JP2002213992A - Noncontact magnetic measuring instrument - Google Patents

Noncontact magnetic measuring instrument

Info

Publication number
JP2002213992A
JP2002213992A JP2001014410A JP2001014410A JP2002213992A JP 2002213992 A JP2002213992 A JP 2002213992A JP 2001014410 A JP2001014410 A JP 2001014410A JP 2001014410 A JP2001014410 A JP 2001014410A JP 2002213992 A JP2002213992 A JP 2002213992A
Authority
JP
Japan
Prior art keywords
magnetic field
detecting element
field detecting
measuring
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001014410A
Other languages
Japanese (ja)
Inventor
Atsushi Kawamoto
淳 川本
Yoshihiro Tsuboi
義博 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001014410A priority Critical patent/JP2002213992A/en
Publication of JP2002213992A publication Critical patent/JP2002213992A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a noncontact magnetic measuring instrument capable of compensating temperature over a wide temperature range and reduced in manufacturing cost. SOLUTION: The noncontact magnetic measuring instrument 10 is provided with a permanent magnet f for measurement and a magnetic field detecting element d for measurement, which are mutually relatively displaced similar to prior arts, and also has a magnetic field detecting element (a) for temperature compensation for outputting an electrical signal corresponding to an external magnetic field, a permanent magnet e for temperature compensation provided adjacent to the magnetic field detecting element (a), an amplifier b in which the magnetic field detecting element (a) for temperature compensation and a reference voltage Vref are connected to an input side and the magnetic field detecting element d for measurement is connected to an output side, and which amplifies an input signal and supplies a voltage to the magnetic field detecting element d for measurement, and a temperature compensation circuit which constitutes a negative feedback by using the output amplified by the amplifier b as a supply power for the magnetic field detecting element (a) for temperature compensation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ホール素子、磁気
抵抗素子等の磁界検出素子が組込まれた非接触磁気式ポ
テンショメータ、エンコーダ等の非接触磁気式計測装置
に係り、特に、広い温度範囲に亘り温度補償可能な(す
なわち、温度誤差が解消された)非接触磁気式計測装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact magnetic measuring device such as a non-contact magnetic potentiometer and an encoder incorporating a magnetic field detecting element such as a Hall element and a magneto-resistive element, and more particularly to a non-contact magnetic measuring device in a wide temperature range. The present invention relates to a non-contact magnetic measurement device capable of compensating for temperature (that is, eliminating a temperature error).

【0002】[0002]

【従来の技術】磁界強度を検出する簡便で安価な方法と
して、従来、ホール素子や磁気抵抗素子を用いる方法が
広く利用されている。この方法は、上記ホール素子が磁
界の強さに応じて電圧を発生させる機能、および、磁気
抵抗素子が磁界の強さに応じてその電気抵抗を変化させ
る機能を用いたものである。
2. Description of the Related Art As a simple and inexpensive method for detecting a magnetic field intensity, a method using a Hall element or a magnetoresistive element has been widely used. This method uses a function in which the Hall element generates a voltage according to the strength of the magnetic field, and a function in which the magnetoresistive element changes the electric resistance according to the strength of the magnetic field.

【0003】そして、ホール素子や磁気抵抗素子のこれ
等機能を利用し、永久磁石と組合わせることで、回転
角、距離等の変化量、あるいは、回転速度、移動速度等
の変化速度を非接触で計測する非接触磁気式ポテンショ
メータやエンコーダ等の非接触磁気式計測装置を構成さ
せることができる。
[0003] By utilizing these functions of a Hall element or a magnetoresistive element and combining them with a permanent magnet, the amount of change in rotation angle, distance, or the like, or the rate of change in rotation speed, moving speed, or the like can be measured in a non-contact manner. A non-contact magnetic measuring device, such as a non-contact magnetic potentiometer or an encoder, which performs measurement by using the method described above, can be configured.

【0004】図3〜図6はこれ等非接触磁気式計測装置
の概略構成を示すものである。
FIGS. 3 to 6 show the schematic structure of these non-contact magnetic measuring devices.

【0005】すなわち、ロータリー型非接触磁気式ポテ
ンショメータは、図3に示すように、ハンドル、アクセ
ル(図示せず)等計測対象における回転軸の角度変位が
伝達される回転棒1と、この回転棒1に装着され一方の
半円部がN極、他方の半円部がS極である円盤形状の計
測用永久磁石2と、この計測用永久磁石2の近傍に配置
されたホール素子、磁気抵抗素子等の計測用磁界検出素
子3とでその主要部が構成されている。
That is, as shown in FIG. 3, a rotary type non-contact magnetic potentiometer comprises a rotary rod 1 to which angular displacement of a rotary shaft in a measuring object such as a steering wheel, an accelerator (not shown) is transmitted, and this rotary rod. 1 is a disk-shaped permanent magnet for measurement 2 in which one semicircular portion is an N pole and the other semicircular portion is an S pole, a Hall element disposed near the permanent magnet 2 for measurement, and a magnetoresistance. The main part is constituted by the measurement magnetic field detecting element 3 such as an element.

【0006】そして、計測対象における回転軸の角度変
位が伝達される回転棒1の回転に伴い上記計測用磁界検
出素子3と計測用永久磁石2との位置関係が変化し、か
つ、この位置関係の変化に起因して計測用磁界検出素子
3により検出される磁界強度も変化するため、上記計測
用磁界検出素子3からの出力信号に基づきハンドル、ア
クセル等計測対象の変化量(回転角)、変化速度(回転
速度)の計測が可能となる。
The positional relationship between the measuring magnetic field detecting element 3 and the measuring permanent magnet 2 changes with the rotation of the rotating rod 1 to which the angular displacement of the rotating shaft of the object to be measured is transmitted. Since the magnetic field intensity detected by the measurement magnetic field detection element 3 also changes due to the change in the measurement, the change amount (rotation angle) of the measurement target such as the steering wheel and the accelerator, based on the output signal from the measurement magnetic field detection element 3, The change speed (rotation speed) can be measured.

【0007】尚、円盤形状の計測用永久磁石2に代え
て、図4に示すようにその厚み寸法が回転方向に亘り連
続的に変化する計測用永久磁石4が組込まれたロータリ
ー型非接触磁気式ポテンショメータも知られている。
[0007] Instead of the disk-shaped permanent magnet for measurement 2, as shown in FIG. 4, a rotary type non-contact magnet in which a permanent magnet for measurement 4 whose thickness dimension continuously changes in the rotational direction is incorporated. Type potentiometers are also known.

【0008】また、直線型非接触磁気式ポテンショメー
タは、一点鎖線で示す方向へ直線変位する計測対象(図
示せず)に取付けられたホール素子、磁気抵抗素子等の
計測用磁界検出素子5と、計測対象の変位方向に亘り配
置されかつその厚み寸法が連続的に変化する帯状の計測
用永久磁石6とでその主要部が構成されている(図5参
照)。
Further, the linear non-contact magnetic potentiometer includes a measuring magnetic field detecting element 5 such as a Hall element and a magnetoresistive element attached to a measuring object (not shown) which linearly displaces in a direction indicated by a dashed line. The main part thereof is constituted by a belt-shaped measurement permanent magnet 6 which is arranged in the displacement direction of the measurement object and whose thickness dimension continuously changes (see FIG. 5).

【0009】そして、この直線型非接触磁気式ポテンシ
ョメータにおいても、計測対象の変位に伴い上記計測用
磁界検出素子5と計測用永久磁石6との間の距離(d
1、d2)が変化し、かつ、この変化に起因して計測用
磁界検出素子5により検出される磁界強度も変化するた
め、上記計測用磁界検出素子5からの出力信号に基づき
計測対象の変化量(距離)、変化速度(移動速度)の計
測が可能となる。
In this linear non-contact magnetic potentiometer, the distance (d) between the magnetic field detecting element 5 for measurement and the permanent magnet 6 for measurement is also changed with the displacement of the object to be measured.
1, d2) changes, and the magnetic field intensity detected by the magnetic field detecting element 5 for measurement also changes due to this change. It is possible to measure the amount (distance) and the changing speed (moving speed).

【0010】尚、帯状の計測用永久磁石6に代えて、図
6に示すようにその厚み寸法は一定で幅寸法が長さ方向
に亘り連続的に変化する計測用永久磁石7を組込んだ直
線型非接触磁気式ポテンショメータも知られている。
In place of the strip-shaped permanent magnet for measurement 6, a permanent magnet for measurement 7 whose thickness is constant and whose width continuously changes in the length direction is incorporated as shown in FIG. Linear non-contact magnetic potentiometers are also known.

【0011】[0011]

【発明が解決しようとする課題】ところで、これ等非接
触磁気式ポテンショメータ、エンコーダ等の非接触磁気
式計測装置は、接触型の計測装置と比較して、非接触で
あるために動作寿命が長く、回転トルクあるいはフリク
ションも小さく、高速応答性に優れ、摺動アークの発生
がなく防爆性がある等の長所を有しているが、その反
面、以下のような欠点も有していた。
The non-contact magnetic measuring devices such as non-contact magnetic potentiometers and encoders have a longer operating life than non-contact measuring devices because they are non-contact. It has advantages such as low rotation torque or friction, excellent high-speed response, no sliding arc and explosion-proof properties, but it also has the following disadvantages.

【0012】すなわち、上記ホール素子、磁気抵抗素子
等の計測用磁界検出素子及び計測用永久磁石は大きな温
度依存性を有し、これに起因して計測用磁界検出素子や
計測用永久磁石が組込まれた非接触磁気式ポテンショメ
ータ、エンコーダ等の非接触磁気式計測装置も温度依存
性を有するため、計測精度、すなわち、計測対象の角
度、距離に対する電気信号出力の直線性が劣る問題点を
有していた。
That is, the magnetic field detecting element for measurement such as the Hall element and the magnetoresistive element and the permanent magnet for measurement have a large temperature dependency, and due to this, the magnetic field detecting element for measurement and the permanent magnet for measuring are incorporated. Non-contact magnetic potentiometers, non-contact magnetic measuring devices such as encoders also have temperature dependence, so measurement accuracy, that is, there is a problem that the linearity of the electrical signal output with respect to the angle and distance of the measurement target is inferior. I was

【0013】尚、非接触磁気式計測装置の温度特性を補
正する方法として、従来、サーミスターを用いる方法、
計測用磁界検出素子を複数用いる方法等が提案されかつ
実用化されているが、これ等の方法では広い温度範囲に
亘り温度補償をすることは困難で、例えば、ハンドル、
アクセル等が設置される自動車内の想定される温度範囲
(例えばマイナス40℃からプラス125℃)に亘り、
温度依存性を含めた直線性の誤差を±1%以内にするこ
とは困難であった。
As a method for correcting the temperature characteristics of the non-contact magnetic measuring device, a method using a thermistor,
Methods using a plurality of measurement magnetic field detection elements and the like have been proposed and put into practical use, but it is difficult to perform temperature compensation over a wide temperature range with these methods.
Over the assumed temperature range (for example, minus 40 degrees Celsius to plus 125 degrees Celsius) in the car where the accelerator etc. is installed,
It was difficult to make the error of linearity including temperature dependency within ± 1%.

【0014】また、特願平11−267782号明細書
では、互いの位置関係が固定された二つの計測用ホール
素子31、32を計測用永久磁石2の磁界強度が異なる
位置に設け、各計測用ホール素子31、32からの出力
電圧の商を出力信号とすることで優れた温度補償が図ら
れた非接触磁気式計測装置(図7参照)を開示している
が、商を計算する回路(例えば、割算器やマイクロコン
ピュータ等)が高価であるため実用上の障害となってい
た。
In the specification of Japanese Patent Application No. 11-2677782, two Hall elements 31 and 32 for measurement whose positional relationship is fixed are provided at positions where the magnetic field strength of the permanent magnet 2 for measurement is different. Discloses a non-contact magnetic measurement device (see FIG. 7) in which excellent temperature compensation is achieved by using a quotient of output voltages from the Hall elements 31 and 32 for output as an output signal, but a circuit for calculating the quotient. The expensive (for example, a divider or a microcomputer) has been a practical obstacle.

【0015】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、広い温度範囲に亘
り温度補償が可能で(すなわち、温度誤差が解消され
た)かつ製造コストの低減も図れた非接触磁気式計測装
置を提供することにある。
The present invention has been made in view of such problems, and it is an object of the present invention that temperature compensation can be performed over a wide temperature range (that is, temperature errors are eliminated) and manufacturing cost is reduced. It is another object of the present invention to provide a non-contact magnetic measuring device capable of reducing the amount of noise.

【0016】[0016]

【課題を解決するための手段】すなわち、請求項1に係
る発明は、互いに相対変位する計測用磁石体と計測用磁
界検出素子を備え、かつ、その一方が計測対象に取付け
られると共に、上記計測用磁界検出素子により検出され
た計測用磁石体の磁界強度に基づく出力信号により上記
計測対象の変化量若しくは変化速度を計測する非接触磁
気式計測装置を前提とし、外部磁界に対応した電気信号
を出力する温度補償用磁界検出素子と、この磁界検出素
子の近傍に設けられた温度補償用永久磁石と、入力側に
上記温度補償用磁界検出素子と基準電圧が接続されかつ
出力側に計測用磁界検出素子が接続されると共に入力信
号を増幅して上記計測用磁界検出素子に電圧を供給する
アンプとを備え、かつ、このアンプで増幅した出力を上
記温度補償用磁界検出素子の供給電力とすることで負の
フィードバックを構成する温度補償回路が設けられてい
ることを特徴とする。
In other words, the invention according to claim 1 comprises a magnet for measurement and a magnetic field detecting element for measurement which are relatively displaced from each other, one of which is attached to the object to be measured, An electric signal corresponding to an external magnetic field is assumed on the premise of a non-contact magnetic measuring device that measures the change amount or the change speed of the measurement object based on an output signal based on the magnetic field strength of the measurement magnet body detected by the magnetic field detecting element for measurement. A temperature compensating magnetic field detecting element to be output, a temperature compensating permanent magnet provided near the magnetic field detecting element, a temperature compensating magnetic field detecting element and a reference voltage connected to the input side, and a measuring magnetic field connected to the output side. An amplifier connected to the detecting element and amplifying an input signal to supply a voltage to the magnetic field detecting element for measurement; and outputting an output amplified by the amplifier to the magnetic field for temperature compensation. Temperature compensation circuit which constitutes the negative feedback by the supply power of the detecting element, characterized in that is provided.

【0017】また、請求項2に係る発明は、請求項1記
載の発明に係る非接触磁気式計測装置を前提とし、上記
アンプで増幅される出力(Ve)を示す下記関係式
(5)において、1<<ka(T)・Abの条件を満た
すように上記アンプの増幅率Abが設定されると共に、
上記温度補償用磁界検出素子と計測用磁界検出素子の温
度特性が等しく若しくは略等しく、かつ、上記温度補償
用永久磁石と計測用磁石体の温度特性も等しく若しくは
略等しく設定されていることを特徴とし、 Ve=Ab・Vref/[1+ka(T)・Be・Ab] (5) 但し、温度Tの関数としての温度補償用磁界検出素子の
感度をka(T)、上記基準電圧をVref、温度補償用
磁界検出素子が温度補償用永久磁石から受ける磁界をB
eとする。
Further, the invention according to claim 2 is based on the non-contact magnetic measuring device according to the invention according to claim 1, and the following relational expression (5) showing the output (Ve) amplified by the amplifier: The amplification factor Ab of the amplifier is set so as to satisfy the condition of 1 << ka (T) · Ab,
The temperature characteristics of the temperature compensating magnetic field detecting element and the measuring magnetic field detecting element are equal or substantially equal, and the temperature characteristics of the temperature compensating permanent magnet and the measuring magnet body are set equal or substantially equal. Ve = Ab · Vref / [1 + ka (T) · Be · Ab] (5) where the sensitivity of the magnetic field detecting element for temperature compensation as a function of the temperature T is ka (T), the reference voltage is Vref, The magnetic field received by the compensating magnetic field detecting element from the temperature compensating permanent magnet is B
e.

【0018】請求項3に係る発明は、請求項1または2
記載の発明に係る非接触磁気式計測装置を前提とし、1
つの温度補償用磁界検出素子と複数の計測用磁界検出素
子を備え、各計測用磁界検出素子への供給電圧が全て温
度補償用磁界検出素子の出力を増幅して得られているこ
とを特徴とする。
The invention according to claim 3 is the invention according to claim 1 or 2
Assuming a non-contact magnetic measuring device according to the described invention,
It has two magnetic field detecting elements for temperature compensation and multiple magnetic field detecting elements for measurement, and the supply voltage to each magnetic field detecting element for measurement is obtained by amplifying the output of the magnetic field detecting element for temperature compensation. I do.

【0019】また、請求項4に係る発明は、請求項1、
2または3記載の発明に係る非接触磁気式計測装置を前
提とし、上記温度補償用磁界検出素子と計測用磁界検出
素子がホール素子で構成されていることを特徴とし、請
求項5に係る発明は、上記温度補償用磁界検出素子と計
測用磁界検出素子が磁気抵抗素子で構成されていること
を特徴とする。
Further, the invention according to claim 4 is based on claim 1,
The invention according to claim 5, wherein the non-contact magnetic measuring device according to the invention described in (2) or (3) is premised on that the temperature detecting magnetic field detecting element and the measuring magnetic field detecting element are constituted by Hall elements. Is characterized in that the magnetic field detecting element for temperature compensation and the magnetic field detecting element for measurement are constituted by magnetic resistance elements.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0021】図1は本発明に係る非接触磁気式計測装置
10の回路構成の一例を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing an example of a circuit configuration of a non-contact magnetic measuring device 10 according to the present invention.

【0022】すなわち、この非接触磁気式計測装置10
は、従来の非接触磁気式計測装置と同様に互いに相対変
位する計測用永久磁石fと計測用磁界検出素子dを具備
すると共に、外部磁界に対応した電気信号を出力する温
度補償用磁界検出素子aと、この磁界検出素子aの近傍
に設けられた温度補償用永久磁石eと、入力側に上記温
度補償用磁界検出素子aと基準電圧Vrefが接続されか
つ出力側に計測用磁界検出素子dが接続されると共に入
力信号を増幅して上記計測用磁界検出素子dに電圧を供
給するアンプbを有し、かつ、このアンプbで増幅した
出力を上記温度補償用磁界検出素子aの供給電力とする
ことで負のフィードバックを構成する温度補償回路が設
けられていることを特徴とする。
That is, the non-contact magnetic measuring device 10
Comprises a permanent magnet f for measurement and a magnetic field detecting element d for measurement, which are displaced relative to each other as in a conventional non-contact magnetic measuring apparatus, and a magnetic field detecting element for temperature compensation for outputting an electric signal corresponding to an external magnetic field. a, a temperature compensating permanent magnet e provided near the magnetic field detecting element a, the temperature compensating magnetic field detecting element a and the reference voltage Vref connected to the input side, and the measuring magnetic field detecting element d to the output side. And an amplifier b for amplifying an input signal and supplying a voltage to the magnetic field detecting element d for measurement, and supplying an output amplified by the amplifier b to power supplied to the magnetic field detecting element a for temperature compensation. Thus, a temperature compensation circuit forming a negative feedback is provided.

【0023】尚、図1中、gは計測用磁界検出素子dが
接続され計測用磁石体fに対応した電気信号を増幅する
出力用アンプを示している。また、上記計測用磁界検出
素子dと温度補償用磁界検出素子aには上述したホール
素子、磁気抵抗素子が一般に適用されるが、ホール素
子、磁気抵抗素子以外にも外部磁界に応じた電気信号が
得られるものであれば適用可能である。
In FIG. 1, g denotes an output amplifier to which a measuring magnetic field detecting element d is connected and which amplifies an electric signal corresponding to the measuring magnet f. The Hall element and the magneto-resistive element described above are generally applied to the magnetic field detecting element d for measurement and the magnetic field detecting element a for temperature compensation. Is applicable as long as is obtained.

【0024】そして、この非接触磁気式計測装置10
が、広い温度範囲に亘り温度補償を可能とする原理につ
いて以下説明する。
The non-contact magnetic measuring device 10
However, the principle of enabling temperature compensation over a wide temperature range will be described below.

【0025】まず、前提として、温度依存性を有する計
測用磁界検出素子dと温度補償用磁界検出素子aの感度
kdとkaを温度Tの関数としてそれぞれka=ka
(T)、kd=kd(T)とし、アンプb、gの電圧増
幅率をAb、Ag、上記基準電圧をVrefとする。
First, it is assumed that the sensitivities kd and ka of the measuring magnetic field detecting element d and the temperature compensating magnetic field detecting element a having temperature dependency are respectively set as ka = ka as a function of the temperature T.
(T), kd = kd (T), the voltage amplification factors of the amplifiers b and g are Ab and Ag, and the reference voltage is Vref.

【0026】そして、温度補償用磁界検出素子aが温度
補償用永久磁石eから受ける磁界をBeとすると、 Be=Bec・Be(T) (1) 但し、関係式(1)中のBecは定数、Be(T)は温度
Tの関数とする。
Assuming that the magnetic field received by the temperature compensating magnetic field detecting element a from the temperature compensating permanent magnet e is Be, Be = Bec · Be (T) (1) where Bec in the relational expression (1) is a constant. , Be (T) are functions of the temperature T.

【0027】 同様に、計測用磁界検出素子dが計測用永久磁石fから受ける磁界をBfとし すると、 Bf=Bfc・Bf(T)・g(x) (2) 但し、関係式(2)中のBfcは定数、Bf(T)は温度
Tの関数、g(x)は角度,位置の関数とする。
Similarly, assuming that the magnetic field received by the measurement magnetic field detecting element d from the measurement permanent magnet f is Bf, Bf = Bfc · Bf (T) · g (x) (2) In the relational expression (2), Bfc is a constant, Bf (T) is a function of temperature T, and g (x) is a function of angle and position.

【0028】ここで、温度補償用磁界検出素子aからの
信号Vaは、温度補償用磁界検出素子aが温度補償用永
久磁石eから受ける磁界Be、温度補償用磁界検出素子
aに供給される電圧Veに比例するため、 Va=ka・Be・Ve (3) と表せる。
Here, the signal Va from the temperature compensating magnetic field detecting element a is the magnetic field Be received by the temperature compensating magnetic field detecting element a from the temperature compensating permanent magnet e, and the voltage supplied to the temperature compensating magnetic field detecting element a. Since it is proportional to Ve, it can be expressed as Va = ka.Be.Ve (3).

【0029】また、アンプbでの入出力の関係を見る
と、温度補償用磁界検出素子aからの出力Vaをアンプ
bで増幅しかつ増幅した出力Veを上記温度補償用磁界
検出素子aの供給電力とすることで負のフィードバック
を構成しているので、 Ve=Ab・[Vref−Va] =Ab・[Vref−ka(T)・Be・Ve] (4) この関係式(4)から、 Ve=Ab・Vref/[1+ka(T)・Be・Ab] (5) ここで、上記アンプbの増幅率Abについて、ka
(T)・Ab>>1の条件を満たすように充分大きく設
定すると、 Ve=Vref/[ka(T)・Be] (6) となる。
Looking at the input / output relationship at the amplifier b, the output Va from the temperature compensating magnetic field detecting element a is amplified by the amplifier b, and the amplified output Ve is supplied to the temperature compensating magnetic field detecting element a. Since the negative feedback is constituted by the power, Ve = Ab · [Vref−Va] = Ab · [Vref−ka (T) · Be · Ve] (4) From this relational expression (4), Ve = Ab · Vref / [1 + ka (T) · Be · Ab] (5) Here, regarding the amplification factor Ab of the amplifier b, ka
If it is set large enough to satisfy the condition of (T) · Ab >> 1, Ve = Vref / [ka (T) · Be] (6)

【0030】また、上記計測用磁界検出素子dからの信
号Vdも、計測用永久磁石fから受ける磁界Bf、計測
用磁界検出素子dに供給される電圧Veに比例するた
め、 Vd=kd・Bf・Ve (7) と表せる。
The signal Vd from the measuring magnetic field detecting element d is also proportional to the magnetic field Bf received from the measuring permanent magnet f and the voltage Ve supplied to the measuring magnetic field detecting element d, so that Vd = kd · Bf -It can be expressed as Ve (7).

【0031】この関係式(7)と関係式(2)を上記関
係式(6)を代入して、 Vd=kd(T)・Bf・Vref/[ka(T)・Be] =kd(T)・Bfc・Bf(T)・g(x)・Vref /[ka(T)・Bec・Be(T)] (8) ここで、上記温度補償用磁界検出素子aと計測用磁界検
出素子dについてその温度特性が等しい若しくは略等し
い部材で構成し、かつ、上記温度補償用永久磁石eと計
測用永久磁石fについてもその温度特性が等しい若しく
は略等しい磁石で構成すれば、kd(T)≒ka
(T)、Bf(T)≒Be(T)となるので、 Vd=Bfc・g(x)・Vref/Bec (9) そして、Bfc,Becは永久磁石の形状、磁界検出素子と
の配置等で決まる定数なので、上記関係式(9)からV
dは温度に依存しないことが確認できる。
By substituting the relational expression (6) into the relational expression (7) and the relational expression (2), Vd = kd (T) (Bf ・ Vref / [ka (T) ・ Be] = kd (T ) · Bfc · Bf (T) · g (x) · Vref / [ka (T) · Bec · Be (T)] (8) Here, the temperature compensation magnetic field detection element a and the measurement magnetic field detection element d Kd (T) ≒ if the temperature compensating permanent magnet e and the measuring permanent magnet f are also composed of magnets having the same or substantially the same temperature characteristics. ka
(T), Bf (T) ≒ Be (T), so that Vd = Bfc · g (x) · Vref / Bec (9) where Bfc and Bec are the shape of the permanent magnet, the arrangement with the magnetic field detecting element, and the like. From the above relational expression (9)
It can be confirmed that d does not depend on the temperature.

【0032】従って、計測用永久磁石fの磁界強度に基
づく計測用磁界検出素子dにより得られる出力Voは、 Vo=Ag・Vd =Ag・Bfc・g(x)・Vref/Bec (10) の関係式(10)より求めることができ、この関係式
(10)からVoは温度に依存しないことが確認される。
Accordingly, the output Vo obtained by the measuring magnetic field detecting element d based on the magnetic field strength of the measuring permanent magnet f is as follows: Vo = Ag · Vd = Ag · Bfc · g (x) · Vref / Bec (10) It can be obtained from the relational expression (10), and it is confirmed from the relational expression (10) that Vo does not depend on the temperature.

【0033】よって、上述した特願平11−26778
2号明細書で開示されている割算器やマイクロコンピュ
ータ等の回路を必要とする非接触磁気式計測装置と較べ
て、本発明に係る非接触磁気式計測装置を適用すること
により、角度若しくは位置に比例した信号を安価かつ精
度良く検出することが可能となる。
Therefore, the above-mentioned Japanese Patent Application No. Hei 11-26778.
By applying the non-contact magnetic measuring device according to the present invention as compared with a non-contact magnetic measuring device requiring a circuit such as a divider or a microcomputer disclosed in the specification of Japanese Patent No. A signal proportional to the position can be detected at low cost and with high accuracy.

【0034】尚、この実施の形態に係る非接触磁気式計
測装置においては、単一の計測用磁界検出素子と単一の
温度補償用磁界検出素子が組込まれて構成されている
が、計測用磁界検出素子を複数組込むと共に、各計測用
磁界検出素子への供給電圧が全て単一の温度補償用磁界
検出素子における出力を増幅して得られるような構成と
してもよい(請求項3)。
Although the non-contact magnetic measuring device according to this embodiment is constructed by incorporating a single measuring magnetic field detecting element and a single temperature compensating magnetic field detecting element, A plurality of magnetic field detecting elements may be incorporated, and the voltage supplied to each of the measuring magnetic field detecting elements may be obtained by amplifying the output of a single temperature compensating magnetic field detecting element.

【0035】[0035]

【実施例】以下、図1に示された回路構成を有する各磁
界検出素子が組込まれた実施例に係るロータリー型非接
触磁気式ポテンショメータについて具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A rotary non-contact magnetic potentiometer according to an embodiment in which each magnetic field detecting element having the circuit configuration shown in FIG.

【0036】すなわち、このロータリー型非接触磁気式
ポテンショメータ40は、図2(a)に示すように計測
対象(図示せず)における回転軸の角度変位が伝達され
る回転棒1と、この回転棒1に装着され一方の半円部が
N極、他方の半円部がS極である円盤形状の永久磁石4
1(図1では永久磁石f)と、この永久磁石41の近傍
に配置されたホール素子等の計測用磁界検出素子42
(図1では計測用磁界検出素子d)と、上記永久磁石4
1から十分離れた位置にそれぞれ固定して配置されてい
る温度補償用磁界検出素子43(図1では温度補償用磁
界検出素子a)と温度補償用永久磁石44(図1では永
久磁石e)とでその主要部分が構成されている。
That is, as shown in FIG. 2A, the rotary type non-contact magnetic potentiometer 40 includes a rotary rod 1 to which angular displacement of a rotary shaft in a measurement object (not shown) is transmitted, and the rotary rod 1 1. A disk-shaped permanent magnet 4 mounted on 1 and having one semicircular portion as an N pole and the other semicircular portion as an S pole
1 (a permanent magnet f in FIG. 1) and a measuring magnetic field detecting element 42 such as a Hall element arranged near the permanent magnet 41.
(In FIG. 1, the magnetic field detecting element d for measurement) and the permanent magnet 4
1 and a temperature compensating magnetic field detecting element 43 (a temperature compensating magnetic field detecting element a in FIG. 1) and a temperature compensating permanent magnet 44 (a permanent magnet e in FIG. 1), which are fixedly arranged at positions sufficiently separated from each other. The main part is constituted by.

【0037】尚、上記計測用磁界検出素子42(d)と
温度補償用磁界検出素子43(a)は同じメーカーの同
じ型番の磁界検出素子を選定し、円盤形状の永久磁石4
1(f)と温度補償用永久磁石44(e)も同じメーカ
の同じ材料から選定している。
The magnetic field detecting element 42 (d) for measurement and the magnetic field detecting element 43 (a) for temperature compensation are selected from the same manufacturer and have the same model number.
1 (f) and the temperature compensating permanent magnet 44 (e) are also selected from the same material from the same manufacturer.

【0038】また、図2(b)は、このロータリー型非
接触磁気式ポテンショメータにおける角度変位(θ)と
信号出力(Vo)との関係を示すグラフ図である。
FIG. 2B is a graph showing the relationship between the angular displacement (θ) and the signal output (Vo) in the rotary non-contact magnetic potentiometer.

【0039】そして、−40℃、125℃の角度変位
(θ)における出力信号(Vo)の誤差を25℃におけ
る信号出力を基準として測定したところ、−40℃で最
大+0.4%、125℃で−0.3%のわずかな誤差し
か確認されなかった。
When the error of the output signal (Vo) at an angular displacement (θ) of −40 ° C. and 125 ° C. was measured with reference to the signal output at 25 ° C., a maximum of + 0.4% at −40 ° C. and 125 ° C. Only a small error of -0.3% was confirmed.

【0040】[比較例]磁界検出素子としてホール素子
21を適用し、このホール素子21に直列に抵抗29を
入れて温度補正を行なう図8に示すような回路を用い、
図3に示した従来と同様のロータリー型非接触磁気式ポ
テンショメータを構成した。
COMPARATIVE EXAMPLE A Hall element 21 is applied as a magnetic field detecting element, and a circuit as shown in FIG.
A rotary non-contact magnetic potentiometer similar to the conventional one shown in FIG. 3 was constructed.

【0041】そして、実施例と同様な測定を行なった結
果、−40℃、125℃の角度変位(θ)における出力
信号(Vo)の誤差を25℃における信号出力を基準と
して測定したところ、−40℃で最大+2.4%、12
5℃で−9.3%の大きな誤差が確認された。
Then, as a result of performing the same measurement as in the example, the error of the output signal (Vo) at an angular displacement (θ) of −40 ° C. and 125 ° C. was measured with reference to the signal output at 25 ° C. Up to + 2.4% at 40 ° C, 12
At 5 ° C., a large error of −9.3% was confirmed.

【0042】この結果、比較例に係るロータリー型非接
触磁気式ポテンショメータに較べ実施例に係るロータリ
ー型非接触磁気式ポテンショメータの優位性が確認され
た。
As a result, the superiority of the rotary non-contact magnetic potentiometer according to the example was confirmed as compared with the rotary non-contact magnetic potentiometer according to the comparative example.

【0043】[0043]

【発明の効果】請求項1〜5記載の発明に係る非接触磁
気式計測装置によれば、外部磁界に対応した電気信号を
出力する温度補償用磁界検出素子と、この磁界検出素子
の近傍に設けられた温度補償用永久磁石と、入力側に上
記温度補償用磁界検出素子と基準電圧が接続されかつ出
力側に計測用磁界検出素子が接続されると共に入力信号
を増幅して上記計測用磁界検出素子に電圧を供給するア
ンプとを備え、かつ、このアンプで増幅した出力を上記
温度補償用磁界検出素子の供給電力とすることで負のフ
ィードバックを構成する温度補償回路が設けられている
ため、割算器やマイクロコンピュータ等の回路を組込む
ことなく磁界検出素子の温度依存性が解消されて計測対
象の変化量若しくは変化速度について広い温度範囲に亘
り高い精度で計測できる効果を有する。
According to the non-contact magnetic measuring device according to the first to fifth aspects of the present invention, a magnetic field detecting element for temperature compensation for outputting an electric signal corresponding to an external magnetic field, The provided temperature compensating permanent magnet, the temperature compensating magnetic field detecting element and the reference voltage are connected on the input side, and the measuring magnetic field detecting element is connected on the output side, and the input signal is amplified to amplify the input signal. An amplifier that supplies a voltage to the detection element, and a temperature compensation circuit that forms negative feedback by using the output amplified by the amplifier as the power supplied to the temperature compensation magnetic field detection element. The temperature dependency of the magnetic field detection element is eliminated without incorporating a circuit such as a divider or microcomputer, and the amount or speed of change of the measurement object can be measured with high accuracy over a wide temperature range. With a kill effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非接触磁気式計測装置の回路構成
の一例を示す概略説明図。
FIG. 1 is a schematic explanatory view showing an example of a circuit configuration of a non-contact magnetic measuring device according to the present invention.

【図2】図2(a)は実施例に係るロータリー型非接触
磁気式ポテンショメータの概略構成を示す説明図、図2
(b)はこのロータリー型非接触磁気式ポテンショメー
タにおける角度変位θと信号出力V0との関係を示すグ
ラフ図。
FIG. 2A is an explanatory view showing a schematic configuration of a rotary non-contact magnetic potentiometer according to an embodiment;
(B) is a graph showing the relationship between the angular displacement θ and the signal output V0 in the rotary non-contact magnetic potentiometer.

【図3】従来例に係るロータリー型非接触磁気式ポテン
ショメータの概略構成を示す説明図。
FIG. 3 is an explanatory diagram showing a schematic configuration of a rotary non-contact magnetic potentiometer according to a conventional example.

【図4】他の従来例に係るロータリー型非接触磁気式ポ
テンショメータの概略構成を示す説明図。
FIG. 4 is an explanatory diagram showing a schematic configuration of a rotary non-contact magnetic potentiometer according to another conventional example.

【図5】従来例に係る直線型非接触磁気式ポテンショメ
ータの概略構成を示す説明図。
FIG. 5 is an explanatory view showing a schematic configuration of a linear non-contact magnetic potentiometer according to a conventional example.

【図6】他の従来例に係る直線型非接触磁気式ポテンシ
ョメータの概略構成を示す説明図。
FIG. 6 is an explanatory diagram showing a schematic configuration of a linear non-contact magnetic potentiometer according to another conventional example.

【図7】二つのホール素子からの出力電圧の商を出力信
号とする従来の改良型ロータリー型非接触磁気式ポテン
ショメータの概略構成を示す説明図。
FIG. 7 is an explanatory diagram showing a schematic configuration of a conventional improved rotary non-contact magnetic potentiometer that uses a quotient of output voltages from two Hall elements as an output signal.

【図8】比較例のロータリー型非接触磁気式ポテンショ
メータに組込まれた磁界検出素子の回路構成を示す説明
図。
FIG. 8 is an explanatory diagram showing a circuit configuration of a magnetic field detecting element incorporated in a rotary non-contact magnetic potentiometer of a comparative example.

【符号の説明】[Explanation of symbols]

10 非接触磁気式計測装置 a 温度補償用磁界検出素子 b アンプ d 計測用磁界検出素子 e 温度補償用永久磁石 f 計測用永久磁石 Vref 基準電圧 10 Non-contact magnetic measuring device a Magnetic field detecting element for temperature compensation b Amplifier d Magnetic field detecting element for measurement e Permanent magnet for temperature compensation f Permanent magnet for measurement Vref Reference voltage

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01R 33/09 G01B 7/30 101B // G01B 7/00 G01R 33/06 H 7/30 101 R Fターム(参考) 2F063 AA02 AA35 BA08 CB01 CC05 CC06 DA05 DD03 EA02 EA03 GA52 KA01 KA02 LA30 2F077 AA13 CC02 CC08 JJ02 JJ03 JJ08 JJ09 JJ23 NN17 NN24 PP12 PP14 TT82 UU09 UU10 UU11 2G017 AA01 AB05 AC04 AC09 AD53 AD55 BA05 BA07 BA10 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) G01R 33/09 G01B 7/30 101B // G01B 7/00 G01R 33/06 H 7/30 101R F term (reference) 2F063 AA02 AA35 BA08 CB01 CC05 CC06 DA05 DD03 EA02 EA03 GA52 KA01 KA02 LA30 2F077 AA13 CC02 CC08 JJ02 JJ03 JJ08 JJ09 JJ23 NN17 NN24 PP12 PP14 TT82 UU09 UU10 UU11 2G017 A05AD05 AC05 BA05 AC05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】互いに相対変位する計測用磁石体と計測用
磁界検出素子を備え、かつ、その一方が計測対象に取付
けられると共に、上記計測用磁界検出素子により検出さ
れた計測用磁石体の磁界強度に基づく出力信号により上
記計測対象の変化量若しくは変化速度を計測する非接触
磁気式計測装置において、 外部磁界に対応した電気信号を出力する温度補償用磁界
検出素子と、この磁界検出素子の近傍に設けられた温度
補償用永久磁石と、入力側に上記温度補償用磁界検出素
子と基準電圧が接続されかつ出力側に計測用磁界検出素
子が接続されると共に入力信号を増幅して上記計測用磁
界検出素子に電圧を供給するアンプとを備え、かつ、こ
のアンプで増幅した出力を上記温度補償用磁界検出素子
の供給電力とすることで負のフィードバックを構成する
温度補償回路が設けられていることを特徴とする非接触
磁気式計測装置。
A magnetic field of a measuring magnet body which is provided with a measuring magnet body and a measuring magnetic field detecting element which are relatively displaced from each other, one of which is attached to a measuring object, and which is detected by the measuring magnetic field detecting element. In a non-contact magnetic measuring device for measuring a change amount or a change speed of the object to be measured by an output signal based on intensity, a magnetic field detecting element for temperature compensation for outputting an electric signal corresponding to an external magnetic field, and a vicinity of the magnetic field detecting element The temperature compensating permanent magnet provided on the input side, the temperature compensating magnetic field detecting element and the reference voltage are connected to the input side, and the measuring magnetic field detecting element is connected to the output side, and the input signal is amplified to amplify the input signal. An amplifier that supplies a voltage to the magnetic field detecting element, and the output amplified by the amplifier is used as the power supplied to the magnetic field detecting element for temperature compensation to provide negative feedback. A non-contact magnetic measuring device comprising a temperature compensation circuit.
【請求項2】上記アンプで増幅される出力(Ve)を示
す下記関係式(5)において、1<<ka(T)・Ab
の条件を満たすように上記アンプの増幅率Abが設定さ
れると共に、上記温度補償用磁界検出素子と計測用磁界
検出素子の温度特性が等しく若しくは略等しく、かつ、
上記温度補償用永久磁石と計測用磁石体の温度特性も等
しく若しくは略等しく設定されていることを特徴とする
請求項1記載の非接触磁気式計測装置。 Ve=Ab・Vref/[1+ka(T)・Be・Ab] (5) 但し、温度Tの関数としての温度補償用磁界検出素子の
感度をka(T)、上記基準電圧をVref、温度補償用
磁界検出素子が温度補償用永久磁石から受ける磁界をB
eとする。
2. In the following relational expression (5) showing the output (Ve) amplified by the amplifier, 1 << ka (T) · Ab
The amplification factor Ab of the amplifier is set so as to satisfy the following condition, and the temperature characteristics of the magnetic field detecting element for temperature compensation and the magnetic field detecting element for measurement are equal or substantially equal, and
2. The non-contact magnetic measuring device according to claim 1, wherein the temperature characteristics of the temperature compensating permanent magnet and the measuring magnet are set to be equal or substantially equal. Ve = Ab · Vref / [1 + ka (T) · Be · Ab] (5) where the sensitivity of the temperature compensation magnetic field detecting element as a function of the temperature T is ka (T), the reference voltage is Vref, and the temperature compensation is The magnetic field which the magnetic field detecting element receives from the temperature compensating permanent magnet is B
e.
【請求項3】1つの温度補償用磁界検出素子と複数の計
測用磁界検出素子を備え、各計測用磁界検出素子への供
給電圧が全て温度補償用磁界検出素子の出力を増幅して
得られていることを特徴とする請求項1または2記載の
非接触磁気式計測装置。
3. A magnetic field detecting element for temperature compensation and a plurality of magnetic field detecting elements for measurement are provided, and all voltages supplied to the magnetic field detecting elements for measurement are obtained by amplifying the output of the magnetic field detecting element for temperature compensation. The non-contact magnetic measuring device according to claim 1 or 2, wherein:
【請求項4】上記温度補償用磁界検出素子と計測用磁界
検出素子がホール素子で構成されていることを特徴とす
る請求項1、2または3記載の非接触磁気式計測装置。
4. The non-contact magnetic measuring device according to claim 1, wherein the temperature compensating magnetic field detecting element and the measuring magnetic field detecting element are constituted by Hall elements.
【請求項5】上記温度補償用磁界検出素子と計測用磁界
検出素子が磁気抵抗素子で構成されていることを特徴と
する請求項1、2または3記載の非接触磁気式計測装
置。
5. The non-contact magnetic measuring device according to claim 1, wherein the temperature compensating magnetic field detecting element and the measuring magnetic field detecting element are constituted by magnetoresistive elements.
JP2001014410A 2001-01-23 2001-01-23 Noncontact magnetic measuring instrument Pending JP2002213992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001014410A JP2002213992A (en) 2001-01-23 2001-01-23 Noncontact magnetic measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001014410A JP2002213992A (en) 2001-01-23 2001-01-23 Noncontact magnetic measuring instrument

Publications (1)

Publication Number Publication Date
JP2002213992A true JP2002213992A (en) 2002-07-31

Family

ID=18881110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001014410A Pending JP2002213992A (en) 2001-01-23 2001-01-23 Noncontact magnetic measuring instrument

Country Status (1)

Country Link
JP (1) JP2002213992A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132710A (en) * 2005-11-08 2007-05-31 Tokai Rika Co Ltd Position detector
JP2011039060A (en) * 2009-08-17 2011-02-24 Headway Technologies Inc Secular change correction method and secular change correction device for magnetoresistance effect sensor
JP2011513706A (en) * 2008-02-26 2011-04-28 アレグロ・マイクロシステムズ・インコーポレーテッド Magnetic field sensor with automatic sensitivity adjustment
KR101427052B1 (en) 2013-10-28 2014-08-05 넥스트랩주식회사 The position detecting method independent of direction of gravity in the detecting device that uses magnet and hall sensor
US9151807B2 (en) 2009-02-17 2015-10-06 Allegro Microsystems, Llc Circuits and methods for generating a self-test of a magnetic field sensor
US9201122B2 (en) 2012-02-16 2015-12-01 Allegro Microsystems, Llc Circuits and methods using adjustable feedback for self-calibrating or self-testing a magnetic field sensor with an adjustable time constant
US9638764B2 (en) 2015-04-08 2017-05-02 Allegro Microsystems, Llc Electronic circuit for driving a hall effect element with a current compensated for substrate stress
US9645220B2 (en) 2014-04-17 2017-05-09 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor using phase discrimination
US9735773B2 (en) 2014-04-29 2017-08-15 Allegro Microsystems, Llc Systems and methods for sensing current through a low-side field effect transistor
US9804249B2 (en) 2014-11-14 2017-10-31 Allegro Microsystems, Llc Dual-path analog to digital converter
US9841485B2 (en) 2014-11-14 2017-12-12 Allegro Microsystems, Llc Magnetic field sensor having calibration circuitry and techniques
US9851417B2 (en) 2015-07-28 2017-12-26 Allegro Microsystems, Llc Structure and system for simultaneous sensing a magnetic field and mechanical stress
CN108216592A (en) * 2016-12-22 2018-06-29 利勃海尔航空航天林登贝格股份有限公司 The actuator manipulated for the device to aircraft
US10107873B2 (en) 2016-03-10 2018-10-23 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
US10132879B2 (en) 2016-05-23 2018-11-20 Allegro Microsystems, Llc Gain equalization for multiple axis magnetic field sensing
US10162017B2 (en) 2016-07-12 2018-12-25 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
US10466298B2 (en) 2014-11-14 2019-11-05 Allegro Microsystems, Llc Magnetic field sensor with shared path amplifier and analog-to-digital-converter
US10520559B2 (en) 2017-08-14 2019-12-31 Allegro Microsystems, Llc Arrangements for Hall effect elements and vertical epi resistors upon a substrate
JP2021521450A (en) * 2018-04-13 2021-08-26 日本テキサス・インスツルメンツ合同会社 Calibration of Hall device sensitivity using auxiliary Hall device
WO2021210125A1 (en) * 2020-04-16 2021-10-21 株式会社ショーワ Detection unit and electric power steering device
US11169223B2 (en) 2020-03-23 2021-11-09 Allegro Microsystems, Llc Hall element signal calibrating in angle sensor
US11630130B2 (en) 2021-03-31 2023-04-18 Allegro Microsystems, Llc Channel sensitivity matching

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132710A (en) * 2005-11-08 2007-05-31 Tokai Rika Co Ltd Position detector
JP2011513706A (en) * 2008-02-26 2011-04-28 アレグロ・マイクロシステムズ・インコーポレーテッド Magnetic field sensor with automatic sensitivity adjustment
US9151807B2 (en) 2009-02-17 2015-10-06 Allegro Microsystems, Llc Circuits and methods for generating a self-test of a magnetic field sensor
JP2011039060A (en) * 2009-08-17 2011-02-24 Headway Technologies Inc Secular change correction method and secular change correction device for magnetoresistance effect sensor
US9201122B2 (en) 2012-02-16 2015-12-01 Allegro Microsystems, Llc Circuits and methods using adjustable feedback for self-calibrating or self-testing a magnetic field sensor with an adjustable time constant
KR101427052B1 (en) 2013-10-28 2014-08-05 넥스트랩주식회사 The position detecting method independent of direction of gravity in the detecting device that uses magnet and hall sensor
US9645220B2 (en) 2014-04-17 2017-05-09 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor using phase discrimination
US9735773B2 (en) 2014-04-29 2017-08-15 Allegro Microsystems, Llc Systems and methods for sensing current through a low-side field effect transistor
US9804249B2 (en) 2014-11-14 2017-10-31 Allegro Microsystems, Llc Dual-path analog to digital converter
US9841485B2 (en) 2014-11-14 2017-12-12 Allegro Microsystems, Llc Magnetic field sensor having calibration circuitry and techniques
US10466298B2 (en) 2014-11-14 2019-11-05 Allegro Microsystems, Llc Magnetic field sensor with shared path amplifier and analog-to-digital-converter
US9638764B2 (en) 2015-04-08 2017-05-02 Allegro Microsystems, Llc Electronic circuit for driving a hall effect element with a current compensated for substrate stress
US9851417B2 (en) 2015-07-28 2017-12-26 Allegro Microsystems, Llc Structure and system for simultaneous sensing a magnetic field and mechanical stress
US10746817B2 (en) 2015-07-28 2020-08-18 Allegro Microsystems, Llc Structure and system for simultaneous sensing a magnetic field and mechanical stress
US10254354B2 (en) 2016-03-10 2019-04-09 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
US10107873B2 (en) 2016-03-10 2018-10-23 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
US10132879B2 (en) 2016-05-23 2018-11-20 Allegro Microsystems, Llc Gain equalization for multiple axis magnetic field sensing
US10908232B2 (en) 2016-05-23 2021-02-02 Allegro Microsystems, Llc Gain equalization for multiple axis magnetic field sensing
US10162017B2 (en) 2016-07-12 2018-12-25 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
US10746818B2 (en) 2016-07-12 2020-08-18 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
CN108216592A (en) * 2016-12-22 2018-06-29 利勃海尔航空航天林登贝格股份有限公司 The actuator manipulated for the device to aircraft
US10520559B2 (en) 2017-08-14 2019-12-31 Allegro Microsystems, Llc Arrangements for Hall effect elements and vertical epi resistors upon a substrate
JP2021521450A (en) * 2018-04-13 2021-08-26 日本テキサス・インスツルメンツ合同会社 Calibration of Hall device sensitivity using auxiliary Hall device
JP7234475B2 (en) 2018-04-13 2023-03-08 テキサス インスツルメンツ インコーポレイテッド Calibration of Hall device sensitivity using auxiliary Hall device
US11169223B2 (en) 2020-03-23 2021-11-09 Allegro Microsystems, Llc Hall element signal calibrating in angle sensor
WO2021210125A1 (en) * 2020-04-16 2021-10-21 株式会社ショーワ Detection unit and electric power steering device
JPWO2021210125A1 (en) * 2020-04-16 2021-10-21
US11630130B2 (en) 2021-03-31 2023-04-18 Allegro Microsystems, Llc Channel sensitivity matching

Similar Documents

Publication Publication Date Title
JP2002213992A (en) Noncontact magnetic measuring instrument
JP2920179B2 (en) Magnetic position sensor with Hall element
JP4044880B2 (en) Non-contact angle measuring device
JP5079816B2 (en) Preferably a magnetic position sensor having a magnet shape that varies pseudo-sinusoidally.
US10670425B2 (en) System for measuring angular position and method of stray field cancellation
JP4907770B2 (en) Position encoder using fluxgate sensor
EP2284555A1 (en) Magnetic sensor including a bridge circuit
JP5013075B2 (en) Magnetic detector
JP5206962B2 (en) Rotation angle sensor
JPH03233317A (en) Rotation angle sensor
US20060164076A1 (en) Magnetoresistive sensor
JP2001091298A (en) Noncontact magnetic type measuring device
US20220113164A1 (en) Sensor system, system and method for determining a position or a rotational angle
JP4521808B2 (en) Encoder
JP2001091612A (en) Magnetic field strength sensor and sensor built-in non- contact magnetic measuring device
JP2001091300A (en) Noncontact magnetic type measuring device
JP2000002602A (en) Torque detecting device
JP2002054902A (en) Displacement detecting device
JP4506960B2 (en) Moving body position detection device
JP4737372B2 (en) Rotation angle detector
Sontakke et al. Design, modeling, and experimental verification of a Hall-effect-based linear instrumentation system for through-shaft angle sensing
JPH061201B2 (en) Position detection sensor
JPH03226625A (en) Rotation positioner
US20140125328A1 (en) Magnetic detection device
JP2685489B2 (en) Device that magnetically detects position and speed