehicle for detecting movement position of target object, has sensor element arranged at distance from surface of magnetic member, where position between member and element is detected based on output signal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011054128 2011-03-11
JP2011054128 2011-03-11
JP2012008310A JP2012208112A (en) 2011-03-11 2012-01-18 Position sensor, magnet member and manufacturing method for magnet member

Publications (1)

Publication Number Publication Date
JP2012208112A true JP2012208112A (en) 2012-10-25

Family

ID=46705633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008310A Withdrawn JP2012208112A (en) 2011-03-11 2012-01-18 Position sensor, magnet member and manufacturing method for magnet member

Country Status (2)

Country Link
JP (1) JP2012208112A (en)
DE (1) DE102012203775A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095642A (en) * 2013-11-08 2015-05-18 株式会社エムジー Magnet reducing magnetic flux density change with cavity fluctuation, and magnetization method thereof
CN106152948A (en) * 2015-05-12 2016-11-23 光旴科技股份有限公司 Position displacement sensing device
US20160377453A1 (en) * 2015-06-23 2016-12-29 Canon Kabushiki Kaisha Position detection device, control method, and storage medium
CN109616277A (en) * 2018-12-28 2019-04-12 上海三环磁性材料有限公司 A kind of end face multipole permanent magnet sine wave magnetizing clamp
JP2019143991A (en) * 2018-02-16 2019-08-29 Tdk株式会社 Magnetic sensor system and magnetic scale
CN114739272A (en) * 2021-01-07 2022-07-12 大银微系统股份有限公司 Position measuring mechanism of linear motion system and measuring method thereof
JP2023001656A (en) * 2021-06-21 2023-01-06 Tdk株式会社 Magnetic sensor, braking system and steering system using magnetic sensor
TWI836917B (en) * 2022-03-07 2024-03-21 日商三菱電機股份有限公司 Magnetic encoder
JP7507729B2 (en) 2021-06-21 2024-06-28 Tdk株式会社 Magnetic sensor and brake system and steering system using the magnetic sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263206A (en) * 1985-05-17 1986-11-21 Hitachi Metals Ltd Magnetizing method
JP2006023179A (en) * 2004-07-08 2006-01-26 Tdk Corp Magnetic position detection device
JP2009192261A (en) * 2008-02-12 2009-08-27 Aisin Seiki Co Ltd Rectilinear displacement detector
JP2011232060A (en) * 2010-04-23 2011-11-17 Tdk Corp Magnetic position detection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054128A (en) 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd Image pickup device
JP4606484B2 (en) 2008-09-02 2011-01-05 アルプス電気株式会社 Movement detection device using magnets
JP5136601B2 (en) 2010-06-24 2013-02-06 ブラザー工業株式会社 Tandem drum unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263206A (en) * 1985-05-17 1986-11-21 Hitachi Metals Ltd Magnetizing method
JP2006023179A (en) * 2004-07-08 2006-01-26 Tdk Corp Magnetic position detection device
JP2009192261A (en) * 2008-02-12 2009-08-27 Aisin Seiki Co Ltd Rectilinear displacement detector
JP2011232060A (en) * 2010-04-23 2011-11-17 Tdk Corp Magnetic position detection device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095642A (en) * 2013-11-08 2015-05-18 株式会社エムジー Magnet reducing magnetic flux density change with cavity fluctuation, and magnetization method thereof
CN106152948A (en) * 2015-05-12 2016-11-23 光旴科技股份有限公司 Position displacement sensing device
US20160377453A1 (en) * 2015-06-23 2016-12-29 Canon Kabushiki Kaisha Position detection device, control method, and storage medium
JP2017009443A (en) * 2015-06-23 2017-01-12 キヤノン株式会社 Position detection device, control method, and program
US10701267B2 (en) 2015-06-23 2020-06-30 Canon Kabushiki Kaisha Position detection device, control method, and storage medium
JP2019143991A (en) * 2018-02-16 2019-08-29 Tdk株式会社 Magnetic sensor system and magnetic scale
CN109616277A (en) * 2018-12-28 2019-04-12 上海三环磁性材料有限公司 A kind of end face multipole permanent magnet sine wave magnetizing clamp
CN114739272A (en) * 2021-01-07 2022-07-12 大银微系统股份有限公司 Position measuring mechanism of linear motion system and measuring method thereof
JP2023001656A (en) * 2021-06-21 2023-01-06 Tdk株式会社 Magnetic sensor, braking system and steering system using magnetic sensor
JP7507729B2 (en) 2021-06-21 2024-06-28 Tdk株式会社 Magnetic sensor and brake system and steering system using the magnetic sensor
TWI836917B (en) * 2022-03-07 2024-03-21 日商三菱電機股份有限公司 Magnetic encoder

Also Published As

Publication number Publication date
DE102012203775A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP2012208112A (en) Position sensor, magnet member and manufacturing method for magnet member
JP5590349B2 (en) Magnetic sensor system
JP5144803B2 (en) Rotation detector
JP6191838B2 (en) Magnetic sensor
US10184959B2 (en) Magnetic current sensor and current measurement method
JP5215370B2 (en) Magnetic position detector
JP2012145425A (en) Rotation angle sensor
CN104919328A (en) Magnetic sensor and production method therefor
JP6492193B2 (en) Position detection device
JP4947250B2 (en) Angle detector
JP2011158488A (en) Magnetic sensor
JP4787601B2 (en) Position detection device
JP5653262B2 (en) Stroke amount detection device
JP5989257B2 (en) Magnetic detector
JP6066134B2 (en) Magnetic sensor system
JP7463593B2 (en) Magnetic sensor system and lens position detection device
JP2016166748A (en) Magnetic sensor
WO2016171059A1 (en) Position detecting device and structure for using position detecting device
JP4424481B2 (en) Moving body detection device
JP5374739B2 (en) Linear sensor
WO2017126373A1 (en) Magnetic medium detection device
JP6041959B1 (en) Magnetic detector
JP5959686B1 (en) Magnetic detector
US11598826B2 (en) Magnetic detection device
JP6208562B2 (en) Magnet, measuring method and magnetizing apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20151209