JP2001110044A - Method of manufacturing rependicular magnetic recording medium - Google Patents

Method of manufacturing rependicular magnetic recording medium

Info

Publication number
JP2001110044A
JP2001110044A JP28875999A JP28875999A JP2001110044A JP 2001110044 A JP2001110044 A JP 2001110044A JP 28875999 A JP28875999 A JP 28875999A JP 28875999 A JP28875999 A JP 28875999A JP 2001110044 A JP2001110044 A JP 2001110044A
Authority
JP
Japan
Prior art keywords
magnetic recording
heat treatment
recording medium
magnetic
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28875999A
Other languages
Japanese (ja)
Inventor
Toshio Ando
敏男 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP28875999A priority Critical patent/JP2001110044A/en
Publication of JP2001110044A publication Critical patent/JP2001110044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a perpendicular magnetic recording medium capable of mass production and obtaining a high reproducing output and having a low medium noise. SOLUTION: This method consists at least of a film-forming stage for forming a multi-layered structure by film-forming a hard magnetic pinning layer, a soft magnetic base layer and a perpendicular magnetic recording layer on a non-magnetic substrate and a stage wherein the multi-layered structure is heat- treated in the state that a magnetic field is applied to the structure in a prescribed direction after the film-forming stage to arrange the magnetization of the soft magnetic base layer in a prescribed direction. Plural sheets of the perpendicular magnetic recording media 21a, 21b, 21c and 21d can be film-formed and heat-treated after film-forming suitably for mass production. The heat- treating temperature T and heat treating time τ are regulated by a specified relation, for example, in case of the perpendicular magnetic recording medium having three-layered structure, when the crystallization temperature of the soft magnetic base layer is expressed by Tc, the heat-treating time τ needs to satisfy the relational formula τ>=3.5 (Tc-T)/T.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気ディスクや磁気
テープ等の磁気記録媒体に係り、特に、非磁性基板上に
軟磁性下地層と垂直磁気記録層とを成膜した2層構造の
垂直磁気記録媒体、及びこれに硬磁性ピンニング層を加
えた3層構造の垂直磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium such as a magnetic disk or a magnetic tape, and more particularly to a perpendicular magnetic recording medium having a two-layer structure in which a soft magnetic underlayer and a perpendicular magnetic recording layer are formed on a nonmagnetic substrate. The present invention relates to a recording medium and a three-layer perpendicular magnetic recording medium having a hard magnetic pinning layer added thereto.

【0002】[0002]

【従来の技術】垂直磁気記録媒体は、現在の面内記録よ
りも高密度記録ができることで注目されている。磁気記
録媒体としては、垂直磁気記録層単層からなる単層膜媒
体とともに、軟磁性下地層と垂直磁気記録層とから成る
2層構造の垂直磁気記録媒体が多く検討されている。特
に2層構造の垂直磁気記録媒体は、単磁極型ヘッドと組
合わせることにより効率の良い記録再生ができる。中で
も、特願平3−278595号公報(以下において「第
1従来技術」という。)に開示されたCo−Zr系アモ
ルファス軟磁性膜を下地層とする2層構造の垂直磁気記
録媒体は、垂直配向性の鋭い垂直磁気記録層が得られる
ため、記録効率の向上には特に有効である。
2. Description of the Related Art Perpendicular magnetic recording media have attracted attention because they can perform higher density recording than current in-plane recording. As a magnetic recording medium, a perpendicular magnetic recording medium having a two-layer structure including a soft magnetic underlayer and a perpendicular magnetic recording layer has been studied in addition to a single-layer film medium including a single perpendicular magnetic recording layer. In particular, when a perpendicular magnetic recording medium having a two-layer structure is combined with a single-pole type head, efficient recording and reproduction can be performed. Above all, a perpendicular magnetic recording medium having a two-layer structure using a Co-Zr-based amorphous soft magnetic film as an underlayer disclosed in Japanese Patent Application No. 3-278595 (hereinafter, referred to as "first prior art") is a perpendicular magnetic recording medium. Since a perpendicular magnetic recording layer with sharp orientation can be obtained, it is particularly effective for improving the recording efficiency.

【0003】ところが、上記第1従来技術に開示された
磁気記録媒体、特にディスク状の磁気記録媒体では、信
号記録後、磁気記録媒体を回転させているだけで時間と
ともに信号強度が減衰してしまうという問題を起こす。
これは、磁気記録媒体が回転する際に、地磁気等の外部
磁界の影響により、Co−Zr系アモルファス軟磁性膜
からなる軟磁性下地層の磁化が容易に反転し、これに伴
う強い垂直磁界を発生する磁壁の移動により、垂直磁気
記録層の記録信号を消去してしまうために起きる。この
軟磁性下地層の磁壁の移動から発生する磁界はまた、媒
体ノイズをも大きくするという問題も引き起こす。
However, in the magnetic recording medium disclosed in the first prior art, in particular, a disk-shaped magnetic recording medium, the signal intensity is attenuated with time only by rotating the magnetic recording medium after recording the signal. Cause the problem.
This is because, when the magnetic recording medium rotates, the magnetization of the soft magnetic underlayer composed of the Co-Zr-based amorphous soft magnetic film is easily reversed due to the influence of an external magnetic field such as terrestrial magnetism. This occurs because the recording signal of the perpendicular magnetic recording layer is erased due to the generated domain wall movement. The magnetic field generated from the movement of the domain wall of the soft magnetic underlayer also causes a problem of increasing medium noise.

【0004】そこで発明者らは、特開平7−12994
6号公報(以下において「第2従来技術」という。)に
おいて基板と軟磁性下地層との間に、半径方向に残留磁
化を有する面内配向硬磁性ピンニング層を設けること
で、記録再生特性を損ねることなく、磁気記録媒体の回
転にともなう減磁を防止し、媒体ノイズを低減する方法
を先に提案した。面内配向硬磁性ピンニング層がCo−
Smであるディスク状磁気記録媒体の半径方向に1軸磁
気異方性を有する場合、特に大きな効果が得られる。更
に、軟磁性下地層の透磁率μを高くして再生出力を高め
る手法として、上記第2従来技術に示してある通り、成
膜後に10−3Pa以下の真空中で硬磁性ピンニング層
と軟磁性下地層の磁化が飽和する程度に十分強い24k
A/mの回転磁界中で熱処理する方法が有効である。こ
れは、Co−Zr系アモルファス軟磁性膜中の原子が熱
と磁界の作用によって拡散され、異方性磁界が弱められ
ることによって透磁率μが高くなることを利用してい
る。
Accordingly, the inventors have disclosed in Japanese Patent Laid-Open No. 7-12994.
In Japanese Patent Publication No. 6 (hereinafter referred to as "second prior art"), by providing an in-plane oriented hard magnetic pinning layer having a residual magnetization in the radial direction between a substrate and a soft magnetic underlayer, recording and reproducing characteristics are improved. A method for preventing the demagnetization due to the rotation of the magnetic recording medium and reducing the medium noise without damaging the magnetic recording medium has been previously proposed. The in-plane oriented hard magnetic pinning layer is Co-
When the disk-shaped magnetic recording medium having Sm has uniaxial magnetic anisotropy in the radial direction, a particularly large effect can be obtained. Further, as a technique for increasing the magnetic permeability μ of the soft magnetic underlayer to increase the reproduction output, as shown in the second prior art, the hard magnetic pinning layer and the soft magnetic pinning layer are formed in a vacuum of 10 −3 Pa or less after film formation. 24k strong enough to saturate the magnetization of the magnetic underlayer
A method of performing heat treatment in a rotating magnetic field of A / m is effective. This utilizes the fact that atoms in the Co—Zr-based amorphous soft magnetic film are diffused by the action of heat and a magnetic field, and the magnetic permeability μ is increased by weakening the anisotropic magnetic field.

【0005】[0005]

【発明が解決しようとする課題】このように、2層構造
の垂直磁気記録媒体の欠点を改良すべく3層構造の垂直
磁気記録媒体が提案され、3層構造の採用により、媒体
ノイズが小さく高い再生出力を得る方法が探求されてい
る。しかし、2層構造の垂直磁気記録媒体媒体のまま
で、媒体ノイズが小さく高い再生出力を得る技術は知ら
れていない。
As described above, a perpendicular magnetic recording medium having a three-layer structure has been proposed in order to improve the disadvantages of a perpendicular magnetic recording medium having a two-layer structure. A method for obtaining a high reproduction output has been sought. However, there is no known technique for obtaining a high reproduction output with a small medium noise while keeping the perpendicular magnetic recording medium of the two-layer structure.

【0006】一方、3層構造の垂直磁気記録媒体におい
ては、上記第2従来技術に示されるように、図9に示す
ような特殊な構造のDCマグネトロンスパッタリング装
置を用いて、基板11の半径方向に磁界を印加しなが
ら、軟磁性下地層のスパッタリング成膜を行うことによ
って、軟磁性下地層の磁化容易軸を成膜後に基板の半径
方向に揃えている。図9においては、ターゲット43の
近傍に磁場を形成すべく構成された希土類永久磁石4
1,42からの磁界を基板11まで及ぼすように構成し
たものである。研究開発用等の基板11を1枚ずつ成膜
する場合、図9のような装置構成が可能である。ところ
が大量生産を考えた場合、特にパレット式の基板ホルダ
ーを有するスパッタリング装置によって、複数の基板に
一挙に成膜するタイプの量産方法では、装置の構造上、
成膜中に基板1枚1枚の半径方向に磁界を印加する機能
を搭載するのは困難である。また、もし成膜中に基板の
1枚1枚の半径方向に磁界を印加する機能と機構を搭載
した量産用スパッタリング装置を構成しても、装置が複
雑化し、膨大な設備投資とランニングコストの上昇を招
く。
On the other hand, in a perpendicular magnetic recording medium having a three-layer structure, as shown in the second prior art, a DC magnetron sputtering apparatus having a special structure as shown in FIG. The soft magnetic underlayer is formed by sputtering while applying a magnetic field to the soft magnetic underlayer, so that the axis of easy magnetization of the soft magnetic underlayer is aligned in the radial direction of the substrate after the film is formed. In FIG. 9, the rare earth permanent magnet 4 configured to form a magnetic field near the target 43 is shown.
The structure is such that the magnetic field from 1, 42 is applied to the substrate 11. When the substrates 11 for research and development are formed one by one, an apparatus configuration as shown in FIG. 9 is possible. However, when considering mass production, in particular, in a mass production method of a type in which a film is formed on a plurality of substrates at once by a sputtering apparatus having a pallet-type substrate holder, the structure of the apparatus is
It is difficult to mount a function of applying a magnetic field in the radial direction of each substrate during film formation. Even if a sputtering apparatus for mass production is equipped with a function and a mechanism for applying a magnetic field to each of the substrates in the radial direction during film formation, the apparatus becomes complicated, and enormous equipment investment and running cost are reduced. Invite a rise.

【0007】結局、第2従来技術に示した磁気記録媒体
の製造方法に対して使用できるスパッタリング装置は、
比較的小型な成膜装置等に使用範囲が限られたものにな
り、大量生産には不利である。従って、第2従来技術に
示した磁気記録媒体の製造方法は生産コスト高につなが
る技術と言える。
After all, a sputtering apparatus that can be used for the method of manufacturing a magnetic recording medium described in the second prior art is
The range of use is limited to a relatively small film forming apparatus or the like, which is disadvantageous for mass production. Therefore, the method for manufacturing a magnetic recording medium described in the second prior art can be said to be a technique that leads to a high production cost.

【0008】更に、高密度化に伴い、第2従来技術に示
されるような軟磁性下地層の1MHz前後における透磁
率μをむやみに向上させることは、10MHz以上の高
周波領域での特性を劣化させる傾向にあり、むしろ弊害
となる。
Further, as the density is increased, it is necessary to unnecessarily improve the magnetic permeability μ of the soft magnetic underlayer at around 1 MHz as shown in the second prior art, which deteriorates the characteristics in a high frequency region of 10 MHz or more. Tends to be rather harmful.

【0009】本発明は上記の点に着目し、媒体ノイズが
小さく高い再生出力を得ることが可能な2層構造の垂直
磁気記録媒体の製造方法を提供することを目的とする。
The present invention has been made in view of the above points, and has as its object to provide a method of manufacturing a perpendicular magnetic recording medium having a two-layer structure capable of obtaining high reproduction output with small medium noise.

【0010】本発明の他の目的は、量産用の成膜装置を
使用して、媒体ノイズが小さく、高い再生出力を得るこ
とが可能で、且つ記録信号の安定性が高い3層構造の垂
直磁気記録媒体を大量に生産することが可能な垂直磁気
記録媒体の製造方法を提供することである。
Another object of the present invention is to use a film forming apparatus for mass production, which is capable of obtaining a high reproduction output with a small medium noise, and having a three-layer vertical structure having a high stability of a recording signal. An object of the present invention is to provide a method for manufacturing a perpendicular magnetic recording medium capable of mass-producing a magnetic recording medium.

【0011】本発明の更に他の目的は、数10MHz以
上の高周波領域で高い透磁率μを得ることが可能な垂直
磁気記録媒体の製造方法を提供することである。
Still another object of the present invention is to provide a method of manufacturing a perpendicular magnetic recording medium capable of obtaining a high magnetic permeability μ in a high frequency range of several tens of MHz or more.

【0012】本発明の更に他の目的は、それにより、高
性能且つ高品質な垂直磁気記録媒体を安価且つ大量に提
供することである。
Still another object of the present invention is to provide a high-performance and high-quality perpendicular magnetic recording medium inexpensively and in large quantities.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明の第1の特徴に係る垂直磁気記録媒体の製造
方法は、(イ)非磁性基板上に、垂直磁気記録層と軟磁
性下地層とを成膜し多層構造を形成する工程と、(ロ)
この多層構造の成膜後に、多層構造を、所定方向に磁界
Hを印加した状態で熱処理温度T(単位:絶対温度)及
び熱処理時間τ(単位:時間)で熱処理を行い、軟磁性
下地層の磁化を所定方向に揃える工程とから少なくとも
なる。更に、本発明の第1の特徴に係る垂直磁気記録媒
体の製造方法においては、多層構造の成膜後に行う熱処
理の熱処理時間τは、Cを前記軟磁性下地層の材料及
び磁気記録媒体の構造によって定まる定数、軟磁性下地
層の結晶化温度をTc(単位:絶対温度)としてτ≧C
(Tc−T)/Tなる関係を満足する時間である。こ
こで、「垂直磁気記録媒体」とは、磁気ディスクでも、
磁気テープでもかまわない。そして、本発明の第1の特
徴における「所定の方向」とは磁気記録再生装置のヘッ
ドがつくる媒体面における磁束の方向と直角方向を言
い、つまり円周方向でなければならない。つまり、一般
的には、磁気ディスクの場合であれば、磁気ディスクの
半径方向、磁気テープの場合であれば磁気テープのおお
むねテープ幅方向である。また、熱処理時の磁界Hは軟
磁性下地層が磁化困難軸で飽和する大きさである。熱処
理時の雰囲気は真空中若しくは不活性ガス中でもかまわ
ない。
In order to achieve the above object, a method for manufacturing a perpendicular magnetic recording medium according to the first aspect of the present invention comprises the steps of (a) forming a perpendicular magnetic recording layer and a soft magnetic layer on a non-magnetic substrate. Forming a multilayer structure by forming an underlayer and (b)
After the formation of the multilayer structure, the multilayer structure is subjected to a heat treatment at a heat treatment temperature T (unit: absolute temperature) and a heat treatment time τ (unit: time) in a state in which a magnetic field H is applied in a predetermined direction, to thereby form a soft magnetic underlayer. Aligning the magnetization in a predetermined direction. Further, in the method for manufacturing the perpendicular magnetic recording medium according to the first aspect of the present invention, the heat treatment time τ of the heat treatment performed after the formation of the multilayer structure is such that C 1 is the material of the soft magnetic underlayer and the magnetic recording medium. A constant determined by the structure, τ ≧ C, where Tc (unit: absolute temperature) is the crystallization temperature of the soft magnetic underlayer.
1 is the time that satisfies the relationship of (Tc-T) / T. Here, "perpendicular magnetic recording medium" refers to a magnetic disk,
A magnetic tape may be used. The "predetermined direction" in the first aspect of the present invention refers to the direction perpendicular to the direction of the magnetic flux on the medium surface created by the head of the magnetic recording / reproducing apparatus, that is, it must be the circumferential direction. That is, generally, in the case of a magnetic disk, it is in the radial direction of the magnetic disk, and in the case of a magnetic tape, generally in the width direction of the magnetic tape. The magnetic field H at the time of the heat treatment has such a magnitude that the soft magnetic underlayer saturates on the hard axis. The atmosphere during the heat treatment may be in a vacuum or an inert gas.

【0014】軟磁性膜を、所定の方向と強度の磁界H印
加のもとで熱処理した場合の、熱と磁界の作用による原
子の移動に伴う磁壁の変化は、次の(1)式に示すよう
に自然対数的に変化すると考えられる。すなわち、所定
の方向に磁界Hを印加した場合の、その方向を磁化容易
軸とする時間tにおける異方性磁界Hk(t)の変化は、 Hk(t)=Hk(0)・{1-2exp(-at)} ・・・・・ (1) で表すことができる。ここで、Hk(0)は熱処理前
(t=0)における軟磁性下地層の異方性磁界である。
また、aは、異方性磁界Hk(t)の時間変化の程度を
示す定数で、熱処理温度T(絶対温度)の関数として、 a=K・T/(Tc−T) ・・・・・ (2) と示される。ここでKは磁気記録媒体の構造及びその材
料により定まる定数であり、実験(経験則)により求め
ることが出来る。Co−Zr系アモルファス軟磁性膜を
軟磁性下地層とした場合について、例示すれば、後述す
る本発明者の実験結果により、2層構造の垂直磁気記録
媒体の場合にはK=0.140に近い値をとることが新
たな知見として得られている。
When the soft magnetic film is heat-treated under the application of a magnetic field H of a predetermined direction and strength, the change of the domain wall due to the movement of atoms due to the action of heat and a magnetic field is expressed by the following equation (1). It is thought to change in a natural logarithmic manner. That is, when the magnetic field H is applied in a predetermined direction, the change in the anisotropic magnetic field Hk (t) at the time t with the direction as the easy axis of magnetization is expressed as Hk (t) = Hk (0) · {1- 2exp (-at)}... (1) Here, Hk (0) is the anisotropic magnetic field of the soft magnetic underlayer before the heat treatment (t = 0).
A is a constant indicating the degree of time change of the anisotropic magnetic field Hk (t), and as a function of the heat treatment temperature T (absolute temperature), a = K · T / (Tc−T) (2) is indicated. Here, K is a constant determined by the structure of the magnetic recording medium and its material, and can be obtained by an experiment (empirical rule). For example, when the Co—Zr-based amorphous soft magnetic film is used as a soft magnetic underlayer, K = 0.140 in the case of a perpendicular magnetic recording medium having a two-layer structure according to experimental results of the present inventors described later. Taking close values has been obtained as new knowledge.

【0015】一方、(1)式を用いれば、異方性磁界H
k(t)=0となる熱処理時間τは、以下の(3)式で求
められる。
On the other hand, if equation (1) is used, the anisotropic magnetic field H
The heat treatment time τ at which k (t) = 0 is obtained by the following equation (3).

【0016】 τ=-log(1/2)/a≒0.7/a ・・・・・(3) 従って、本発明者の実験による新たな知見として得られ
たKの値(例えば、Co−Zr系アモルファス軟磁性膜
に対してはK=0.140である。)を(2)式に用
い、(2)式から得られる定数aを(3)式に対して用
いれば、多層構造の成膜後に行う熱処理の熱処理におけ
る熱処理温度Tと最短熱処理時間τとの関係が定められ
る。つまり、本発明の第1の特徴に係る垂直磁気記録媒
体の製造方法においては、τ≧C(Tc−T)/Tな
る関係を満足する熱処理時間τで、熱処理すれば、軟磁
性下地層が、成膜直後の磁化容易軸の方向に関係なく、
印加した磁界Hの方向に磁化および磁化容易軸を揃える
ことが可能である。たとえば、Co−Zr系アモルファ
ス軟磁性膜を軟磁性下地層とした場合については、C
=5となり、τ≧5(Tc−T)/Tなる関係を満足す
る熱処理時間τで、熱処理すればよいことになる。
Τ = −log (1/2) /a≒0.7/a (3) Therefore, it can be obtained as a new finding by the experiment of the present inventor.
K value (for example, Co-Zr-based amorphous soft magnetic film
Is K = 0.140. ) For equation (2)
The constant a obtained from the equation (2) is used for the equation (3).
In the heat treatment of the heat treatment performed after the formation of the multilayer structure,
The relationship between the heat treatment temperature T and the shortest heat treatment time τ is determined.
You. That is, the perpendicular magnetic recording medium according to the first feature of the present invention.
In the body manufacturing method, τ ≧ C1(Tc-T) / T
Heat treatment with a heat treatment time τ that satisfies the relationship
Irrespective of the direction of the axis of easy magnetization immediately after film formation,
Align magnetization and easy axis of magnetization in the direction of applied magnetic field H
It is possible. For example, a Co-Zr-based amorphous
When the soft magnetic film is a soft magnetic underlayer, C 1
= 5, which satisfies the relationship τ ≧ 5 (Tc−T) / T
The heat treatment may be performed for a heat treatment time τ.

【0017】この結果、2層構造の垂直磁気記録媒体で
あっても、成膜後の磁界中熱処理により、外部印加磁界
に対して媒体ノイズが小さい磁気記録媒体が得られる。
また、成膜後の磁界中熱処理は簡単な構造の熱処理装置
でよいので、一度に大量に熱処理可能であり、大量生産
に好適である。
As a result, even in the case of a perpendicular magnetic recording medium having a two-layer structure, a magnetic recording medium having small medium noise with respect to an externally applied magnetic field can be obtained by heat treatment in a magnetic field after film formation.
Further, since heat treatment in a magnetic field after film formation can be performed by a heat treatment apparatus having a simple structure, heat treatment can be performed in a large amount at a time, which is suitable for mass production.

【0018】本発明の第2の特徴に係る垂直磁気記録媒
体の製造方法は、(イ)非磁性基板上に、硬磁性ピンニ
ング層、軟磁性下地層及び垂直磁気記録層とを成膜し多
層構造を形成する工程と、(ロ)この多層構造の成膜後
に、多層構造を、所定方向に磁界を印加した状態で熱処
理温度T(単位:絶対温度)及び熱処理時間τ(単位:
時間)で熱処理を行い、軟磁性下地層の磁化を所定方向
に揃える工程とから少なくともなる。更に、本発明の第
2の特徴に係る垂直磁気記録媒体の製造方法において
は、多層構造の成膜後に行う熱処理の熱処理時間τと
は、Cを前記軟磁性下地層の材料及び磁気記録媒体の
構造によって定まる定数、軟磁性下地層の結晶化温度を
Tc(単位:絶対温度)としてτ≧C(Tc−T)/
T なる関係を満足する時間である。第1の特徴と同様
に、「垂直磁気記録媒体」とは、磁気ディスクでも、磁
気テープでもかまわない。そして、「所定の方向」と
は、磁気記録再生装置のヘッドがつくる媒体面における
磁束の方向と直角方向を言い、つまり円周方向でなけれ
ばならない。また、熱処理時の磁界Hは軟磁性下地層が
磁化困難軸で飽和する大きさである。熱処理時の雰囲気
は真空中若しくは不活性ガス中でもかまわない。
According to a second aspect of the present invention, there is provided a method for manufacturing a perpendicular magnetic recording medium, comprising the steps of (a) forming a hard magnetic pinning layer, a soft magnetic underlayer, and a perpendicular magnetic recording layer on a non-magnetic substrate; Step of forming a structure, and (b) after forming the multilayer structure, heat treatment temperature T (unit: absolute temperature) and heat treatment time τ (unit:
Time) to align the magnetization of the soft magnetic underlayer in a predetermined direction. Further, in the method for manufacturing a perpendicular magnetic recording medium according to the second aspect of the present invention, the heat treatment time τ of the heat treatment performed after the formation of the multilayer structure is such that C 2 is the material of the soft magnetic underlayer and the magnetic recording medium. Τ ≧ C 2 (Tc−T) /, where Tc (unit: absolute temperature) is a constant determined by the structure of
It is time to satisfy the relationship T. Similarly to the first feature, the “perpendicular magnetic recording medium” may be a magnetic disk or a magnetic tape. The "predetermined direction" refers to a direction perpendicular to the direction of the magnetic flux on the medium surface created by the head of the magnetic recording / reproducing apparatus, that is, it must be the circumferential direction. The magnetic field H at the time of the heat treatment has such a magnitude that the soft magnetic underlayer saturates on the hard axis. The atmosphere during the heat treatment may be in a vacuum or an inert gas.

【0019】本発明の第1の特徴において説明したよう
に、軟磁性膜が、所定の方向に、所定の強度の磁界H印
加のもとで熱処理した場合の、熱と磁界の作用による原
子の移動に伴う磁壁の変化は、(1)式で示され、異方
性磁界Hk(t)の時間変化の程度を示す定数aは、
(2)式で示される。そして、(2)式を規定している
磁気記録媒体の構造及びその材料により定まる定数K
は、本発明者の実験結果によれば、軟磁性下地層の材料
の関数として定まり、Co−Zr系アモルファス軟磁性
下地層/硬磁性ピンニング層の場合にはK=0.20に
近い値をとる。異方性磁界Hk(t)=0となる熱処理
時間τは、(3)式で求められるので、(2)式と(3)式と
を用いると、3層構造の成膜後に行う熱処理の熱処理に
おける熱処理温度Tと最短熱処理時間τとの関係が定め
られる。つまり、本発明の第2の特徴に係る垂直磁気記
録媒体の製造方法においては、τ≧C(Tc−T)/
Tなる関係を満足する熱処理時間τで、熱処理すれば、
硬磁性ピンニング層及び軟磁性下地層が、成膜直後の磁
化容易軸の方向に関係なく、印加した磁界Hの方向に磁
化および磁化容易軸を揃えることが可能である。たとえ
ば、Co−Zr系アモルファス軟磁性膜を軟磁性下地層
とした場合については、C=3.5となり、τ≧3.
5(Tc−T)/Tなる関係を満足する熱処理時間τ
で、熱処理すればよいことになる。
As described in the first aspect of the present invention, when the soft magnetic film is heat-treated in a predetermined direction under the application of a magnetic field H having a predetermined intensity, the action of heat and a magnetic field causes the atomic force of atoms. The change of the domain wall due to the movement is expressed by the equation (1), and the constant a indicating the degree of the time change of the anisotropic magnetic field Hk (t) is
It is shown by equation (2). Then, a constant K determined by the structure and the material of the magnetic recording medium that defines the equation (2)
Is determined as a function of the material of the soft magnetic underlayer according to the experimental results of the present inventors. In the case of the Co—Zr-based amorphous soft magnetic underlayer / hard magnetic pinning layer, a value close to K = 0.20 is obtained. Take. Since the heat treatment time τ at which the anisotropic magnetic field Hk (t) = 0 is obtained by the equation (3), using the equations (2) and (3), the heat treatment time after the film formation of the three-layer structure is obtained. The relationship between the heat treatment temperature T and the shortest heat treatment time τ in the heat treatment is determined. That is, in the method for manufacturing the perpendicular magnetic recording medium according to the second aspect of the present invention, τ ≧ C 2 (Tc−T) /
If the heat treatment is performed for a heat treatment time τ that satisfies the relationship T,
The magnetization and the axis of easy magnetization can be aligned in the direction of the applied magnetic field H regardless of the direction of the axis of easy magnetization immediately after the hard magnetic pinning layer and the soft magnetic underlayer are formed. For example, when a Co—Zr amorphous soft magnetic film is used as the soft magnetic underlayer, C 2 = 3.5 and τ ≧ 3.
Heat treatment time τ that satisfies the relationship of 5 (Tc−T) / T
Then, heat treatment may be performed.

【0020】本発明の第2の特徴に係る垂直磁気記録媒
体の製造方法によれば、3層構造の垂直磁気記録媒体の
成膜時に、第2従来技術のように一定方向に磁界を印加
する必要がない。従って、成膜装置の選択の自由が増大
し、成膜時に磁界印加構造の困難な量産用の成膜装置を
使用して、一度に多数枚を成膜可能である。そして、成
膜後の磁界中熱処理により、多数枚の垂直磁気記録媒体
のそれぞれの硬磁性ピンニング層と軟磁性下地層の磁化
および磁化容易軸を所定の方向に揃えることが可能であ
る。従って、成膜時に磁界出来ない量産用の成膜装置を
使用した場合においても、外部印加磁界に対して媒体ノ
イズが小さく、かつ外部印加磁界に対して記録信号の安
定性が高い磁気記録媒体を簡単に得られる。また、成膜
後の磁界中熱処理も、一度に大量に処理可能であるため
生産性が高い。また、数10MHz以上の高周波領域で
高い透磁率μを得ることが可能である。
According to the method for manufacturing a perpendicular magnetic recording medium according to the second aspect of the present invention, a magnetic field is applied in a fixed direction as in the second prior art when a perpendicular magnetic recording medium having a three-layer structure is formed. No need. Therefore, the freedom of selecting a film forming apparatus is increased, and a large number of films can be formed at once using a film forming apparatus for mass production in which a magnetic field applying structure is difficult at the time of film forming. Then, the magnetization and the axis of easy magnetization of each of the hard magnetic pinning layer and the soft magnetic underlayer of the many perpendicular magnetic recording media can be aligned in a predetermined direction by a magnetic field heat treatment after the film formation. Therefore, even when using a film-forming apparatus for mass production that cannot produce a magnetic field during film formation, a magnetic recording medium with low medium noise with respect to an externally applied magnetic field and high stability of a recording signal with respect to an externally applied magnetic field is used. Easy to get. In addition, since heat treatment in a magnetic field after film formation can be performed in a large amount at a time, productivity is high. Further, it is possible to obtain a high magnetic permeability μ in a high frequency region of several tens of MHz or more.

【0021】なお、本発明の第1及び第2の特徴に係る
垂直磁気記録媒体の製造方法において、垂直磁気記録層
の上に保護層を積層してもかまわず、熱処理は、垂直磁
気記録層の上に保護層を積層した後で実施することが可
能である。
In the method for manufacturing a perpendicular magnetic recording medium according to the first and second aspects of the present invention, a protective layer may be laminated on the perpendicular magnetic recording layer. Can be performed after a protective layer is laminated on the substrate.

【0022】[0022]

【発明の実施の形態】まず、本発明の実施の形態を説明
する前に、前述した(1)式に規定された異方性磁界Hk
(t)の時間変化の程度を示す定数a、及び前述した
(2)式に規定された磁気記録媒体の構造及びその材料に
より定まる定数Kを実験的に求める。この定数a、定数
Kの導出のための実験においては、第2従来技術に示し
た磁気記録媒体の製造方法に従い、DCマグネトロンス
パッタリング装置を用いた軟磁性下地層の成膜時に基板
の半径方向に磁界を印加することによって、磁化容易軸
を半径方向に揃えたサンプルを作成した。つまり、定数
a、定数Kの実験的導出のためのサンプルとして: サンプルA:ディスク状のガラス基板(非磁性基板)上
に、軟磁性Co91−Zr5−Nb4at%膜(=C
o:91at%、Zr:5at%、Nb:4at%)を
600nmを成膜したもの; サンプルB:ディスク状のガラス基板(非磁性基板)上
に、硬磁性ピンニング層としてCo83−Sm17at
%を150nmを成膜した上に軟磁性Co91−Zr5
−Nb4at%膜を600nmを成膜したもの の2種類のサンプルを用意する。成膜中は第2従来技術
に記載のようなDCマグネトロンスパッタリング装置の
磁石によって、2.4〜5.6kA/mの磁界が基板の
半径方向に加えてあり、硬磁性ピンニング層と軟磁性下
地層の磁化および磁化容易軸は、基板の半径方向に揃え
られる。これらの膜の異方性磁界Hkは、サンプルAが
1.2kA/m、サンプルBが1.4kA/mである。
また、ここで用いたCo−Zr−Nb膜の結晶化温度T
cは約400℃(670K)である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing an embodiment of the present invention, an anisotropic magnetic field Hk defined by the above-mentioned equation (1) will be described.
A constant a indicating the degree of time change of (t), and
A constant K determined by the structure and the material of the magnetic recording medium defined by the equation (2) is experimentally obtained. In an experiment for deriving the constant a and the constant K, in accordance with the method of manufacturing a magnetic recording medium described in the second prior art, a soft magnet underlayer was formed using a DC magnetron sputtering apparatus in the radial direction of the substrate. By applying a magnetic field, a sample was prepared in which the axes of easy magnetization were aligned in the radial direction. That is, as a sample for experimental derivation of the constant a and the constant K: Sample A: On a disk-shaped glass substrate (non-magnetic substrate), a soft magnetic Co91-Zr5-Nb4 at% film (= C
o: 91 at%, Zr: 5 at%, Nb: 4 at%) having a thickness of 600 nm; Sample B: Co83-Sm17at as a hard magnetic pinning layer on a disk-shaped glass substrate (non-magnetic substrate)
% And a soft magnetic Co91-Zr5
Two kinds of samples are prepared by forming a 600 nm Nb 4 at% film. During the film formation, a magnetic field of 2.4 to 5.6 kA / m is applied in the radial direction of the substrate by a magnet of a DC magnetron sputtering apparatus as described in the second prior art, and the hard magnetic pinning layer and the soft magnetic The magnetization and easy axis of the formation are aligned in the radial direction of the substrate. The anisotropic magnetic field Hk of these films is 1.2 kA / m for sample A and 1.4 kA / m for sample B.
Further, the crystallization temperature T of the Co—Zr—Nb film used here
c is about 400 ° C. (670 K).

【0023】次いでこれらサンプルA及びサンプルBの
膜を、それぞれ、所定の大きさの矩形に切り出し、10
−2Pa以下の真空中で、それぞれの磁化困難軸方向に
約40kA/mの磁界を印加して、熱処理温度Tおよび
熱処理時間τを変えて熱処理を行なった。熱処理温度T
=200℃、250℃、300℃とした。そのときのC
o−Zr−Nb層の異方性磁界Hkを図4に示す。異方
性磁界Hkは磁化困難軸方向のM−Hカーブから求め
た。また異方性磁界Hkの符号は、熱処理前の初期状態
を負とし、熱処理によって印加磁界の方向に磁化容易軸
が一致した場合を正とする。
Next, the films of Sample A and Sample B are cut into rectangles of a predetermined size, respectively.
In a vacuum of −2 Pa or less, a magnetic field of about 40 kA / m was applied in each hard axis direction, and the heat treatment was performed while changing the heat treatment temperature T and the heat treatment time τ. Heat treatment temperature T
= 200 ° C, 250 ° C, and 300 ° C. C at that time
FIG. 4 shows the anisotropic magnetic field Hk of the o-Zr-Nb layer. The anisotropic magnetic field Hk was determined from the MH curve in the direction of the hard axis. The sign of the anisotropic magnetic field Hk is negative in the initial state before the heat treatment, and positive when the axis of easy magnetization matches the direction of the applied magnetic field due to the heat treatment.

【0024】この結果を異方性磁界Hkの時間変化とし
て表したものを図5〜図7に示す。これらの時間変化は
それぞれの図中に示した式でフィッティングすることが
できる。これより、式(1)および(2)におけるCo−Z
r系アモルファス軟磁性下地層に対する定数aおよび定
数Kを求めたものを図8に示す。
FIGS. 5 to 7 show the results as a time change of the anisotropic magnetic field Hk. These time changes can be fitted by the equations shown in the respective figures. Thus, Co-Z in equations (1) and (2)
FIG. 8 shows the calculated constants a and K for the r-based amorphous soft magnetic underlayer.

【0025】図5〜図8に明らかなように、熱処理温度
Tが高いほど、異方性磁界Hkの時間変化は急峻であ
り、定数aの値は大きくなるのに対し、定数Kの値は熱
処理温度Tによらずほぼ一定で、磁気記録媒体の構造及
びその材料により規定されることがわかる。つまり、定
数Kの値は、サンプルAで0.14、サンプルBで0.
20に近い値をとることがわかる。この結果、(1)式に
規定された異方性磁界Hk(t)の時間変化の程度を示
す定数a、及び(2)式に規定された磁気記録媒体の構造
及びその材料により定まる定数Kが実験的に求められた
ことになる。
As is clear from FIGS. 5 to 8, as the heat treatment temperature T increases, the time change of the anisotropic magnetic field Hk becomes sharper, and the value of the constant a increases, whereas the value of the constant K increases. It can be seen that it is almost constant regardless of the heat treatment temperature T and is defined by the structure of the magnetic recording medium and its material. That is, the value of the constant K is 0.14 for sample A and 0.
It can be seen that the value is close to 20. As a result, a constant a indicating the degree of time change of the anisotropic magnetic field Hk (t) defined by the equation (1) and a constant K determined by the structure and the material of the magnetic recording medium defined by the equation (2) Is determined experimentally.

【0026】以下、図面を参照して本発明の実施の形態
を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0027】(磁界中熱処理装置)図1は、本発明の実
施の形態に係る垂直磁気記録媒体の磁界中熱処理を説明
するための磁界中熱処理装置の概略断面図である。図1
に示す磁界中熱処理装置では、図示を省略した真空チャ
ンバー内の中央部近傍に、N極を上にした第1の希土類
永久磁石41が配置され、この第1の希土類永久磁石4
1を周回するように、S極を上にした第2の希土類永久
磁石42が配置されている。そして、これら第1と第2
の希土類永久磁石41,42の上方には、複数枚の垂直
磁気記録媒体21a,21b,21c,21dを縦方向
に配置可能な、非磁性材料からなる基板ホルダ(図示省
略)が配置されている。この際、第1,第2の希土類永
久磁石41,42の極性は、複数枚の垂直磁気記録媒体
21a,21b,21c,21dと対向する上面側が、
図1に示したように互いに逆方向となるように設定して
いる。例えば、第1の希土類永久磁石41の上面がN極
であれば、第2の希土類永久磁石42の上面はS極とな
っている。さらに、基板ホルダの周辺には、ハロゲンラ
ンプ等の赤外線(IR)ランプ(図示省略)が配置さ
れ、複数枚の垂直磁気記録媒体21a,21b,21
c,21dを均一性良く、一定温度に加熱できるように
構成されている。図示を省略した真空チャンバーには、
真空排気系とガス導入系が接続され、Arガス等の不活
性ガスをマスフローコントローラ等を介して所定の流量
で導入可能なようになっている。
(Heat Treatment Apparatus in a Magnetic Field) FIG. 1 is a schematic sectional view of a heat treatment apparatus in a magnetic field for explaining heat treatment in a magnetic field of a perpendicular magnetic recording medium according to an embodiment of the present invention. FIG.
In the magnetic field heat treatment apparatus shown in FIG. 1, a first rare earth permanent magnet 41 with its N pole facing upward is arranged near the center of a vacuum chamber (not shown).
A second rare-earth permanent magnet 42 with its south pole facing upward is arranged so as to orbit around the first permanent magnet 1. And these first and second
Above the rare earth permanent magnets 41 and 42, a substrate holder (not shown) made of a non-magnetic material is arranged, on which a plurality of perpendicular magnetic recording media 21a, 21b, 21c and 21d can be arranged in the vertical direction. . At this time, the polarities of the first and second rare-earth permanent magnets 41 and 42 are such that the upper surface facing the plurality of perpendicular magnetic recording media 21a, 21b, 21c and 21d has
The directions are set to be opposite to each other as shown in FIG. For example, if the upper surface of the first rare earth permanent magnet 41 is an N pole, the upper surface of the second rare earth permanent magnet 42 is an S pole. Further, an infrared (IR) lamp (not shown) such as a halogen lamp is arranged around the substrate holder, and a plurality of perpendicular magnetic recording media 21a, 21b, 21 are provided.
It is configured so that c and 21d can be heated to a constant temperature with good uniformity. In the vacuum chamber not shown,
An evacuation system and a gas introduction system are connected so that an inert gas such as Ar gas can be introduced at a predetermined flow rate via a mass flow controller or the like.

【0028】このように、図1に示す磁界中熱処理装置
は、大量の枚数の垂直磁気記録媒体に対して一定方向の
磁界Hを印加しながら、所定の熱処理温度Tと熱処理時
間τにおいて、同時に熱処理可能なように構成されてい
る。
As described above, the heat treatment apparatus in a magnetic field shown in FIG. 1 simultaneously applies a magnetic field H in a certain direction to a large number of perpendicular magnetic recording media and simultaneously performs the heat treatment at a predetermined heat treatment temperature T and heat treatment time τ. It is configured to be heat-treatable.

【0029】なお、第1と第2の希土類永久磁石41,
42の代わりに電磁石を用いてもかまわない。電磁石を
用いれば、所望の磁界強度が自由に選択可能である。い
ずれにしても、熱処理時の磁界Hは、軟磁性下地層が磁
化困難軸で飽和する大きさの磁界強度が得られるように
しておけばよい。
The first and second rare earth permanent magnets 41,
An electromagnet may be used instead of 42. If an electromagnet is used, a desired magnetic field strength can be freely selected. In any case, the magnetic field H at the time of the heat treatment may be set so as to obtain a magnetic field strength that is large enough to saturate the soft magnetic underlayer with the hard axis.

【0030】また、基板加熱方式は、上述のIRランプ
加熱方式以外に、抵抗加熱方式等他の方式を採用しても
かまわない。
As the substrate heating method, other methods such as a resistance heating method may be employed in addition to the above-described IR lamp heating method.

【0031】(第1の実施の形態)図2は本発明の第1
の実施の形態に係る垂直磁気記録媒体の構成を模式的に
示す部分断面図である。図2に示すように、この垂直磁
気記録媒体は、鏡面研磨した円板状のガラス基板(非磁
性基板)11と、このガラス基板11の上に順に形成さ
れた軟磁性下地層14、垂直磁気記録層15及び保護層
16とから構成されている。
(First Embodiment) FIG. 2 shows a first embodiment of the present invention.
FIG. 3 is a partial cross-sectional view schematically illustrating a configuration of a perpendicular magnetic recording medium according to an embodiment. As shown in FIG. 2, this perpendicular magnetic recording medium includes a disk-shaped glass substrate (non-magnetic substrate) 11 having a mirror-polished surface, a soft magnetic underlayer 14 formed on the glass substrate 11 in order, and a perpendicular magnetic recording medium. It comprises a recording layer 15 and a protective layer 16.

【0032】本発明の第1の実施の形態に係る垂直磁気
記録媒体の製造に際しては、量産用の成膜装置を用い
る。即ち、ガラス基板11に形成する各層14,15,
16の成膜は、量産用のスパッタリング装置を使用し、
第2従来技術とは異なり、軟磁性下地層の成膜時に基板
の半径方向に磁界を印加はしていない。成膜条件は、ガ
ス圧0.067PaのAr雰囲気で、基板温度を150
℃〜250℃とする。なお、ターゲットは、例えば軟磁
性下地層14用としてのCo88−Zr7−Nb5at
%合金を使用し、垂直磁気記録層15用としてCo81
−Cr15−Ta4at%合金を使用し、保護層16用
としてSiOを使用する。
In manufacturing the perpendicular magnetic recording medium according to the first embodiment of the present invention, a film forming apparatus for mass production is used. That is, each layer 14, 15, formed on the glass substrate 11,
The film formation of 16 uses a sputtering device for mass production,
Unlike the second conventional technique, no magnetic field is applied in the radial direction of the substrate when forming the soft magnetic underlayer. The film forming conditions are as follows.
C. to 250C. The target is, for example, Co88-Zr7-Nb5at for the soft magnetic underlayer 14.
% Alloy and Co81 for the perpendicular magnetic recording layer 15
Use the -Cr15-Ta4at% alloy, using SiO 2 as a protective layer 16.

【0033】以下、本発明の第1の実施の形態に係る垂
直磁気記録媒体の製造方法を具体的に説明する。
Hereinafter, a method of manufacturing the perpendicular magnetic recording medium according to the first embodiment of the present invention will be specifically described.

【0034】(イ)まず、直径95mmの鏡面仕上げの
ソーダライムガラス基板11を複数枚用意し、これをパ
レット式の基板ホルダー上に固定し、Co88−Zr7
−Nb5at%合金をターゲットとして軟磁性下地層1
4を600nm成膜後、直ちにCo81−Cr15−T
a4at%合金をターゲットとして垂直磁気記録層15
を75nm成膜する。ここで直ちに成膜することによ
り、Co−Zr−NbとCo−Cr−Taとが直接結合
し、強く垂直配向する垂直磁気記録層15が得られる。
最後に保護層16としてSiOを10nm形成する。
(A) First, a plurality of mirror-finished soda-lime glass substrates 11 having a diameter of 95 mm are prepared and fixed on a pallet-type substrate holder to obtain Co88-Zr7.
Soft magnetic underlayer 1 with a target of -Nb 5 at% alloy
4 immediately after forming the film with a thickness of 600 nm, Co81-Cr15-T
perpendicular magnetic recording layer 15 using a4 at% alloy as a target
Is deposited to a thickness of 75 nm. By immediately forming a film here, the perpendicular magnetic recording layer 15 in which Co-Zr-Nb and Co-Cr-Ta are directly bonded and strongly vertically oriented is obtained.
Finally, 10 nm of SiO 2 is formed as the protective layer 16.

【0035】(ロ)このようにして成膜を終えた後、図
1に示す磁界中熱処理装置を用いて、磁界中熱処理を行
う。即ち、図示を省略した、基板ホルダに、上述の複数
枚の垂直磁気記録媒体21a,21b,21c,21d
を挿入し、Arガス等の不活性ガスをマスフローコント
ローラ等を介して所定の流量で導入する。そして、τ≧
5(Tc−T)/Tなる関係で規定される熱処理温度T
と熱処理時間τを維持するようにしながら磁界中熱処理
を行う。図1では、N極を上にした第1の希土類永久磁
石41が配置され、この第1の希土類永久磁石41を周
回するように、S極を上にした第2の希土類永久磁石4
2が配置されているため、複数枚の垂直磁気記録媒体2
1a,21b,21c,21dのそれぞれに対して半径
方向に一定の磁界Hが印加できる。熱処理時の磁界Hは
軟磁性下地層が磁化困難軸で飽和する大きさであればよ
く、例えば、40kA/m程度の磁界Hを印加すればよ
い。なお、図1は、垂直磁気記録媒体が無い場合の磁力
線を模式的に示したものであり、実際には各垂直磁気記
録媒体21a,21b,21c,21dの内部におい
て、磁力線は、垂直磁気記録媒体の半径方向、即ち垂直
磁気記録媒体の主表面に並行方向に延びる。
(B) After the film formation is completed in this manner, a magnetic field heat treatment is performed using the magnetic field heat treatment apparatus shown in FIG. That is, the above-described plurality of perpendicular magnetic recording media 21a, 21b, 21c, 21d are placed on a substrate holder (not shown).
And an inert gas such as Ar gas is introduced at a predetermined flow rate via a mass flow controller or the like. And τ ≧
Heat treatment temperature T defined by the relationship of 5 (Tc-T) / T
And heat treatment in a magnetic field while maintaining the heat treatment time τ. In FIG. 1, a first rare earth permanent magnet 41 having an N pole facing upward is disposed, and a second rare earth permanent magnet 4 having an S pole facing upward is arranged so as to circumvent the first rare earth permanent magnet 41.
2 are arranged, so that a plurality of perpendicular magnetic recording media 2
A constant magnetic field H can be applied to each of 1a, 21b, 21c, 21d in the radial direction. The magnetic field H at the time of the heat treatment may be such that the soft magnetic underlayer saturates along the hard axis, for example, a magnetic field H of about 40 kA / m may be applied. FIG. 1 schematically shows lines of magnetic force when there is no perpendicular magnetic recording medium. Actually, the lines of magnetic force are perpendicular to each other in each of the perpendicular magnetic recording media 21a, 21b, 21c, and 21d. It extends in the radial direction of the medium, that is, in the direction parallel to the main surface of the perpendicular magnetic recording medium.

【0036】本発明の第1の実施の形態に係る垂直磁気
記録媒体の製造方法によれば、成膜後の磁界中熱処理に
より、軟磁性下地層の磁化および磁化容易軸は、各垂直
磁気記録媒体の半径方向に揃えられるので、外部印加磁
界に対して媒体ノイズが小さい磁気記録媒体が得られ
る。また、パレット式の基板ホルダーを有する量産用の
スパッタリング装置を使用して、成膜可能であり、成膜
後の磁界中熱処理も、一度に大量に処理可能であるため
生産性が高い。また、数10MHz以上の高周波領域で
高い透磁率μを得ることが可能である。
According to the method of manufacturing the perpendicular magnetic recording medium according to the first embodiment of the present invention, the magnetization and the easy axis of the soft magnetic underlayer are changed by the perpendicular magnetic recording by the heat treatment in the magnetic field after the film formation. Since the medium is aligned in the radial direction of the medium, a magnetic recording medium with small medium noise with respect to an externally applied magnetic field can be obtained. In addition, film formation can be performed using a sputtering apparatus for mass production having a pallet-type substrate holder, and heat treatment in a magnetic field after film formation can be performed in a large amount at a time, so that productivity is high. Further, it is possible to obtain a high magnetic permeability μ in a high frequency region of several tens of MHz or more.

【0037】(第2の実施の形態)図3は本発明の第2
の実施の形態に係る垂直磁気記録媒体の構成を模式的に
示す部分断面図である。図3に示すように、この垂直磁
気記録媒体は、鏡面研磨した円板状のガラス基板(非磁
性基板)11と、このガラス基板11の上に順に形成さ
れた硬磁性ピンニング層13、軟磁性下地層14、垂直
磁気記録層15及び保護層16とから構成されている。
(Second Embodiment) FIG. 3 shows a second embodiment of the present invention.
FIG. 3 is a partial cross-sectional view schematically illustrating a configuration of a perpendicular magnetic recording medium according to an embodiment. As shown in FIG. 3, the perpendicular magnetic recording medium includes a mirror-polished disk-shaped glass substrate (non-magnetic substrate) 11, a hard magnetic pinning layer 13 formed on the glass substrate 11, and a soft magnetic layer. It comprises an underlayer 14, a perpendicular magnetic recording layer 15, and a protective layer 16.

【0038】本発明の第2の実施の形態に係る垂直磁気
記録媒体の製造に際しては、量産用の成膜装置を用い
る。即ち、ガラス基板11に形成する各層13,14,
15,16の成膜においては、第2従来技術とは異な
り、成膜時に基板の半径方向に磁界を印加はしていな
い。
In manufacturing the perpendicular magnetic recording medium according to the second embodiment of the present invention, a film forming apparatus for mass production is used. That is, each of the layers 13, 14 formed on the glass substrate 11,
Unlike the second conventional technique, no magnetic field is applied to the substrates 15 and 16 in the radial direction of the substrate during the film formation.

【0039】成膜条件は、ガス圧0.067〜0.13
PaのAr雰囲気で、基板温度を150℃〜250℃と
する。なお、硬磁性ピンニング層13用ターゲットとし
ては、Co上のエロージョンエリアとなるべき近辺に、
サマリウム(Sm)のチップ(サイズ:5×5×1m
m)を多数個配置して構成した複合ターゲットを使用す
る。また、軟磁性下地層14用ターゲットとしては、C
o89−Zr5−Nb4at%合金を使用し、垂直磁気
記録層15用ターゲットとしては、Co81−Cr15
−Ta4at%合金を使用し、保護層16用ターゲット
としては、SiO を使用する。
The film forming conditions are such that the gas pressure is 0.067 to 0.13.
In an Ar atmosphere of Pa, the substrate temperature is set to 150 ° C. to 250 ° C.
I do. The target for the hard magnetic pinning layer 13 was
Near the erosion area on Co
Samarium (Sm) chips (size: 5 x 5 x 1 m
m) using a composite target composed of a large number of
You. Further, as a target for the soft magnetic underlayer 14, C
o89-Zr5-Nb4at% alloy, perpendicular magnetic
As a target for the recording layer 15, Co81-Cr15
-Target for protective layer 16 using Ta4 at% alloy
As SiO 2Use

【0040】以下、本発明の第2の実施の形態に係る垂
直磁気記録媒体の製造方法を具体的に説明する。
Hereinafter, a method for manufacturing a perpendicular magnetic recording medium according to the second embodiment of the present invention will be specifically described.

【0041】(イ)まず、直径95mmの鏡面仕上げさ
れたソーダライムガラス基板(非磁性基板)11を複数
枚用意し、これをパレット式の基板ホルダー上に固定
し、上述したCo−Sm複合ターゲットをターゲットと
して硬磁性ピンニング層13を100乃至200nmの
膜厚で成膜する。硬磁性ピンニング層13中のSmの組
成は、複合ターゲット上のSmチップ数と配置関係及び
スパッタ電力によって変化するが、得られたSm組成比
は11〜33at%であった。次いで、Co89−Zr
5−Nb4at%合金をターゲットとして軟磁性下地層
14を600nm成膜後、直ちにCo81−Cr15−
Ta4at%合金をターゲットとして垂直磁気記録層1
5を75nm成膜する。ここで直ちに成膜することによ
り、Co−Zr−NbとCo−Cr−Taとが直接結合
し、強く垂直配向する垂直磁気記録層15が得られる。
最後に保護層16としてSiOを15nm形成する。
(A) First, a plurality of soda lime glass substrates (non-magnetic substrates) 11 having a mirror finish of 95 mm in diameter are prepared and fixed on a pallet-type substrate holder. The hard magnetic pinning layer 13 is formed to a thickness of 100 to 200 nm using the target as a target. The composition of Sm in the hard magnetic pinning layer 13 varies depending on the number of Sm chips on the composite target, the arrangement relationship, and the sputtering power, but the obtained Sm composition ratio was 11 to 33 at%. Then, Co89-Zr
Immediately after forming the soft magnetic underlayer 14 to a thickness of 600 nm using a 5-Nb4 at% alloy as a target, Co81-Cr15-
Perpendicular magnetic recording layer 1 targeting at 4 at% alloy
5 is deposited to a thickness of 75 nm. By immediately forming a film here, the perpendicular magnetic recording layer 15 in which Co-Zr-Nb and Co-Cr-Ta are directly bonded and strongly vertically oriented is obtained.
Finally, 15 nm of SiO 2 is formed as the protective layer 16.

【0042】(ロ)このようにして成膜を終えた後、図
1に示す磁界中熱処理装置を用いて、磁界中熱処理を行
う。即ち、図示を省略した、基板ホルダに、上述の複数
枚の垂直磁気記録媒体21a,21b,21c,21d
を挿入し、Arガス等の不活性ガスをマスフローコント
ローラ等を介して所定の流量で導入する。そして、τ≧
3.5(Tc−T)/Tなる関係式で規定される熱処理
温度Tと熱処理時間τを維持するようにしながら磁界中
熱処理を行う。図1では、N極を上にした第1の希土類
永久磁石41が配置され、この第1の希土類永久磁石4
1を周回するように、S極を上にした第2の希土類永久
磁石42が配置されているため、複数枚の垂直磁気記録
媒体21a,21b,21c,21dのそれぞれに対し
て半径方向に一定の磁界Hが印加でき、硬磁性ピンニン
グ層13と軟磁性下地層14の磁化および磁化容易軸
は、各垂直磁気記録媒体21a,21b,21c,21
dの半径方向に揃えられる。熱処理時の磁界Hは軟磁性
下地層が磁化困難軸で飽和する大きさであればよく、例
えば、40kA/m程度の磁界Hを印加すればよい。
(B) After the film formation is completed in this manner, a heat treatment in a magnetic field is performed using the heat treatment apparatus in a magnetic field shown in FIG. That is, the above-described plurality of perpendicular magnetic recording media 21a, 21b, 21c, 21d are placed on a substrate holder (not shown).
And an inert gas such as Ar gas is introduced at a predetermined flow rate via a mass flow controller or the like. And τ ≧
The heat treatment in the magnetic field is performed while maintaining the heat treatment temperature T and the heat treatment time τ defined by the relational expression of 3.5 (Tc−T) / T. In FIG. 1, a first rare earth permanent magnet 41 having an N pole facing upward is arranged.
1 so that the second rare earth permanent magnet 42 with the S pole facing upward is disposed so as to orbit around the first magnetic recording medium 1. Magnetic field H can be applied, and the magnetization and the axis of easy magnetization of the hard magnetic pinning layer 13 and the soft magnetic underlayer 14 are perpendicular to the respective perpendicular magnetic recording media 21a, 21b, 21c, 21.
d are aligned in the radial direction. The magnetic field H at the time of the heat treatment may be such that the soft magnetic underlayer saturates along the hard axis, for example, a magnetic field H of about 40 kA / m may be applied.

【0043】本発明の第2の実施の形態に係る垂直磁気
記録媒体の製造方法によれば、垂直磁気記録媒体の成膜
時に、第2従来技術のように成膜中に基板の半径方向に
磁界を印加する必要がない。従って、成膜装置の選択の
自由が増大し、例えば、パレット式の基板ホルダーを有
する量産用の成膜装置を使用して、一度に多数枚を成膜
可能である。そして、成膜後の磁界中熱処理により、多
数枚の垂直磁気記録媒体のそれぞれの硬磁性ピンニング
層と軟磁性下地層の磁化および磁化容易軸は、各垂直磁
気記録媒体の半径方向に揃えることが可能である。従っ
て、量産用の成膜装置を使用した場合においても、外部
印加磁界に対して媒体ノイズが小さく、かつ外部印加磁
界に対して記録信号の安定性が高い磁気記録媒体を簡単
に得られる。また、成膜後の磁界中熱処理も、一度に大
量に処理可能であるため生産性が高い。また、数10M
Hz以上の高周波領域で高い透磁率μを得ることが可能
である。
According to the method for manufacturing a perpendicular magnetic recording medium according to the second embodiment of the present invention, when the perpendicular magnetic recording medium is formed, as in the second prior art, the film is formed in the radial direction of the substrate during the film formation. There is no need to apply a magnetic field. Therefore, the freedom of selecting a film forming apparatus is increased, and for example, a large number of films can be formed at once using a film forming apparatus for mass production having a pallet-type substrate holder. Then, by heat treatment in a magnetic field after the film formation, the magnetization and the axis of easy magnetization of each of the hard magnetic pinning layer and the soft magnetic underlayer of many perpendicular magnetic recording media can be aligned in the radial direction of each perpendicular magnetic recording medium. It is possible. Therefore, even when a film forming apparatus for mass production is used, it is possible to easily obtain a magnetic recording medium having low medium noise with respect to an externally applied magnetic field and high stability of a recording signal with respect to an externally applied magnetic field. In addition, since heat treatment in a magnetic field after film formation can be performed in a large amount at a time, productivity is high. In addition, several 10M
It is possible to obtain a high magnetic permeability μ in a high frequency region of not less than Hz.

【0044】[0044]

【発明の効果】本発明の垂直磁気記録媒体の製造方法に
よれば、2層構造の垂直磁気記録媒体であっても、成膜
後の磁界中熱処理により、媒体ノイズが小さく再生出力
の高い磁気記録媒体を安価且つ大量に提供することが可
能である。
According to the method of manufacturing a perpendicular magnetic recording medium of the present invention, even in the case of a perpendicular magnetic recording medium having a two-layer structure, the medium noise is small and the reproducing output is high due to heat treatment in a magnetic field after film formation. It is possible to provide a large amount of recording media at low cost.

【0045】本発明の垂直磁気記録媒体の製造方法によ
れば、成膜後の磁界中熱処理により磁化および磁化容易
軸を揃えるようにしたので、3層構造の垂直磁気記録媒
体を大量生産用の成膜装置を使用して成膜可能である。
このため、媒体ノイズが小さく、再生出力が高く、且つ
信号の安定性が高い3層構造の磁気記録媒体を大量に生
産することが可能である。
According to the method of manufacturing a perpendicular magnetic recording medium of the present invention, the magnetization and the axis of easy magnetization are aligned by heat treatment in a magnetic field after film formation. A film can be formed using a film forming apparatus.
For this reason, it is possible to mass-produce a three-layer magnetic recording medium with low medium noise, high reproduction output, and high signal stability.

【0046】本発明の垂直磁気記録媒体の製造方法によ
れば、数10MHz以上の高周波領域で高い透磁率μを
有した磁気記録媒体を大量に生産することが可能であ
る。
According to the method for manufacturing a perpendicular magnetic recording medium of the present invention, it is possible to mass-produce a magnetic recording medium having a high magnetic permeability μ in a high frequency region of several tens of MHz or more.

【0047】本発明の垂直磁気記録媒体の製造方法によ
れば、高性能且つ高品質な垂直磁気記録媒体を安価且つ
大量に提供することが可能である。
According to the method for manufacturing a perpendicular magnetic recording medium of the present invention, it is possible to provide a high-performance and high-quality perpendicular magnetic recording medium at low cost and in large quantities.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の垂直磁気記録媒体の磁界中熱処理を実
施するための磁界中熱処理装置の概略断面図である。
FIG. 1 is a schematic sectional view of a magnetic field heat treatment apparatus for performing a magnetic field heat treatment of a perpendicular magnetic recording medium of the present invention.

【図2】本発明の第1の実施の形態に係る垂直磁気記録
媒体の構成を模式的に示す部分断面図である。
FIG. 2 is a partial cross-sectional view schematically showing a configuration of the perpendicular magnetic recording medium according to the first embodiment of the present invention.

【図3】本発明の第2の実施の形態に係る垂直磁気記録
媒体の構成を模式的に示す部分断面図である。
FIG. 3 is a partial cross-sectional view schematically illustrating a configuration of a perpendicular magnetic recording medium according to a second embodiment of the present invention.

【図4】本発明の定数a及び定数Kを実験的に求めるた
めに、熱処理温度Tおよび熱処理時間τを変えて熱処理
を行なった場合の異方性磁界Hkを示す表である。
FIG. 4 is a table showing the anisotropic magnetic field Hk when the heat treatment is performed by changing the heat treatment temperature T and the heat treatment time τ in order to experimentally obtain the constant a and the constant K of the present invention.

【図5】熱処理温度T=200℃の場合の異方性磁界H
kの時間変化を示す図である。
FIG. 5 shows an anisotropic magnetic field H at a heat treatment temperature T = 200 ° C.
FIG. 7 is a diagram showing a change over time of k.

【図6】熱処理温度T=250℃の場合の異方性磁界H
kの時間変化を示す図である。
FIG. 6 shows an anisotropic magnetic field H at a heat treatment temperature T = 250 ° C.
FIG. 7 is a diagram showing a change over time of k.

【図7】熱処理温度T=300℃の場合の異方性磁界H
kの時間変化を示す図である。
FIG. 7 shows an anisotropic magnetic field H at a heat treatment temperature T = 300 ° C.
FIG. 7 is a diagram showing a change over time of k.

【図8】図5〜図7を用いて、式(1)および(2)におけ
る定数aおよび定数Kを求めた結果を示す表である。
FIG. 8 is a table showing the results of obtaining constants a and K in equations (1) and (2) using FIGS.

【図9】第2従来技術に示されたDCマグネトロンスパ
ッタリング装置を用いた磁界を印加しながら成膜する手
法を説明するための概念図である。
FIG. 9 is a conceptual diagram for explaining a method of forming a film while applying a magnetic field using a DC magnetron sputtering apparatus shown in the second prior art.

【符号の説明】[Explanation of symbols]

1 円形基板 2 クロム層 3 硬磁性下地層 4 軟磁性下地層 5 垂直磁気記録層 6 保護層 9 回転中心軸 10 垂直磁気記録媒体 41 第1の永久磁石 42 第2の希土類永久磁石 43 ターゲット Reference Signs List 1 circular substrate 2 chromium layer 3 hard magnetic underlayer 4 soft magnetic underlayer 5 perpendicular magnetic recording layer 6 protective layer 9 rotation center axis 10 perpendicular magnetic recording medium 41 first permanent magnet 42 second rare earth permanent magnet 43 target

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板上に、軟磁性下地層と垂直磁
気記録層とを成膜し多層構造を形成する工程と、 前記成膜後に、前記多層構造を、所定方向に磁界を印加
した状態で熱処理温度T(単位:絶対温度)及び熱処理
時間τ(単位:時間)で熱処理を行い、前記軟磁性下地
層の磁化を前記所定方向に揃える工程とから少なくとも
なる垂直磁気記録媒体の製造方法であって、 前記熱処理時間τは、Cを前記軟磁性下地層の材料及
び磁気記録媒体の構造によって定まる定数、前記軟磁性
下地層の結晶化温度をTc(単位:絶対温度)として、
τ≧C(Tc−T)/Tなる関係を満足する時間であ
ることを特徴とする垂直磁気記録媒体の製造方法。
1. A step of forming a soft magnetic underlayer and a perpendicular magnetic recording layer on a non-magnetic substrate to form a multilayer structure, and applying a magnetic field to the multilayer structure in a predetermined direction after the film formation. Performing a heat treatment at a heat treatment temperature T (unit: absolute temperature) and a heat treatment time τ (unit: time) in the state, and aligning the magnetization of the soft magnetic underlayer in the predetermined direction. In the heat treatment time τ, C 1 is a constant determined by the material of the soft magnetic underlayer and the structure of the magnetic recording medium, and the crystallization temperature of the soft magnetic underlayer is Tc (unit: absolute temperature).
A method for manufacturing a perpendicular magnetic recording medium, wherein the time satisfies the relationship of τ ≧ C 1 (Tc−T) / T.
【請求項2】 非磁性基板上に、硬磁性ピンニング層、
軟磁性下地層及び垂直磁気記録層とを成膜し多層構造を
形成する工程と、 前記成膜後に、前記多層構造を、所定方向に磁界を印加
した状態で熱処理温度T(単位:絶対温度)及び熱処理
時間τ(単位:時間)で熱処理を行い、前記軟磁性下地
層の磁化を前記所定方向に揃える工程とから少なくとも
なる垂直磁気記録媒体の製造方法であって、 前記熱処理時間τは、Cを前記軟磁性下地層の材料及
び磁気記録媒体の構造によって定まる定数、前記軟磁性
下地層の結晶化温度をTc(単位:絶対温度)として、
τ≧C(Tc−T)/T なる関係を満足する時間で
あることを特徴とする垂直磁気記録媒体の製造方法。
2. A hard magnetic pinning layer on a non-magnetic substrate,
A step of forming a soft magnetic underlayer and a perpendicular magnetic recording layer to form a multilayer structure; and after the film formation, the multilayer structure is subjected to a heat treatment temperature T (unit: absolute temperature) while applying a magnetic field in a predetermined direction. And performing a heat treatment for a heat treatment time τ (unit: time) to align the magnetization of the soft magnetic underlayer in the predetermined direction, wherein the heat treatment time τ is C 2 is a constant determined by the material of the soft magnetic underlayer and the structure of the magnetic recording medium, and the crystallization temperature of the soft magnetic underlayer is Tc (unit: absolute temperature).
A method for manufacturing a perpendicular magnetic recording medium, wherein the time satisfies the relationship of τ ≧ C 2 (Tc−T) / T.
JP28875999A 1999-10-08 1999-10-08 Method of manufacturing rependicular magnetic recording medium Pending JP2001110044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28875999A JP2001110044A (en) 1999-10-08 1999-10-08 Method of manufacturing rependicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28875999A JP2001110044A (en) 1999-10-08 1999-10-08 Method of manufacturing rependicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2001110044A true JP2001110044A (en) 2001-04-20

Family

ID=17734350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28875999A Pending JP2001110044A (en) 1999-10-08 1999-10-08 Method of manufacturing rependicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2001110044A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272999A (en) * 2006-03-31 2007-10-18 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
JP2007280455A (en) * 2006-04-04 2007-10-25 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium, its manufacturing method, and magnetic recording medium
KR100790502B1 (en) * 2007-02-12 2008-01-03 (주)충북소주 Method for preparing of clear strained rice wine containing incubated wild ginseng root
KR100790501B1 (en) * 2007-02-12 2008-01-03 (주)충북소주 Method for preparing of fruit wine containing incubated wild ginseng root

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272999A (en) * 2006-03-31 2007-10-18 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
JP2007280455A (en) * 2006-04-04 2007-10-25 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium, its manufacturing method, and magnetic recording medium
KR100790502B1 (en) * 2007-02-12 2008-01-03 (주)충북소주 Method for preparing of clear strained rice wine containing incubated wild ginseng root
KR100790501B1 (en) * 2007-02-12 2008-01-03 (주)충북소주 Method for preparing of fruit wine containing incubated wild ginseng root

Similar Documents

Publication Publication Date Title
JP4337209B2 (en) Permanent magnet thin film and manufacturing method thereof
JPH07129946A (en) Perpendicular magnetic recording medium
JP2001110044A (en) Method of manufacturing rependicular magnetic recording medium
US20080037407A1 (en) Method for Manufacturing Perpendicular Magnetic Recording Medium, Perpendicular Magnetic Recording Medium, and Magnetic Recording/Reproducing Apparatus
JP2007026514A (en) Perpendicular magnetic recording medium and its manufacturing method
JPH11191217A (en) Manufacture of perpendicular magnetic recording medium
JP2007164845A (en) Magnetic recording medium and manufacturing method
JPH01149245A (en) Magneto-optical recording medium having multiple recording layers and recording method thereof
JP2817870B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPWO2014103815A1 (en) Magnetic recording medium and method for manufacturing the same
JP2653237B2 (en) Manufacturing method of magnetic thin film
JP2004227667A (en) Method for manufacturing magnetic recording medium
JP4591806B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2003017320A (en) Permanent magnet thin film
JP2004014013A (en) Information recording medium and method for manufacturing the same
JPH04219912A (en) Formation of rare-earth thin film magnet
JP2003100543A (en) Method of forming magnetic film
JPS63140076A (en) Perpendicularly magnetized film
JPH10261520A (en) Magnetic recording medium and its manufacture
JPH04111302A (en) Artificial lattice film
JPS61199614A (en) Soft-magnetic amorphous film body
JPH05335169A (en) Forming method of magnetic thin film
KR100333496B1 (en) Method for thermal processing of magnetic thin film having high coercive force
JP2003123242A (en) Magnetic recording medium and magnetic memory device
JPH076916A (en) Rare earth alloy hard magnetic thin film and manufacture thereof