JP4787601B2 - Position detection device - Google Patents

Position detection device Download PDF

Info

Publication number
JP4787601B2
JP4787601B2 JP2005323811A JP2005323811A JP4787601B2 JP 4787601 B2 JP4787601 B2 JP 4787601B2 JP 2005323811 A JP2005323811 A JP 2005323811A JP 2005323811 A JP2005323811 A JP 2005323811A JP 4787601 B2 JP4787601 B2 JP 4787601B2
Authority
JP
Japan
Prior art keywords
magnet
detection means
magnetic
magnetic detection
magnetoresistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005323811A
Other languages
Japanese (ja)
Other versions
JP2007132710A (en
Inventor
敬友 水野
晃幸 神川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2005323811A priority Critical patent/JP4787601B2/en
Publication of JP2007132710A publication Critical patent/JP2007132710A/en
Application granted granted Critical
Publication of JP4787601B2 publication Critical patent/JP4787601B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、磁気検知手段を用いた位置検出装置に関するものである。   The present invention relates to a position detection device using magnetic detection means.

従来、例えば特許文献1に記載されるように、磁気抵抗素子(MRE)を用いた非接触式の位置検出装置が提案されており、例えばシートベルトのバックルスイッチ等に用いられている。図4に示すように、この種の位置検出装置51は、MRE52を内蔵したICパッケージ53と、そのICパッケージ53と相対移動する磁石54とを備えている。   Conventionally, as described in Patent Document 1, for example, a non-contact type position detection device using a magnetoresistive element (MRE) has been proposed, and is used for a buckle switch of a seat belt, for example. As shown in FIG. 4, this type of position detection device 51 includes an IC package 53 with a built-in MRE 52 and a magnet 54 that moves relative to the IC package 53.

この位置検出装置51における磁石54は、長手方向に対して直交する方向に着磁された長方形状をなし、ICパッケージ53に対して長手方向(同図に示す矢印F方向)に相対移動可能となっている。このため、磁石54とICパッケージ53との相対的な位置関係が変化すると、MRE52によって検知される磁界の方向も変化し、MRE52から出力される電圧も変化する。よって、ICパッケージ53は、このMRE52からの出力電圧の変化に基づき、相対的に移動する磁石54の位置を検出可能となる。
特開2002−81903号公報
The magnet 54 in the position detection device 51 has a rectangular shape magnetized in a direction orthogonal to the longitudinal direction, and can move relative to the IC package 53 in the longitudinal direction (the direction of arrow F shown in the figure). It has become. For this reason, when the relative positional relationship between the magnet 54 and the IC package 53 changes, the direction of the magnetic field detected by the MRE 52 also changes, and the voltage output from the MRE 52 also changes. Therefore, the IC package 53 can detect the position of the relatively moving magnet 54 based on the change in the output voltage from the MRE 52.
JP 2002-81903 A

しかしながら、こうした位置検出装置51では、外乱磁界が加わっていない状態においては、例えば図5(a)に示すような磁石54との位置関係に対するMRE52の出力電圧の変化特性が得られる。すなわち、この位置検出装置51では、出力電圧の極性が変化するポイント(ゼロ電位)近辺においては、磁石54の位置に対する出力電圧の変化が小さい。このため、該ゼロ電位付近においてICパッケージ53は、微少な磁石54の位置変化を検出しにくい。また、例えば図5(b)に示すように、外乱磁界が加わった場合には、ゼロ電位となる磁石54の位置が大幅にずれてしまう。よって、従来の位置検出装置51では、磁石54の位置検出精度の点において改良の余地が残されている。なお、この位置検出装置51では、図4に示すように、MRE52の中心線O上に磁石54の移動方向における中央箇所が位置する際にゼロ電位となる。また、ここでは、磁石54の移動方向における全長は11mmに設定され、該磁石54の最大移動距離(ストローク範囲)は16mmに設定されている例を示す。   However, in such a position detection device 51, in the state where no disturbance magnetic field is applied, for example, a change characteristic of the output voltage of the MRE 52 with respect to the positional relationship with the magnet 54 as shown in FIG. That is, in the position detection device 51, the change in the output voltage with respect to the position of the magnet 54 is small near the point (zero potential) where the polarity of the output voltage changes. For this reason, it is difficult for the IC package 53 to detect a minute position change of the magnet 54 in the vicinity of the zero potential. Further, for example, as shown in FIG. 5B, when a disturbance magnetic field is applied, the position of the magnet 54 at zero potential is greatly shifted. Therefore, the conventional position detection device 51 has room for improvement in terms of the position detection accuracy of the magnet 54. In the position detection device 51, as shown in FIG. 4, when the central portion in the moving direction of the magnet 54 is positioned on the center line O of the MRE 52, the potential is zero. Here, an example is shown in which the total length of the magnet 54 in the moving direction is set to 11 mm, and the maximum moving distance (stroke range) of the magnet 54 is set to 16 mm.

本発明はこうした実情に鑑みてなされたものであり、その目的は、位置検出精度をより向上させることができる位置検出装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a position detection device capable of further improving the position detection accuracy.

上記の課題を解決するために、請求項1に記載の発明では、磁石と、その磁石の磁界の向きに基づいて該磁石との相対位置を検出する磁気検知手段とを備えた位置検出装置であって、前記磁気検知手段は、前記磁石の着磁方向に離間して設けられ、該磁石及び該磁気検知手段は、該磁石の着磁方向と直交する方向に相対移動可能に設けられ、前記磁石は、前記相対移動方向における両端部位の磁束の方向が、該相対移動方向に対して積極的に傾斜する方向を向くように変化する形状をなし、前記磁石において前記磁気検知手段と対向する面には、前記両端部位に向かって前記磁気検知手段から離間する傾斜面が設けられている、又は、前記磁石において前記磁気検知手段と対向する面には、中央部位に前記相対移動方向と平行な第1平行面が設けられ、その両端部位にそれぞれ該第1平行面よりも前記磁気検知手段から離間する第2平行面がそれぞれ設けられていることを要旨とする。 In order to solve the above-mentioned problem, in the invention according to claim 1, in a position detection device comprising a magnet and a magnetic detection means for detecting the relative position of the magnet based on the direction of the magnetic field of the magnet. The magnetic detection means is provided separately in the magnetization direction of the magnet, and the magnet and the magnetic detection means are provided to be relatively movable in a direction orthogonal to the magnetization direction of the magnet, magnet, the direction of the magnetic flux across sites in the relative movement direction, to name a shape that varies so as to face the direction which is inclined positively relative to said relative movement direction, opposite to the magnetic detection means in said magnet The surface is provided with an inclined surface that is separated from the magnetic detection means toward the both end portions, or the surface of the magnet that faces the magnetic detection means is parallel to the relative movement direction at the central portion. The first parallel plane Vignetting, and summarized in that a second parallel surface away from said magnetic detection means than the first parallel face respectively to the two ends portions are respectively provided.

上記構成によると、磁石の両端部位においては磁束の方向が相対移動方向に対して積極的に傾斜しているため、該磁石の中央部位付近において磁束の方向が一方向に集中しにくくなり、相対移動方向に沿って磁束の方向が大きく変化しやすくなる。それゆえ、磁石に対する磁気検知手段の移動量に対し、該磁気検知手段によって検出される磁界の向きも大きく変化しやすくなる。よって、磁気検出手段は、微少な磁石の位置変化を、より高精度に検出可能となる。しかも、磁石と磁気検出手段との位置変化に対する磁界の向きの変化が大きくなることから、外乱磁界が加わった場合においても影響を受けにくくなる。
ここで、磁石の両端部位に傾斜面又は第2平行面を設けることにより、磁束の方向が積極的に変化する。すなわち、磁石において磁気検知手段と対向する面に傾斜面又は第2平行面を設けることで磁束の方向が大きく変化する。このため、磁石に対する磁気検知手段の移動量に対し、該磁気検知手段によって検出される磁界の向きを大きく変化させることができる。よって、磁気検出手段は、微少な磁石の位置変化を、より高精度に検出可能となる。
According to the above configuration, since the direction of the magnetic flux is positively inclined with respect to the relative movement direction at both end portions of the magnet, the direction of the magnetic flux is less likely to concentrate in one direction near the central portion of the magnet. The direction of the magnetic flux easily changes greatly along the moving direction. Therefore, the direction of the magnetic field detected by the magnetic detection means is likely to change greatly with respect to the amount of movement of the magnetic detection means relative to the magnet. Therefore, the magnetic detection means can detect a slight change in the position of the magnet with higher accuracy. In addition, since the change in the direction of the magnetic field with respect to the change in position between the magnet and the magnetic detection means becomes large, even when a disturbance magnetic field is applied, it is difficult to be affected.
Here, the direction of the magnetic flux is positively changed by providing inclined surfaces or second parallel surfaces at both end portions of the magnet. That is, the direction of the magnetic flux changes greatly by providing the inclined surface or the second parallel surface on the surface of the magnet that faces the magnetic detection means. For this reason, the direction of the magnetic field detected by the magnetic detection means can be greatly changed with respect to the amount of movement of the magnetic detection means relative to the magnet. Therefore, the magnetic detection means can detect a slight change in the position of the magnet with higher accuracy.

以上詳述したように、本発明によれば、位置検出精度をより向上させることができる位置検出装置を提供することができる。   As described above in detail, according to the present invention, it is possible to provide a position detection device capable of further improving the position detection accuracy.

以下、本発明を具体化した一実施形態を図1及び図2に基づき詳細に説明する。
図1(a)に示すように、位置検出装置1は、磁気検知手段としての磁気抵抗素子(MRE)2を内蔵したICパッケージ3と、そのICパッケージ3に対して相対移動可能な磁石4とを備えている。こうした位置検出装置1は、例えば車載用シートベルト装置のバックルスイッチに用いられた場合、該バックルスイッチの筐体(図示略)内にICパッケージ3が固定されるとともに、シートベルトの取付金具(図示略)の取付・取外動作に伴って矢印F方向に往復動する可動部材(図示略)に磁石4が固定される。このため、磁気抵抗素子2と磁石4とは、矢印F方向に相対移動することとなる。なお、磁石4は相対移動方向(矢印F方向)と直交する方向に着磁され、磁気抵抗素子2と磁石4とは、該磁石4の着磁方向と同方向に所定距離離間した位置関係となるように、それぞれ配設されている。また、本実施形態において磁石4は、N極が磁気抵抗素子2と対向するように配設されている。
Hereinafter, an embodiment embodying the present invention will be described in detail with reference to FIGS. 1 and 2.
As shown in FIG. 1A, the position detection device 1 includes an IC package 3 including a magnetoresistive element (MRE) 2 as a magnetic detection means, and a magnet 4 that can move relative to the IC package 3. It has. When such a position detection device 1 is used, for example, in a buckle switch of an in-vehicle seat belt device, the IC package 3 is fixed in a casing (not shown) of the buckle switch, and a mounting bracket (not shown) The magnet 4 is fixed to a movable member (not shown) that reciprocates in the direction of the arrow F in accordance with the mounting / removing operation (not shown). For this reason, the magnetoresistive element 2 and the magnet 4 are relatively moved in the direction of the arrow F. The magnet 4 is magnetized in a direction orthogonal to the relative movement direction (arrow F direction), and the magnetoresistive element 2 and the magnet 4 are in a positional relationship separated by a predetermined distance in the same direction as the magnetization direction of the magnet 4. Each is arranged so as to be. In the present embodiment, the magnet 4 is disposed so that the N pole faces the magnetoresistive element 2.

磁気抵抗素子2は、例えば強磁性体であるNi−Co材料からなる磁気抵抗体を複数個備え、それら磁気抵抗体の配置パターンから磁界に対する指向性を有し、検知面としての素子面によってその素子面と平行な向きの磁石4の磁界を検知する。そして、磁気抵抗素子2は、検知した磁界に応じた電圧を出力する。ICパッケージ3は、こうした磁気抵抗素子2からの出力電圧に基づいて、磁石4の位置を検出する。   The magnetoresistive element 2 includes a plurality of magnetoresistors made of, for example, a Ni—Co material that is a ferromagnetic material, and has directivity with respect to a magnetic field from the arrangement pattern of the magnetoresistors, and the element surface as a detection surface The magnetic field of the magnet 4 in the direction parallel to the element surface is detected. And the magnetoresistive element 2 outputs the voltage according to the detected magnetic field. The IC package 3 detects the position of the magnet 4 based on the output voltage from the magnetoresistive element 2.

図1(b)にも併せ示すように、磁石4において磁気抵抗素子2と対向する面には、相対移動方向Fと平行な平行面4aと、その平行面4aに対して傾斜する傾斜面4bとが設けられている。すなわち、磁石4のN極側端面は、三面構成となっている。平行面4aは、磁石4の移動方向における中央箇所に設けられ、傾斜面4bは、その平行面4aの両端部位にそれぞれ設けられている。各傾斜面4bは、端部に向かうに従って磁気抵抗素子2から離間する傾斜面となっており、本実施形態においては平行面4aに対して30゜〜45゜程度の傾斜角に設定されている。このため、図1(b)に模式的に示すように、各傾斜面4bを通る磁束の方向は、平行面4aを通る磁束の方向と比べて、前記相対移動方向Fに対して積極的に傾斜することとなる。すなわち、磁石4が直方体状に形成されている場合に比べて、磁石4周辺全体の磁束の方向は、より放射状をなすこととなる。なお、本実施形態において平行面4a及び各傾斜面4bは、磁石4において磁気抵抗素子2と対向する面を相対移動方向Fに三等分するようにそれぞれ設けられている。   As also shown in FIG. 1B, on the surface of the magnet 4 facing the magnetoresistive element 2, a parallel surface 4a parallel to the relative movement direction F and an inclined surface 4b inclined with respect to the parallel surface 4a. And are provided. That is, the N pole side end surface of the magnet 4 has a three-surface configuration. The parallel surface 4a is provided at a central portion in the moving direction of the magnet 4, and the inclined surfaces 4b are provided at both end portions of the parallel surface 4a. Each inclined surface 4b is an inclined surface that is separated from the magnetoresistive element 2 toward the end, and in this embodiment, is set to an inclination angle of about 30 ° to 45 ° with respect to the parallel surface 4a. . For this reason, as schematically shown in FIG. 1B, the direction of the magnetic flux passing through each inclined surface 4b is more positive with respect to the relative movement direction F than the direction of the magnetic flux passing through the parallel surface 4a. It will be inclined. That is, compared to the case where the magnet 4 is formed in a rectangular parallelepiped shape, the direction of the magnetic flux around the entire magnet 4 is more radial. In the present embodiment, the parallel surface 4a and each inclined surface 4b are provided so that the surface of the magnet 4 facing the magnetoresistive element 2 is equally divided into three in the relative movement direction F.

こうした磁石4は、図1(a)に示すストローク範囲L内で移動可能となっており、そのストローク範囲L内において半分移動した際に、前記磁気抵抗素子2の中心線Oに該磁石4の移動方向における中央箇所が位置するようになっている。なお、本実施形態において磁石4の移動方向における全長は11mmに設定され、該磁石4の最大移動距離(ストローク範囲L)は16mmに設定されている。また、磁気抵抗素子2からの出力電圧値は、磁石4の一端(例えば右端)近辺が該中心線O上に位置する際に最大値となり、該磁石の他端(例えば左端)近辺が該中心線O上に位置する際に最小値となるように設定されている。   Such a magnet 4 is movable within the stroke range L shown in FIG. 1A, and when the magnet 4 moves halfway within the stroke range L, the magnet 4 is placed on the center line O of the magnetoresistive element 2. The central part in the moving direction is located. In this embodiment, the total length in the moving direction of the magnet 4 is set to 11 mm, and the maximum moving distance (stroke range L) of the magnet 4 is set to 16 mm. The output voltage value from the magnetoresistive element 2 becomes a maximum when the vicinity of one end (for example, the right end) of the magnet 4 is positioned on the center line O, and the vicinity of the other end (for example, the left end) of the magnet is the center. It is set to have a minimum value when positioned on the line O.

このため、磁気抵抗素子2と磁石4との位置関係は、外乱磁界が存在しない状態にあっては、図2に示すように、磁気抵抗素子2の中心線O上に磁石4の移動方向における中央箇所が位置した際に、該磁気抵抗素子2からの出力電圧値が中間電位(ここでは「電圧値=0(ゼロ電位)」となる。なお、図2(a)においては、出力電圧値が中間電位となる磁石4の位置を「0」(基準位置)として示している。   For this reason, the positional relationship between the magnetoresistive element 2 and the magnet 4 is such that, in the absence of a disturbing magnetic field, the moving direction of the magnet 4 on the center line O of the magnetoresistive element 2 as shown in FIG. When the central portion is located, the output voltage value from the magnetoresistive element 2 becomes an intermediate potential (here, “voltage value = 0 (zero potential)”. In FIG. 2A, the output voltage value is The position of the magnet 4 at which is an intermediate potential is indicated as “0” (reference position).

また、磁石4周辺の磁束の方向は積極的に放射状をなしているため、磁気抵抗素子2からの出力電圧値は、磁石4の位置変化に対して、図2(a)に示すようにほぼ正弦波形となるように変化する。すなわち、本実施形態の出力電圧特性は、同図に示す前記従来の出力電圧特性と比較すると明らかなように、中間電位付近において、磁石4の位置に対する出力電圧の変化が大きくなる。よって、該中間電位付近においてもICパッケージ3は、微少な磁石4の位置変化を検出しやすくなる。しかも、出力電圧が最大値となる磁石4の位置(ここでは「−5mm」の位置)から最小値となる磁石4の位置(ここでは「5mm」の位置)までのストローク量は10mmとなる。これに対し、従来構成においては、出力電圧が最大値となる磁石54の位置(ここでは「−6mm」の位置)から最小値となる磁石54の位置(ここでは「6mm」の位置)までのストローク量は12mmとなる。すなわち、磁石4及び前記従来の磁石54の相対移動方向Fにおける全長及び磁力が同一の場合であっても、出力電圧が最大値から最小値となるまでに必要なストローク量は、本実施形態の方が短くなる。なお、出力電圧の最大値及び最小値の値にも、大きな変化は生じない。   Further, since the direction of the magnetic flux around the magnet 4 is positively radial, the output voltage value from the magnetoresistive element 2 is almost equal to the change in the position of the magnet 4 as shown in FIG. It changes to be a sine waveform. That is, the output voltage characteristic of this embodiment has a large change in the output voltage with respect to the position of the magnet 4 near the intermediate potential, as is apparent from the conventional output voltage characteristic shown in FIG. Therefore, the IC package 3 can easily detect a slight change in the position of the magnet 4 even in the vicinity of the intermediate potential. In addition, the stroke amount from the position of the magnet 4 at which the output voltage reaches the maximum value (here, the position of “−5 mm”) to the position of the magnet 4 at which the output voltage reaches the minimum value (here, the position of “5 mm”) is 10 mm. On the other hand, in the conventional configuration, the position from the position of the magnet 54 where the output voltage becomes the maximum value (here, “−6 mm” position) to the position of the magnet 54 where the output voltage becomes the minimum value (here, the position “6 mm”). The stroke amount is 12 mm. That is, even when the total length and the magnetic force in the relative movement direction F of the magnet 4 and the conventional magnet 54 are the same, the stroke amount required until the output voltage becomes the minimum value from the maximum value is the same as that of this embodiment. Shorter. Note that there is no significant change in the maximum value and the minimum value of the output voltage.

さらに、図2(b)に示すように、磁石4の周辺の磁界に外乱磁界が加わった場合には、中間電位となる磁石4の位置が変動するものの、従来構成と比較するとその変動が小さくなる。同様に、各位置における電圧変動も従来構成と比較すると小さくなる。よって、外乱磁界に起因する位置検出誤差も小さくなる。   Further, as shown in FIG. 2B, when a disturbance magnetic field is applied to the magnetic field around the magnet 4, the position of the magnet 4 at the intermediate potential varies, but the variation is small compared to the conventional configuration. Become. Similarly, the voltage fluctuation at each position is also smaller than in the conventional configuration. Therefore, the position detection error caused by the disturbance magnetic field is also reduced.

したがって、本実施形態によれば以下のような効果を得ることができる。
(1)磁石4は、両端部位において磁束の方向が相対移動方向Fに対して積極的に傾斜するような形状に形成されているため、図1(b)に示したように、該磁石4の中央部位付近において磁束の方向が一方向に集中しにくくなり、相対移動方向Fに沿って磁束の方向が大きく変化しやすくなる。それゆえ、磁石4に対する磁気抵抗素子2の移動量に対し、該磁気抵抗素子2によって検出される磁界の向きも大きく変化しやすくなる。よって、磁気抵抗素子2は、微少な磁石4の位置変化を、より高精度に検出することができる。しかも、磁石4と磁気抵抗素子2との位置変化に対する磁界の向きの変化が大きくなることから、外乱磁界が加わった場合においても影響を受けにくくなり、磁気抵抗素子2は、磁石4の位置を高精度に検出することができる。
Therefore, according to the present embodiment, the following effects can be obtained.
(1) Since the magnet 4 is formed in such a shape that the direction of the magnetic flux is positively inclined with respect to the relative movement direction F at both end portions, as shown in FIG. The direction of the magnetic flux is less likely to concentrate in one direction in the vicinity of the central portion of the magnetic flux, and the direction of the magnetic flux is likely to change greatly along the relative movement direction F. Therefore, the direction of the magnetic field detected by the magnetoresistive element 2 is likely to change greatly with respect to the amount of movement of the magnetoresistive element 2 relative to the magnet 4. Therefore, the magnetoresistive element 2 can detect a slight positional change of the magnet 4 with higher accuracy. In addition, since the change in the direction of the magnetic field with respect to the change in the position of the magnet 4 and the magnetoresistive element 2 becomes large, the magnetic resistance element 2 is less affected even when a disturbance magnetic field is applied. It can be detected with high accuracy.

(2)磁石4において磁気抵抗素子2と対向する面の両端部位に傾斜面4bが設けられたことにより、磁束の方向が積極的に変化する。すなわち、磁石4において磁気抵抗素子2と対向する面に傾斜面4bを設けることで磁束の方向を大きく変化させることができる。このため、磁石4に対する磁気抵抗素子2の移動量に対し、該磁気抵抗素子2によって検出される磁界の向きを大きく変化させることができる。   (2) Since the inclined surfaces 4b are provided at both end portions of the surface of the magnet 4 facing the magnetoresistive element 2, the direction of the magnetic flux is positively changed. That is, by providing the inclined surface 4b on the surface of the magnet 4 facing the magnetoresistive element 2, the direction of the magnetic flux can be greatly changed. For this reason, the direction of the magnetic field detected by the magnetoresistive element 2 can be greatly changed with respect to the amount of movement of the magnetoresistive element 2 relative to the magnet 4.

(3)磁気抵抗素子2の出力電圧が最大値から最小値となるまでに必要なストローク量を、磁石4を直方体状に構成した従来の位置検出装置に比べて短くすることができる。
(4)位置検出装置1をスイッチとして用い、ICパッケージ3が、磁気抵抗素子2の出力電圧が予め設定されたON電圧を超えた際にON状態、予め設定されたOFF電圧を下回った際にOFF状態と認識する場合においても、優れた作用効果を奏し得ることができる。詳しくは、例えば図2(a)に示すように、ON電圧を「10mV」、OFF電圧を「−10mV」に設定した場合、本実施形態においてICパッケージ3は、磁石4が「約−2mm」の位置以下となった際にON状態と判断し、磁石4が「約1.5mm」の位置以上となった際にOFF状態と判断することとなる。これに対し、前記従来の構成においてICパッケージ53は、磁石54が「約−3.5mm」の位置以下となった際にON状態と判断し、磁石54が「約3.5mm」の位置以上となった際にOFF状態と判断することとなる。このため、ICパッケージ3がON状態ともOFF状態とも判断しない不定領域となるストローク量は、同図にS1,S2で示すように、従来構成よりも本実施形態の方が短くなる。すなわち、本実施形態では、該不定領域となるストローク量を短くすることができる。また、図2(b)に示すように、外乱磁界が加わった場合においても、ON状態及びOFF状態と判断する磁石4の位置変動が、従来構成と比べて小さくなるため、ICパッケージ3がON状態及びOFF状態を誤判断してしまうのを抑制することができる。
(3) The stroke amount required until the output voltage of the magnetoresistive element 2 becomes the minimum value can be shortened as compared with the conventional position detection device in which the magnet 4 is configured in a rectangular parallelepiped shape.
(4) When the position detection device 1 is used as a switch and the IC package 3 is in an ON state when the output voltage of the magnetoresistive element 2 exceeds a preset ON voltage, and when the IC package 3 falls below a preset OFF voltage Even in the case of recognizing the OFF state, an excellent effect can be obtained. Specifically, for example, as shown in FIG. 2A, when the ON voltage is set to “10 mV” and the OFF voltage is set to “−10 mV”, in this embodiment, the IC package 3 has the magnet 4 of “about −2 mm”. When the magnet 4 becomes equal to or greater than the position of “about 1.5 mm”, it is determined to be in the OFF state. On the other hand, in the conventional configuration, the IC package 53 is determined to be in the ON state when the magnet 54 is below the position of “about −3.5 mm”, and the magnet 54 is above the position of “about 3.5 mm”. When it becomes, it will be judged as an OFF state. For this reason, as shown by S1 and S2 in the figure, the stroke amount in the present embodiment is shorter than that in the conventional configuration, as shown by S1 and S2 in the figure, where the IC package 3 is not determined to be in the ON state or the OFF state. That is, in this embodiment, the stroke amount that becomes the indefinite region can be shortened. Further, as shown in FIG. 2B, even when a disturbance magnetic field is applied, the positional variation of the magnet 4 that is determined to be in the ON state and the OFF state is smaller than that in the conventional configuration, so that the IC package 3 is turned on. It is possible to suppress erroneous determination of the state and the OFF state.

なお、本発明の実施形態は以下のように変更してもよい。
・ 磁石の形状は前記実施形態における磁石4の形状に限定されず、例えば図3(a)〜(c)に示すような形状に変更されてもよい。
In addition, you may change embodiment of this invention as follows.
-The shape of a magnet is not limited to the shape of the magnet 4 in the said embodiment, For example, you may change into a shape as shown to Fig.3 (a)-(c).

すなわち、図3(a)に示す磁石11のように、磁気抵抗素子2と対向する面全体に、中央部位から両端部位に向かって磁気抵抗素子2からそれぞれ離間するような傾斜面11a,11bを設けた形状としてもよい。   That is, like the magnet 11 shown in FIG. 3A, inclined surfaces 11a and 11b are provided on the entire surface facing the magnetoresistive element 2 so as to be separated from the magnetoresistive element 2 from the central portion toward both end portions. It is good also as the provided shape.

また、図3(b)に示す磁石12のように、磁気抵抗素子2と対向する面の中央部位に前記相対移動方向Fと平行な第1平行面12aを設けるとともに、その両端部位に、それぞれ第1平行面12aよりも磁気抵抗素子2から離間する第2平行面12bを設けた形状としてもよい。すなわちこの場合、略「凸」字状をなした形状となるように磁石12を構成してもよい。   Further, like the magnet 12 shown in FIG. 3B, the first parallel surface 12a parallel to the relative movement direction F is provided at the central portion of the surface facing the magnetoresistive element 2, and both end portions thereof are respectively provided. It is good also as a shape which provided the 2nd parallel surface 12b spaced apart from the magnetoresistive element 2 rather than the 1st parallel surface 12a. That is, in this case, the magnet 12 may be configured to have a substantially “convex” shape.

さらに、図3(c)に示す磁石13のように全体を湾曲させた形状(ここでは円弧形状)とし、磁気抵抗素子2と対向する面13aを、中央部位から両端部位に向かうに従って磁気抵抗素子2から離間するような形状としてもよい。   Further, the entire surface is curved as in the case of the magnet 13 shown in FIG. 3C (here, the arc shape), and the surface 13a facing the magnetoresistive element 2 is moved from the central portion toward both end portions. It is good also as a shape which leaves | separates from 2.

これら変更態様においても、各磁石11〜13の相対移動方向Fにおける両端部位の磁束の方向が、該相対移動方向に対して積極的に傾斜する方向を向くように変化するため、前記実施形態と同等の作用効果を奏し得ることができる。   Also in these modified modes, the direction of the magnetic flux at both end portions in the relative movement direction F of each of the magnets 11 to 13 changes so as to be directed in a direction that is positively inclined with respect to the relative movement direction. Equivalent effects can be achieved.

・ 前記実施形態では、ICパッケージ3がバックルスイッチの筐体などに固定され、磁石4が相対移動方向Fに往復動可能に構成されているが、磁石4を固定し、ICパッケージ3が往復動可能に構成されてもよい。   In the embodiment, the IC package 3 is fixed to the casing of the buckle switch and the magnet 4 is configured to reciprocate in the relative movement direction F. However, the magnet 4 is fixed and the IC package 3 reciprocates. It may be configured to be possible.

・ 磁石4の磁極を反転させてもよい。すなわち、磁石4における磁気抵抗素子2側をS極としてもよい。
次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施形態によって把握される技術的思想を以下に列挙する。
-The magnetic pole of the magnet 4 may be reversed. That is, the magnetoresistive element 2 side of the magnet 4 may be the S pole.
Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiment described above are listed below.

(1) 置検出装置において、前記磁石において前記磁気検知手段と対向する面の中央部位には、着磁方向と直交する直交面が設けられ、前記傾斜面は、その直交面の両端にそれぞれ設けられていること。なお、前記実施形態において「直交面」は平行面4aに相当する。 (1) position in置検sensing device, wherein the central portion of said magnetic detection means opposed to the surface in the magnet, the orthogonal plane is provided perpendicular to the magnetizing direction, said inclined surface at both ends of its orthogonal plane Be provided. In the embodiment, the “orthogonal plane” corresponds to the parallel plane 4a.

(2) 置検出装置において、前記傾斜面は、前記磁石において前記磁気検知手段と対向する面の中央部位から両端部位に向かう全面にそれぞれ設けられていること。 (2) In the position置検sensing device, the inclined surface may be respectively provided on the entire surface toward both ends portions from the central portion of said magnetic detection means opposed to the surface in the magnet.

(3) 置検出装置において、前記磁石において前記磁気検知手段と対向する面には、中央部位に前記相対移動方向と平行な第1平行面が設けられ、その両端部位にそれぞれ該第1平行面よりも前記磁気検知手段から離間する第2平行面がそれぞれ設けられていること。 (3) position in置検out apparatus, the surface facing the magnetic detection means in said magnet, said the central portion relative movement direction parallel to the first parallel surface is provided, respectively first parallel to both ends site Second parallel surfaces that are further away from the magnetic detection means than surfaces are provided.

(4) 置検出装置において、前記磁石において前記磁気検知手段と対向する面は、中央部位から両端部位に向かうに従って前記磁気検知手段から離間する湾曲面となっていること。 (4) In the position置検out apparatus, the surface facing said magnetic detection means in the magnet, it has become a curved surface away from said magnetic detection means toward both ends portions from the central portion.

(5) 置検出装置において、前記磁気検知手段及び前記磁石は、前記相対移動範囲内において、一端側近辺で前記磁気検知手段が最大値を出力し、他端側近辺で該磁気検知手段が最小値を出力し、中間位置で該磁気検知手段がそれらの中間値を出力するようにそれぞれ配置されていること。 (5) position置検sensing device, the magnetic detection means and the magnet, within the relative movement range, and outputs the maximum value of the magnetic detection means at one end around, is the magnetic detecting means in the other end near The minimum value is output, and the magnetic detecting means is arranged so as to output the intermediate value at an intermediate position.

(a)は本発明の一実施形態の位置検出装置の構成を模式的に示す図、(b)は同実施形態の磁石の磁界を模式的に示す図。(A) is a figure which shows typically the structure of the position detection apparatus of one Embodiment of this invention, (b) is a figure which shows typically the magnetic field of the magnet of the embodiment. (a)は外乱磁界が加わっていない状態における磁気検知手段の出力特性を従来構成における出力特性と比較して示すグラフ、(b)は外乱磁界が加わった状態における磁気検知手段の出力特性を従来構成における出力特性と比較して示すグラフ。(A) is a graph showing the output characteristics of the magnetic detection means in a state where no disturbance magnetic field is applied in comparison with the output characteristics in the conventional configuration, and (b) shows the output characteristics of the magnetic detection means in the state where a disturbance magnetic field is applied. The graph shown compared with the output characteristic in a structure. (a)〜(c)は、他の実施形態の磁石と、その磁石の磁界を模式的に示す図。(A)-(c) is a figure which shows typically the magnet of other embodiment and the magnetic field of the magnet. 従来の位置検出装置の構成を模式的に示す図。The figure which shows the structure of the conventional position detection apparatus typically. (a)は従来の位置検出装置において、外乱磁界が加わっていない状態における磁気検知手段の出力特性を示すグラフ、(b)は外乱磁界が加わった状態における磁気検知手段の出力特性を示すグラフ。(A) is a graph which shows the output characteristic of the magnetic detection means in the state which the disturbance magnetic field is not added in the conventional position detection apparatus, (b) is a graph which shows the output characteristic of the magnetic detection means in the state where the disturbance magnetic field is added.

符号の説明Explanation of symbols

1…位置検出装置、2…磁気検知手段としての磁気抵抗素子、4,11〜13…磁石、4b,11a,11b…傾斜面、12a…第1平行面、12b…第2平行面、13a…面DESCRIPTION OF SYMBOLS 1 ... Position detection apparatus, 2 ... Magnetoresistive element as a magnetic detection means, 4, 11-13 ... Magnet, 4b, 11a, 11b ... Inclined surface , 12a ... 1st parallel surface, 12b ... 2nd parallel surface, 13a ... Plane .

Claims (1)

磁石と、その磁石の磁界の向きに基づいて該磁石との相対位置を検出する磁気検知手段とを備えた位置検出装置であって、
前記磁気検知手段は、前記磁石の着磁方向に離間して設けられ、
該磁石及び該磁気検知手段は、該磁石の着磁方向と直交する方向に相対移動可能に設けられ、
前記磁石は、前記相対移動方向における両端部位の磁束の方向が、該相対移動方向に対して積極的に傾斜する方向を向くように変化する形状をなし、
前記磁石において前記磁気検知手段と対向する面には、前記両端部位に向かって前記磁気検知手段から離間する傾斜面が設けられている、又は、前記磁石において前記磁気検知手段と対向する面には、中央部位に前記相対移動方向と平行な第1平行面が設けられ、その両端部位にそれぞれ該第1平行面よりも前記磁気検知手段から離間する第2平行面がそれぞれ設けられていることを特徴とする位置検出装置。
A position detection device comprising a magnet and magnetic detection means for detecting a relative position of the magnet based on the direction of the magnetic field of the magnet,
The magnetic detection means is provided apart in the magnetizing direction of the magnet,
The magnet and the magnetic detection means are provided so as to be relatively movable in a direction orthogonal to the magnetization direction of the magnet,
The magnet, the direction of the magnetic flux across sites in the relative movement direction, to name a shape that varies so as to face the direction which is inclined positively relative to said relative movement direction,
The surface of the magnet that faces the magnetic detection means is provided with an inclined surface that is separated from the magnetic detection means toward the both end portions, or the surface of the magnet that faces the magnetic detection means. The first parallel surface parallel to the relative movement direction is provided at the central portion, and the second parallel surfaces that are separated from the magnetic detection means than the first parallel surface are provided at both end portions, respectively. A position detection device.
JP2005323811A 2005-11-08 2005-11-08 Position detection device Expired - Fee Related JP4787601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323811A JP4787601B2 (en) 2005-11-08 2005-11-08 Position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323811A JP4787601B2 (en) 2005-11-08 2005-11-08 Position detection device

Publications (2)

Publication Number Publication Date
JP2007132710A JP2007132710A (en) 2007-05-31
JP4787601B2 true JP4787601B2 (en) 2011-10-05

Family

ID=38154509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323811A Expired - Fee Related JP4787601B2 (en) 2005-11-08 2005-11-08 Position detection device

Country Status (1)

Country Link
JP (1) JP4787601B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296882A (en) * 2007-06-04 2008-12-11 Tokai Rika Co Ltd Control position detection device and shift device
JP2009002827A (en) * 2007-06-22 2009-01-08 Mitsubishi Electric Corp Rotation angle detection device
JP4985730B2 (en) 2009-01-29 2012-07-25 株式会社デンソー Stroke sensor and rotation angle sensor
DE102009055104A1 (en) * 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Magnetic field sensor arrangement for path detection on moving components
JP5408508B2 (en) 2011-11-01 2014-02-05 株式会社デンソー Position detection device
JP5875947B2 (en) * 2012-06-22 2016-03-02 株式会社東海理化電機製作所 Magnetic sensor device
KR102042369B1 (en) * 2015-10-28 2019-11-07 알프스 알파인 가부시키가이샤 Position detector
WO2023058356A1 (en) * 2021-10-04 2023-04-13 株式会社村田製作所 Position detecting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213992A (en) * 2001-01-23 2002-07-31 Sumitomo Metal Mining Co Ltd Noncontact magnetic measuring instrument
JP2003084007A (en) * 2001-09-14 2003-03-19 Takechi Kogyo Gomu Co Ltd Rotation direction detecting device

Also Published As

Publication number Publication date
JP2007132710A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4787601B2 (en) Position detection device
US9644994B2 (en) Magnetic sensor
US6160395A (en) Non-contact position sensor
CN108351222B (en) Position detecting device
JP6928782B2 (en) Magnetic position detector
JP6300908B2 (en) Magnetic sensor device
JP5079846B2 (en) Position detection device
EP2117026A1 (en) Magnetic sensor module and piston position detecting device
JP2012208112A (en) Position sensor, magnet member and manufacturing method for magnet member
US7573361B2 (en) Solenoid actuator and biaxial actuator
JP4484033B2 (en) Moving body detection device
JP4639216B2 (en) Magnetic sensor
JP5409972B2 (en) Position detection device
JP5936126B2 (en) Shift lever device using magnetic detection type switch
JP5875947B2 (en) Magnetic sensor device
JP7186481B2 (en) Magnetic sensor device
JP4506960B2 (en) Moving body position detection device
JP2021043003A (en) Magnetic position detector
JP4863167B2 (en) Magnet structure and position detection apparatus using the same
JP5529064B2 (en) Non-contact switch and magnetic sensor
EP2086113A2 (en) Swing type switching device including magnet and magnetoresistive element
JP2008192439A (en) Longitudinal and lateral detecting sensor
JP2019128192A (en) Position detector
JP2003257738A (en) Permanent magnet, its manufacturing method, and position sensor
JP5032391B2 (en) Non-contact switch device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees