JPH07129946A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPH07129946A
JPH07129946A JP27768793A JP27768793A JPH07129946A JP H07129946 A JPH07129946 A JP H07129946A JP 27768793 A JP27768793 A JP 27768793A JP 27768793 A JP27768793 A JP 27768793A JP H07129946 A JPH07129946 A JP H07129946A
Authority
JP
Japan
Prior art keywords
underlayer
magnetic recording
recording medium
magnetic underlayer
perpendicular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27768793A
Other languages
Japanese (ja)
Other versions
JP2947029B2 (en
Inventor
Toshio Ando
敏男 安藤
Makoto Mizukami
誠 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP27768793A priority Critical patent/JP2947029B2/en
Publication of JPH07129946A publication Critical patent/JPH07129946A/en
Application granted granted Critical
Publication of JP2947029B2 publication Critical patent/JP2947029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To prevent the demagnetization of a medium due to turning, to reduce medium noise, to attain high reproduction output and to obtain a perpendicular magnetic recording medium having high performance and high quality. CONSTITUTION:A soft magnetic underlayer 4 and a perpendicular magnetic recording layer 5 are successively formed on a discoid substrate 1 to obtain a perpendicular magnetic recording medium 10, a hard magnetic underlayer 3 having magnetization whose entire direction is toward the periphery or center of the substrate 1 in the radial direction is interposed between the substrate 1 and the soft magnetic underlayer 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、垂直磁気記録媒体に係
り、特に軟磁性下地層を有する2層膜媒体に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium, and more particularly to a two-layer film medium having a soft magnetic underlayer.

【0002】[0002]

【従来の技術】垂直磁気記録は、面内磁気記録よりも高
密度記録ができることから注目されており、これに用い
る媒体としては、非磁性基板上に形成された軟磁性下地
層と垂直磁気記録層とからなる2層膜媒体が多く検討さ
れている。このような2層膜媒体は、単磁極型ヘッドと
組み合わせることにより、効率の良い磁気記録再生がで
きる。中でも、Co−Zr系アモルファス軟磁性膜を下
地層とする2層膜媒体は、垂直配向性の鋭い垂直磁気記
録層を得ることができるため、記録効率の向上には特に
有効である。
2. Description of the Related Art Perpendicular magnetic recording has attracted attention because it enables higher density recording than in-plane magnetic recording. As a medium used for this, a soft magnetic underlayer formed on a non-magnetic substrate and perpendicular magnetic recording are used. Many studies have been made on a two-layer film medium composed of two layers. By combining such a two-layer film medium with a single pole type head, efficient magnetic recording / reproducing can be performed. Among them, the two-layer film medium having the Co—Zr-based amorphous soft magnetic film as the underlayer can obtain a perpendicular magnetic recording layer having a sharp vertical orientation, and is particularly effective for improving the recording efficiency.

【0003】しかし、この2層膜媒体をディスク状の媒
体として用いる場合には、信号記録後に、媒体を回転さ
せているだけで時間とともに減磁して、信号強度が減衰
してしまうという問題がある。この減磁現象は、媒体が
回転する際に、地磁気等の外部磁界の影響により、アモ
ルファス軟磁性下地層の磁化が容易に反転し、これに伴
う強い垂直磁界を発生する磁壁の移動により、垂直磁気
記録層の記録情報が消去されるためと考えられている。
However, when this two-layer film medium is used as a disk-shaped medium, there is a problem that the signal intensity is attenuated by demagnetizing with time simply by rotating the medium after recording the signal. is there. When the medium rotates, this demagnetization phenomenon causes the magnetization of the amorphous soft magnetic underlayer to be easily reversed due to the effect of an external magnetic field such as the earth's magnetism. It is considered that the recorded information on the magnetic recording layer is erased.

【0004】そこで、本願出願人は先に、特願平4−1
03490号において、上記軟磁性下地層の上に針状粒
子を形成して表面に凹凸をつけることによって、減磁を
解消する方法を提案した。これを第1の従来例として説
明する。図3は、係る第1の従来例及び第2の比較例の
垂直磁気記録媒体の構成を模式的に示す部分断面図であ
る。同図において、21は鏡面研磨した円板状のガラス
基板であり、このガラス基板21の上には、例えばCo
−Zrを含むアモルファスの薄膜よりなる軟磁性下地層
24が形成されている。そして、この軟磁性下地層24
の表面には、多数の針状粒子27が形成される。この針
状粒子27としては軟磁性下地層24の構成材料である
Co−Zr系合金と固溶しにくい材料、例えばCu、S
n、Zn、Al、Cd、Pb等の金属やホイスカを形成
し易いものを用いる。そして、この針状粒子27の上に
垂直磁気記録層25が形成され、この垂直磁気記録層2
5の上には保護層26が形成された構成になっている。
Therefore, the applicant of the present application has previously filed Japanese Patent Application No. 4-1.
No. 03490 proposes a method of eliminating demagnetization by forming acicular particles on the soft magnetic underlayer to make the surface uneven. This will be described as a first conventional example. FIG. 3 is a partial cross-sectional view schematically showing the configurations of the perpendicular magnetic recording media of the first conventional example and the second comparative example. In the figure, 21 is a mirror-polished disk-shaped glass substrate, on which glass, for example, Co
A soft magnetic underlayer 24 made of an amorphous thin film containing -Zr is formed. Then, this soft magnetic underlayer 24
A large number of acicular particles 27 are formed on the surface of the. The needle-shaped particles 27 are made of a material that does not easily form a solid solution with the Co—Zr-based alloy that is a constituent material of the soft magnetic underlayer 24, such as Cu or S.
A metal such as n, Zn, Al, Cd, or Pb or a material that easily forms whiskers is used. Then, the perpendicular magnetic recording layer 25 is formed on the acicular particles 27, and the perpendicular magnetic recording layer 2 is formed.
5 has a structure in which a protective layer 26 is formed.

【0005】そして、このような構成の垂直磁気記録媒
体12では、軟磁性下地層24の磁壁の移動が、針状粒
子27の存在により抑制されるため、軟磁性下地層24
の保磁力Hcをある程度大きくすることができ、外部磁
界の影響による経時変化を抑えることができ、従って減
磁の問題を解消する事ができる。
In the perpendicular magnetic recording medium 12 having such a structure, the movement of the magnetic domain wall of the soft magnetic underlayer 24 is suppressed by the presence of the acicular particles 27, so that the soft magnetic underlayer 24 is formed.
The coercive force Hc can be increased to some extent, and the change over time due to the influence of the external magnetic field can be suppressed, and thus the problem of demagnetization can be solved.

【0006】また、本願出願人はさらに、特願平5−6
3528号において、上記軟磁性下地層と基板との間に
カ−ボン層を設けた後、真空中で熱処理することによっ
て、減磁を解消する方法も提案した。これを第2の従来
例として説明する。図9は、第2の従来例の垂直磁気記
録媒体の構成を模式的に示す部分断面図である。同図に
おいて、31は鏡面研磨した円板状のガラス基板であ
り、このガラス基板31の上には、例えば50nmの膜
厚のクロム層32が形成されている。このクロム層32
の上には、カ−ボン層37が形成されている。このカ−
ボン層37の上には、例えばCo−Zr−Nb系のアモ
ルファスの薄膜よりなる軟磁性下地層34が形成されて
いる。そして、この軟磁性下地層34の上には、例えば
Co−Cr−Ta系のアモルファス薄膜よりなる垂直磁
気記録層35が形成され、この垂直磁気記録層35の上
には、例えばSiO2 よりなる保護層36が形成されて
いる。このような構成を有する垂直記録媒体13を、真
空中で、回転磁界を作用させながら、熱処理を行う。
Further, the applicant of the present application is further in Japanese Patent Application No. 5-6.
In No. 3528, a method of eliminating demagnetization by providing a carbon layer between the soft magnetic underlayer and the substrate and then performing heat treatment in vacuum was also proposed. This will be described as a second conventional example. FIG. 9 is a partial cross-sectional view schematically showing the structure of the second conventional perpendicular magnetic recording medium. In the figure, 31 is a mirror-polished disk-shaped glass substrate, and a chromium layer 32 having a film thickness of, for example, 50 nm is formed on the glass substrate 31. This chrome layer 32
A carbon layer 37 is formed on the upper surface. This car
A soft magnetic underlayer 34 made of, for example, a Co—Zr—Nb-based amorphous thin film is formed on the Bon layer 37. Then, a perpendicular magnetic recording layer 35 made of, for example, a Co—Cr—Ta-based amorphous thin film is formed on the soft magnetic underlayer 34, and made of SiO 2 , for example, on the perpendicular magnetic recording layer 35. The protective layer 36 is formed. The perpendicular recording medium 13 having such a structure is heat-treated in a vacuum while applying a rotating magnetic field.

【0007】このようにして得られる垂直磁気記録媒体
13においては、カ−ボンが、軟磁性下地層34中に拡
散されることにより、軟磁性下地層34の結晶化温度が
低くなり、比較的低温の熱処理により軟磁性下地層34
の結晶化を制御して、その保磁力(Hc)を適度な値に
上昇することができるため、減磁を生じない垂直磁気記
録媒体13を得ることができる。
In the perpendicular magnetic recording medium 13 thus obtained, the carbon is diffused into the soft magnetic underlayer 34, so that the crystallization temperature of the soft magnetic underlayer 34 becomes low and the carbon becomes relatively low. Soft magnetic underlayer 34 by low temperature heat treatment
Since the coercive force (Hc) can be increased to an appropriate value by controlling the crystallization of (1), the perpendicular magnetic recording medium 13 that does not cause demagnetization can be obtained.

【0008】[0008]

【発明が解決しようとする課題】ところで、以上説明し
た方法は、いずれも軟磁性下地層の抗磁力(Hc)を高
くすることによって、媒体回転に伴い発生する減磁を防
止するものである。軟磁性下地層のHcを高くする事
は、この軟磁性下地層の透磁率μを低下させる事にな
り、垂直記録媒体からの高い再生出力を得るには不利と
なる。また、軟磁性下地層と垂直磁気記録層とから構成
される垂直磁気記録媒体においては、軟磁性下地層に磁
壁が存在するため、この磁壁に起因する媒体ノイズが発
生する。
By the way, in any of the methods described above, the coercive force (Hc) of the soft magnetic underlayer is increased to prevent demagnetization caused by rotation of the medium. Increasing the Hc of the soft magnetic underlayer lowers the magnetic permeability μ of the soft magnetic underlayer, which is disadvantageous for obtaining a high reproduction output from the perpendicular recording medium. In addition, in a perpendicular magnetic recording medium composed of a soft magnetic underlayer and a perpendicular magnetic recording layer, a domain wall exists in the soft magnetic underlayer, so that medium noise is generated due to the domain wall.

【0009】そこで、本発明は上記の点に着目して、垂
直磁気記録媒体において、媒体の回転による減磁を防止
し、媒体ノイズを低減し、高い再生出力を得ることが出
来るようにし、それにより、高性能且つ高品質な垂直磁
気記録媒体を提供することを目的とするものである。
In view of the above, the present invention prevents the demagnetization of the perpendicular magnetic recording medium due to the rotation of the medium, reduces the medium noise, and makes it possible to obtain a high reproduction output. Therefore, it is an object of the present invention to provide a high-performance and high-quality perpendicular magnetic recording medium.

【0010】[0010]

【課題を解決するための手段】請求項1による本発明の
垂直磁気記録媒体は、円板状の基板と、この基板上に形
成された軟磁性下地層と、この軟磁性下地層上に形成さ
れた垂直記録層とを備えた垂直磁気記録媒体において、
前記基板と前記軟磁性下地層との間に、全ての磁化方向
が前記基板の半径方向の外周向き或いは中心向きのいず
れかである磁化を有する硬磁性下地層を設けた事によ
り、上述の目的を達成するものである。
A perpendicular magnetic recording medium of the present invention according to claim 1 is a disk-shaped substrate, a soft magnetic underlayer formed on the substrate, and a soft magnetic underlayer formed on the soft magnetic underlayer. In a perpendicular magnetic recording medium having a perpendicular recording layer
By providing between the substrate and the soft magnetic underlayer a hard magnetic underlayer having a magnetization in which all the magnetization directions are either the outer peripheral direction or the central direction in the radial direction of the substrate, Is achieved.

【0011】また、請求項2による本発明の垂直磁気記
録媒体は、円板状の基板と、この基板上に形成された軟
磁性下地層と、この軟磁性下地層上に形成された垂直磁
気記録層とを備えた垂直磁気記録媒体において、前記基
板と前記軟磁性下地層との間に、全ての磁化方向が前記
基板の半径方向の外周向き或いは中心向きのいずれかで
あって配向方向が前記基板の面内である面内配向硬磁性
下地層を設けた事により、上述の目的を達成するもので
ある。
The perpendicular magnetic recording medium of the present invention according to claim 2 is a disk-shaped substrate, a soft magnetic underlayer formed on this substrate, and a perpendicular magnetic recording layer formed on this soft magnetic underlayer. In a perpendicular magnetic recording medium having a recording layer, between the substrate and the soft magnetic underlayer, all the magnetization directions are either the outer peripheral direction or the center direction in the radial direction of the substrate and the orientation direction is The above object is achieved by providing an in-plane oriented hard magnetic underlayer which is in the plane of the substrate.

【0012】また、請求項3による本発明の垂直磁気記
録媒体は、円板状の基板と、この基板上に形成された軟
磁性下地層と、この軟磁性下地層上に形成された垂直磁
気記録層とを備えた垂直磁気記録媒体において、前記基
板と前記軟磁性下地層との間に、全ての磁化が前記基板
の半径方向の外周向き或いは中心向きのいずれかであっ
て配向方向が前記半径方向である半径配向硬磁性下地層
を設けた事により、上述の目的を達成するものである。
The perpendicular magnetic recording medium of the present invention according to claim 3 is a disk-shaped substrate, a soft magnetic underlayer formed on the substrate, and a perpendicular magnetic layer formed on the soft magnetic underlayer. In a perpendicular magnetic recording medium provided with a recording layer, between the substrate and the soft magnetic underlayer, all the magnetizations are either in the radial direction toward the outer periphery or in the center, and the orientation direction is the above-mentioned direction. By providing the radially oriented hard magnetic underlayer in the radial direction, the above object is achieved.

【0013】また、請求項4による本発明の垂直磁気記
録媒体は、請求項3に記載の垂直磁気記録媒体であっ
て、前記半径配向硬磁性下地層をSm(サマリュウム)
を含むCo合金膜とした事により、上述の目的を達成す
るものである。
A perpendicular magnetic recording medium according to a fourth aspect of the present invention is the perpendicular magnetic recording medium according to the third aspect, wherein the radially oriented hard magnetic underlayer is Sm (samarium).
The above-mentioned object is achieved by using a Co alloy film containing

【0014】[0014]

【実施例】以下、添付図面を参照して本発明の実施例に
ついて説明する。 <実施例1>図1は、本発明の垂直磁気記録媒体の第1
の実施例の構成を模式的に示す部分断面図である。同図
に示すように、この垂直磁気記録媒体10は、鏡面研磨
した円板状のガラス基板1と、このガラス基板1の上に
順に形成されたクロム層2、硬磁性下地層3、軟磁性下
地層4、垂直磁気記録層5及び保護層6とから構成され
ている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Example 1 FIG. 1 shows a first example of the perpendicular magnetic recording medium of the present invention.
2 is a partial cross-sectional view schematically showing the configuration of the embodiment of FIG. As shown in FIG. 1, the perpendicular magnetic recording medium 10 includes a mirror-polished disk-shaped glass substrate 1, a chrome layer 2, a hard magnetic underlayer 3 and a soft magnetic layer which are sequentially formed on the glass substrate 1. It is composed of an underlayer 4, a perpendicular magnetic recording layer 5 and a protective layer 6.

【0015】以下、本発明の実施例1についてその具体
的な製造方法を説明する。ガラス基板1に形成する各層
2、3、4、5、6の成膜は、図7にその電極付近の概
略断面図を示したごときDCマグネトロンスパッタ装置
を用いておこなった。この装置では、例えばCo−Zr
−Nbのごときターゲット43の下方中央部には、第1
の希土類永久磁石41が、ターゲット43の下方外周部
には第2の希土類永久磁石42が配置されており、これ
ら第1と第2の希土類永久磁石41、42の極性は、図
7中に示したようにそれぞれ逆にしてある。また、ター
ゲット43の上方には、鏡面研磨した円板状のガラス基
板1が配置されている。このような配置によって、ガラ
ス基板1は前記した第1と第2の希土類永久磁石41、
42によって常にその半径方向に約4kA/mの磁界が
加えられる構成になっている。なお、これらの希土類永
久磁石41、42はマグネトロンの磁石としても作用
し、ターゲット43近傍のプラズマを集束させてハイレ
ートで成膜することにも寄与するものである。
A specific manufacturing method of the first embodiment of the present invention will be described below. The respective layers 2, 3, 4, 5, 6 formed on the glass substrate 1 were formed by using a DC magnetron sputtering apparatus as shown in the schematic sectional view of the vicinity of the electrodes in FIG. In this device, for example, Co-Zr
In the lower center part of the target 43 such as -Nb, the first
The rare earth permanent magnet 41 of FIG. 7 and the second rare earth permanent magnet 42 of the target 43 are arranged on the outer peripheral portion below the target 43. The polarities of the first and second rare earth permanent magnets 41 and 42 are shown in FIG. As you can see, they are reversed. In addition, above the target 43, a disk-shaped glass substrate 1 that is mirror-polished is arranged. With this arrangement, the glass substrate 1 has the first and second rare earth permanent magnets 41,
By 42, a magnetic field of about 4 kA / m is always applied in the radial direction. The rare earth permanent magnets 41 and 42 also act as magnetron magnets, and also contribute to focus plasma near the target 43 to form a film at a high rate.

【0016】また、この装置による成膜条件は、ガス圧
0.067PaのAr雰囲気で、電力密度を1.0〜
2.0W/cm2 、ターゲット−基板間距離を60m
m、基板温度を150℃〜250℃とした。なお、ター
ゲット43は硬磁性下地層3用として直径203mmの
Co−Cr15−Ta4 at%合金を使用し、軟磁性下地
層4用として直径203mmのCo−Zr7 −Nb5 a
t%合金を使用し、垂直磁気記録層5用として同サイズ
のCo−Cr15−Ta4 at%合金を使用し、保護層6
用として同サイズのSiO2 を使用した。
The film forming conditions for this apparatus are as follows: power density 1.0 to 1.0 in Ar atmosphere with gas pressure 0.067 Pa.
2.0 W / cm 2 , target-substrate distance 60 m
m, and the substrate temperature was 150 ° C to 250 ° C. The target 43 uses a Co-Cr15-Ta4 at% alloy having a diameter of 203 mm for the hard magnetic underlayer 3, and a Co-Zr7-Nb5 a having a diameter of 203 mm for the soft magnetic underlayer 4.
t% alloy, the same size Co-Cr15-Ta4 at% alloy is used for the perpendicular magnetic recording layer 5, and the protective layer 6 is used.
For the purpose, SiO 2 of the same size was used.

【0017】まず、直径95mmの鏡面仕上げのソーダ
ライムガラス基板1上にクロム層2を50乃至100n
mの膜厚で成膜し、その上に、Co−Cr15−Ta4 a
t%合金をタ−ゲット43として硬磁性下地層3を25
乃至200nmの膜厚で成膜した。クロム層2は、硬磁
性下地層3の磁化を面内配向させるために設けたもので
ある。なお、実際には、記録再生特性及び磁気特性に対
する硬磁性下地層3の膜厚依存性を見るために硬磁性下
地層3の膜厚について、25nm、50nm、100n
m、200nmの各膜厚のサンプルをそれぞれ複数個製
作した。
First, 50 to 100 n of a chromium layer 2 is formed on a mirror-finished soda lime glass substrate 1 having a diameter of 95 mm.
m film thickness and then Co-Cr15-Ta4a
With the t% alloy as the target 43, the hard magnetic underlayer 3 is 25
The film was formed to a thickness of 200 nm to 200 nm. The chrome layer 2 is provided for in-plane orientation of the magnetization of the hard magnetic underlayer 3. In practice, in order to see the film thickness dependence of the hard magnetic underlayer 3 on the recording / reproducing characteristics and the magnetic characteristics, the film thickness of the hard magnetic underlayer 3 is 25 nm, 50 nm, 100 n.
A plurality of samples having respective film thicknesses of m and 200 nm were manufactured.

【0018】次いで、Co−Zr7 −Nb5 at%合金
をターゲット43として軟磁性下地層4を500nm成
膜後、直ちにCo−Cr15−Ta4 at%合金をターゲ
ット43として垂直磁気記録層5を75nm成膜した。
ここで直ちに成膜することにより、Co−Zr−Nbと
Co−Cr−Taとが直接結合し、強く垂直配向する垂
直磁気記録層5が得られる。最後に保護層6としてSi
O2 を10nm形成した。このようにして成膜を終えた
後、磁界中熱処理を行った。図8は、垂直磁気記録媒体
10の製造工程の1つである磁界中熱処理を説明するた
めの概念図である。図8に示すように、10-3Pa以下
の真空中雰囲気において、24kA/mの磁界中で成膜
後の垂直磁気記録媒体10をその回転中心軸9の回りに
回転させながら、300℃で、3時間の熱処理を行なっ
て、垂直磁気記録媒体10を得た。
Then, a soft magnetic underlayer 4 having a thickness of 500 nm is formed using a Co-Zr7-Nb5 at% alloy as a target 43, and a perpendicular magnetic recording layer 5 having a thickness of 75 nm is immediately formed using a Co-Cr15-Ta4 at% alloy as a target 43. did.
By immediately forming a film here, Co-Zr-Nb and Co-Cr-Ta are directly bonded to each other, and the perpendicular magnetic recording layer 5 having a strong vertical orientation is obtained. Finally, as the protective layer 6, Si
O2 was formed to a thickness of 10 nm. After the film formation was completed in this way, heat treatment was performed in a magnetic field. FIG. 8 is a conceptual diagram for explaining heat treatment in a magnetic field, which is one of the manufacturing steps of the perpendicular magnetic recording medium 10. As shown in FIG. 8, in a vacuum atmosphere of 10 −3 Pa or less, at 300 ° C., while rotating the perpendicular magnetic recording medium 10 after film formation in a magnetic field of 24 kA / m around the rotation center axis 9 thereof. The perpendicular magnetic recording medium 10 was obtained by performing heat treatment for 3 hours.

【0019】ここで、本実施例1と特性比較するため
に、比較例1及び2の垂直磁気記録媒体を製作した。比
較例1の垂直磁気記録媒体11は、図2に示すように構
成されており、ガラス基板1と、この上に順に形成され
た軟磁性下地層4、垂直磁気記録層5及び保護層6とか
らなる。各層4、5、6の材質及び成膜条件は、上述の
実施例1の場合と同一である。
Here, in order to compare the characteristics with the first embodiment, perpendicular magnetic recording media of the first and second comparative examples were manufactured. The perpendicular magnetic recording medium 11 of Comparative Example 1 is configured as shown in FIG. 2, and includes a glass substrate 1, a soft magnetic underlayer 4, a perpendicular magnetic recording layer 5, and a protective layer 6 which are sequentially formed on the glass substrate 1. Consists of. The material and film forming conditions for each of the layers 4, 5 and 6 are the same as in the case of the above-described first embodiment.

【0020】比較例2の垂直磁気記録媒体12は、図3
に示した第1の従来例と同一の構成とした。具体的に
は、軟磁性下地層24、垂直磁気記録層25、保護層2
6及び針状粒子27を成膜ないし形成するために、上述
した図7に示される構造のDCマグネトロンスパッタ装
置を使用した。タ−ゲット43は、軟磁性下地層24用
として、直径203mmのCo−Zr7 −Nb5 at%
合金上に、不純物としてのCu(7×7×1mm)をエ
ロ−ジョンエリア上に16個配置したものを用い、また
垂直磁気記録層25用として、同サイズのCo−Cr15
−Ta4 at%合金を用い、保護膜26用として、同サ
イズのSiO2 を用いた。基板21としては、直径95
mmの鏡面仕上げしたソ−ダライムガラスを用いた。
The perpendicular magnetic recording medium 12 of Comparative Example 2 is shown in FIG.
The same configuration as the first conventional example shown in FIG. Specifically, the soft magnetic underlayer 24, the perpendicular magnetic recording layer 25, the protective layer 2
The DC magnetron sputtering apparatus having the structure shown in FIG. 7 described above was used for forming or forming 6 and the acicular particles 27. The target 43 is used for the soft magnetic underlayer 24 and has a diameter of 203 mm of Co-Zr7-Nb5 at%.
16 pieces of Cu (7 × 7 × 1 mm) as impurities are arranged on the erosion area on the alloy, and the same size of Co—Cr 15 is used for the perpendicular magnetic recording layer 25.
Using -Ta4 at% alloy, for the protective film 26, SiO 2 is used in the same size. The substrate 21 has a diameter of 95.
mm soda lime glass with a mirror finish was used.

【0021】成膜条件は、ガス圧0.067PaのAr
雰囲気とし、電力密度を1.0〜2.0W/cm2
し、タ−ゲット−基板間距離を60mmとし、基板温度
を150℃とした。まず、ガラス基板21上に、軟磁性
下地層24を500nmの厚さに形成し、直ちに垂直磁
気記録層25を75nmの厚さに形成し、その後保護層
26を20nmの厚さに形成し、垂直磁気記録媒体12
を得た。なお、軟磁性下地層24を形成するとき、タ−
ゲット43には、針状粒子27形成用の不純物としての
Cuが配置されているので、軟磁性下地層24の表面に
は多数のCu針状粒子27が形成されてる。
The film forming conditions are Ar with a gas pressure of 0.067 Pa.
The atmosphere was set, the power density was 1.0 to 2.0 W / cm 2 , the distance between the target and the substrate was 60 mm, and the substrate temperature was 150 ° C. First, the soft magnetic underlayer 24 is formed to a thickness of 500 nm on the glass substrate 21, the perpendicular magnetic recording layer 25 is immediately formed to a thickness of 75 nm, and then the protective layer 26 is formed to a thickness of 20 nm. Perpendicular magnetic recording medium 12
Got In addition, when forming the soft magnetic underlayer 24,
Since Cu as an impurity for forming the needle-shaped particles 27 is arranged in the get 43, many Cu needle-shaped particles 27 are formed on the surface of the soft magnetic underlayer 24.

【0022】次に、これらのサンプル(実施例1、比較
例1及び比較例2)の特性評価結果について説明する。
まず、記録再生特性について述べる。なお、これらのサ
ンプルについての記録再生特性は、トラック幅8μm、
主磁極厚0.4μm、コイル巻数60ターンの単磁極ヘ
ッドを用い、ディスク回転数2070rpm、線速度8
m/s、ヘッド浮上量80nmの条件で測定を行なっ
た。
Next, the characteristic evaluation results of these samples (Example 1, Comparative Example 1 and Comparative Example 2) will be described.
First, the recording / reproducing characteristics will be described. The recording / reproducing characteristics of these samples are as follows: track width 8 μm,
A single magnetic pole head having a main magnetic pole thickness of 0.4 μm and a coil winding number of 60 turns is used.
The measurement was performed under the conditions of m / s and head flying height of 80 nm.

【0023】100kHzの矩形波信号を記録再生し、
オシロスコ−プによって孤立波再生出力Ep-p (nV/
(μm・t・m/s))を測定した。ここで、再生出力
は、トラック幅(μm)、コイル巻数(t)及び線速度
(m/s)で、規格化してある。6.67MHzの信号
を記録再生し、そのときのノイズ成分とシステムノイズ
との差分を、帯域16MHzにわたってスペクトルアナ
ライザにより測定し、媒体ノイズ(μVrms )を得た。
また、垂直磁気記録媒体を回転開始した直後の再生出力
と、2×104 回転後の再生出力の比を減磁量(dB)
とした。一方、垂直磁気記録媒体の磁気特性について
は、VSMで評価した。各試料につき、M−H曲線を測
定し、軟磁性下地層/硬磁性下地層の複合層の透磁率μ
を得た。以上の測定結果を、表1に示す。
Recording and reproducing a rectangular wave signal of 100 kHz,
Oscilloscope - solitary wave by-flops reproduction output E pp (nV /
(Μm · t · m / s)) was measured. Here, the reproduction output is standardized by the track width (μm), the coil winding number (t), and the linear velocity (m / s). A signal of 6.67 MHz was recorded and reproduced, and the difference between the noise component and the system noise at that time was measured with a spectrum analyzer over a band of 16 MHz to obtain medium noise (μV rms ).
Also, the ratio between the reproduction output immediately after the perpendicular magnetic recording medium starts rotating and the reproduction output after 2 × 10 4 rotations is demagnetized (dB).
And On the other hand, the magnetic characteristics of the perpendicular magnetic recording medium were evaluated by VSM. For each sample, the MH curve was measured to determine the magnetic permeability μ of the composite layer of the soft magnetic underlayer / hard magnetic underlayer.
Got Table 1 shows the above measurement results.

【0024】[0024]

【表1】 [Table 1]

【0025】表1によれば、本発明の実施例1の垂直磁
気記録媒体10は、硬磁性下地層3を有しない比較例1
に対して、再生出力は同等であるが、媒体ノイズは低下
しており、結果として、S/Nが改善されており、減磁
量については測定限界程度にまで改善されており、減磁
量を改善した比較例2と同等である。なお、透磁率につ
いては、本発明の実施例1においては、下地層が軟磁性
下地層4のみからなる比較例1より劣るものの、針状粒
子を形成した比較例2より高い値を示している。
According to Table 1, the perpendicular magnetic recording medium 10 of Example 1 of the present invention does not have the hard magnetic underlayer 3 as Comparative Example 1.
On the other hand, the reproduction output is the same, but the medium noise is reduced, and as a result, the S / N is improved, and the demagnetization amount is improved to about the measurement limit. Is equivalent to Comparative Example 2 in which Regarding the magnetic permeability, in Example 1 of the present invention, although it was inferior to Comparative Example 1 in which the underlayer consisted only of the soft magnetic underlayer 4, it showed a higher value than Comparative Example 2 in which needle-shaped particles were formed. .

【0026】次に、軟磁性下地層/硬磁性下地層の複合
層のM−H(磁化)曲線を説明する。図5は、本発明の
垂直磁気記録媒体の第1の実施例を構成する軟磁性下地
層4/硬磁性下地層3の複合層のM−H曲線を示すグラ
フ図であり、横軸は印加磁界の強度を、縦軸は磁化を、
曲線l、mは飽和磁化曲線を、曲線n1、n2、n3は
マイナ−ル−プをそれぞれ示す。なお、このM−H曲線
の測定は基板の面内方向に磁界を印加して行ったので、
垂直磁気記録層5があっても、この垂直磁気記録層5
は、基板面に垂直方向に強い異方性を持つため、以下に
述べる測定結果に影響を与えない事が分かっている。
Next, the MH (magnetization) curve of the composite layer of the soft magnetic underlayer / hard magnetic underlayer will be described. FIG. 5 is a graph showing the MH curve of the composite layer of the soft magnetic underlayer 4 / hard magnetic underlayer 3 which constitutes the first embodiment of the perpendicular magnetic recording medium of the present invention, and the horizontal axis represents the applied voltage. The strength of the magnetic field, the vertical axis is the magnetization,
Curves l and m show saturation magnetization curves, and curves n1, n2 and n3 show minor loops. Since the measurement of the MH curve was performed by applying a magnetic field in the in-plane direction of the substrate,
Even if there is the perpendicular magnetic recording layer 5, this perpendicular magnetic recording layer 5
Has a strong anisotropy in the direction perpendicular to the substrate surface, and is known not to affect the measurement results described below.

【0027】まず、磁化されていない複合層に、正方向
に増加する磁界Hを印加すると、図に示されていない初
磁化曲線を辿り、正方向に磁化され、硬磁性下地層3を
正方向に充分飽和する磁界強度である500OeでA点
に達し、磁化Mは正方向に飽和する。次に、印加磁界H
を減少させると、磁化Mは曲線mを辿り減少していく。
磁界Hが0に達すると、今度は負方向に磁界Hを増加さ
せていく。磁界Hが−Hc(抗磁力)に達すると、磁化
Mは0となる。さらに、負方向に磁界Hを増加させる
と、複合層は負方向に磁化され、磁界Hが−H1(反転
磁界とする)になるとB点に達する。
First, when a magnetic field H which increases in the positive direction is applied to the non-magnetized composite layer, an initial magnetization curve not shown is followed, and the hard magnetic underlayer 3 is positively magnetized in the positive direction. At the magnetic field strength of 500 Oe which is sufficiently saturated, the point A is reached, and the magnetization M is saturated in the positive direction. Next, the applied magnetic field H
The magnetization M follows the curve m and decreases.
When the magnetic field H reaches 0, this time the magnetic field H is increased in the negative direction. When the magnetic field H reaches -Hc (coercive force), the magnetization M becomes zero. Further, when the magnetic field H is increased in the negative direction, the composite layer is magnetized in the negative direction, and reaches the point B when the magnetic field H becomes −H1 (reversal magnetic field).

【0028】次に、B点において磁界を反転し、正方向
に磁界Hを変化させていくと、M−H曲線はマイナ−ル
−プを描き、曲線n1に沿って磁化Mは変化していく。
そして、磁化Mが0となったときの磁界HをHm(H
1)として求める。さらに磁界Hを正方向に変化させて
いくと、正方向に磁化され、C点を経て、磁界Hが50
0Oeになると再びA点に達する。この操作を繰り返
し、正の飽和磁界から磁界Hを−H2まで減少させ、そ
こで正方向に変化させると曲線n2とHm(H2)、正
の飽和磁界から磁界Hを−H3まで減少させ、そこで正
方向に変化させると曲線n3とHm(H3)が得られ
る。なお、負方向に充分飽和する磁界強度は、−500
OeでD点で示される。
Next, when the magnetic field is inverted at point B and the magnetic field H is changed in the positive direction, the MH curve draws a minor loop, and the magnetization M changes along the curve n1. Go.
Then, the magnetic field H when the magnetization M becomes 0 is Hm (H
See 1). When the magnetic field H is further changed in the positive direction, it is magnetized in the positive direction, passes through the point C, and the magnetic field H becomes 50
When it reaches 0 Oe, point A is reached again. Repeating this operation, the magnetic field H is decreased from the positive saturation magnetic field to -H2, and when it is changed in the positive direction, the curves n2 and Hm (H2) are decreased, and the magnetic field H is decreased from the positive saturation magnetic field to -H3, and the positive magnetic field is decreased there. By changing the direction, the curves n3 and Hm (H3) are obtained. The magnetic field strength that saturates sufficiently in the negative direction is -500.
It is indicated by point D in Oe.

【0029】一方、図6に、第2の比較例の垂直磁気記
録媒体12を構成する軟磁性下地層4のM−H曲線を示
す。同図において、横軸は印加磁界の強度を、縦軸は磁
化を、曲線r、sは飽和磁化曲線を、曲線t1、t2、
t3はマイナ−ル−プをそれぞれ示す。なお、垂直磁気
記録層25の測定に与える影響は、上述の本発明の実施
例と同様に無視できる。
On the other hand, FIG. 6 shows the MH curve of the soft magnetic underlayer 4 which constitutes the perpendicular magnetic recording medium 12 of the second comparative example. In the figure, the horizontal axis represents the strength of the applied magnetic field, the vertical axis represents the magnetization, the curves r and s represent the saturation magnetization curves, and the curves t1, t2,
t3 represents a minor loop, respectively. The influence on the measurement of the perpendicular magnetic recording layer 25 can be ignored as in the above-described embodiment of the present invention.

【0030】まず、磁化されていない針状粒子27を含
む軟磁性下地層24に、正方向に増加する磁界Hを印加
すると、図に示されていない初磁化曲線を辿り、正方向
に磁化され、軟磁性下地層24を正方向に充分飽和する
磁界強度である500OeでA′点に達し、磁化Mは正
方向に飽和する。次に、印加磁界Hを減少させると、磁
化Mは曲線sを辿り減少していく。磁界Hが0に達する
と、今度は負方向に磁界Hを増加させていく。磁界Hが
−Hc(抗磁力)に達すると、磁化Mは0となる。さら
に、負方向に磁界Hを増加させると、軟磁性下地層24
は負方向に磁化され、磁界Hが−H1′(反転磁界とす
る)になるとB′点に達する。
First, when a magnetic field H increasing in the positive direction is applied to the soft magnetic underlayer 24 containing the non-magnetized needle-shaped particles 27, the initial magnetization curve not shown in the figure is traced and the magnetization is performed in the positive direction. At 500 Oe, which is a magnetic field strength sufficient to saturate the soft magnetic underlayer 24 in the positive direction, the point reaches the A'point, and the magnetization M is saturated in the positive direction. Next, when the applied magnetic field H is decreased, the magnetization M follows the curve s and decreases. When the magnetic field H reaches 0, this time the magnetic field H is increased in the negative direction. When the magnetic field H reaches -Hc (coercive force), the magnetization M becomes zero. Further, when the magnetic field H is increased in the negative direction, the soft magnetic underlayer 24
Is magnetized in the negative direction and reaches the point B'when the magnetic field H becomes -H1 '(reversal magnetic field).

【0031】次に、B点において磁界を反転し、正方向
に磁界Hを変化させていくと、M−H曲線はマイナ−ル
−プを描き、曲線t1に沿って磁化Mは変化していく。
そして、磁化Mが0となったときの磁界HをHm(H
1′)として求める。以下、上述の本実施例1の複合層
の場合と同様に測定した。
Next, when the magnetic field is reversed at point B and the magnetic field H is changed in the positive direction, the MH curve draws a minor loop, and the magnetization M changes along the curve t1. Go.
Then, the magnetic field H when the magnetization M becomes 0 is Hm (H
1 '). Hereinafter, the same measurement as in the case of the composite layer of Example 1 described above was performed.

【0032】このようにして、反転磁界Hと、反転磁界
Hの時の磁化が0になる磁界Hm(H)との関係を求め
たのが、図4であり、同図は、軟磁性下地層/硬磁性下
地層の磁化曲線における規格化した印加(反転)磁界H
/Hc(このHcは抗磁力である)とマイナ−ル−プの
Hm(H)との関係を示すグラフ図である。図4におい
は、複合層の硬磁性下地層3の膜厚を、25nm、50
nm、100nm、200nmとしたときの結果と、比
較例2の結果とを示してある。
In this way, the relationship between the reversal magnetic field H and the magnetic field Hm (H) at which the magnetization becomes 0 when the reversal magnetic field H is obtained is shown in FIG. Normalized applied (reversal) magnetic field H in the magnetization curve of the formation / hard magnetic underlayer
It is a graph which shows the relationship between / Hc (this Hc is a coercive force) and Hm (H) of a minor loop. In FIG. 4, the thickness of the hard magnetic underlayer 3 of the composite layer is set to 25 nm, 50
The results when the thickness is 100 nm, 100 nm, and 200 nm, and the results of Comparative Example 2 are shown.

【0033】本発明の実施例1のM−H曲線を示す図5
において特徴的なのは、Hm(H)が負になっているこ
とである。これは、図4において、Hm(H)が負の領
域にラインが存在する事に相当する。図5には、A、
B、C各点における磁化の方向を四角枠内の矢印で示し
てあり(上段は軟磁性下地層4、下段は硬磁性下地層3
の磁化の方向をそれぞれ示す)、B点では、軟磁性下地
層4のみが負の方向に反転し、硬磁性下地層3は正方向
に磁化しているために、軟磁性下地層4と硬磁性下地層
3との磁気的相互作用により、C点では磁界は負である
にもかかわらず、軟磁性下地層4の磁化は正方向に復帰
している。
FIG. 5 shows the MH curve of Example 1 of the present invention.
Is characteristic in that Hm (H) is negative. This corresponds to the presence of the line in the region where Hm (H) is negative in FIG. In FIG. 5, A,
The directions of magnetization at points B and C are indicated by arrows in a square frame (the upper part is the soft magnetic underlayer 4 and the lower part is the hard magnetic underlayer 3).
At the point B, only the soft magnetic underlayer 4 is inverted in the negative direction and the hard magnetic underlayer 3 is magnetized in the positive direction. Due to the magnetic interaction with the magnetic underlayer 3, the magnetization of the soft magnetic underlayer 4 is returned to the positive direction although the magnetic field is negative at point C.

【0034】図4において、本発明の実施例1では硬磁
性下地層3の膜厚に係わらず、いずれも負の領域までラ
インが伸びており、磁気的相互作用が強いことを示して
いる。なお、後述の実施例2の説明において詳細に説明
してあるが、軟磁性下地層/硬磁性下地層の複合膜につ
いて、それらの間に交換相互作用または静磁結合を仮定
してシミュレ−ションを行い、M−H曲線を得ている
が、この方法により、上述の磁気的相互作用は交換相互
作用であることが確認されている。
In FIG. 4, in Example 1 of the present invention, the line extends to the negative region regardless of the film thickness of the hard magnetic underlayer 3, indicating that the magnetic interaction is strong. It should be noted that, as described in detail in the following description of Example 2, the simulation is performed on the composite film of the soft magnetic underlayer / hard magnetic underlayer assuming exchange interaction or magnetostatic coupling between them. The above-mentioned magnetic interaction is confirmed to be an exchange interaction.

【0035】つまり、図5に示すように、見掛けのHc
は約6Oeと減磁やスパイクノイズを防止するのに充分
大きく、且つ、軟磁性下地層4自体のHc(soft)はそ
れよりもずっと小さい。その数値は,図4及び以下に示
す式で推定できる。つまり、図4において、磁界Hによ
ってHm(H)が変化しているのは、硬磁性下地層3の
残存磁化が変化しているためであり、横軸が|H|/H
c=1の点(Hm(1))では、硬磁性下地層3の磁化
変化がほとんど無いと考えられ、軟磁性下地層4の磁化
だけが反転した状態であり、このHm(1)と−Hcと
の差が軟磁性下地層4のみの場合の抗磁力(Hc(sof
t))の2倍と考えられる。すなわち、次の式で表され
る。
That is, as shown in FIG. 5, the apparent Hc
Is about 6 Oe, which is sufficiently large to prevent demagnetization and spike noise, and Hc (soft) of the soft magnetic underlayer 4 itself is much smaller than that. The numerical value can be estimated by FIG. 4 and the formula shown below. That is, in FIG. 4, Hm (H) is changed by the magnetic field H because the residual magnetization of the hard magnetic underlayer 3 is changed, and the horizontal axis is | H | / H.
At the point of c = 1 (Hm (1)), it is considered that there is almost no change in the magnetization of the hard magnetic underlayer 3, and only the magnetization of the soft magnetic underlayer 4 is reversed. When the difference from Hc is only the soft magnetic underlayer 4, the coercive force (Hc (sof
t)). That is, it is expressed by the following equation.

【0036】[0036]

【数1】 [Equation 1]

【0037】これより、軟磁性下地層4自体のHc(so
ft)は、硬磁性下地層3が50nm以上のものではHc
の15%(1Oe)程度、25nmのものでも40%
(2〜2.5Oe)程度と評価され、軟磁性下地層4が
本来持っている軟磁気特性を保持するのに充分小さい値
である。このため、表1に示すように透磁率μ及び再生
出力EP-P は高い値を維持している。これに対し図6に
示す比較例2では、軟磁性下地層24そのもののHcが
高くなっているため、Hm(H)は常にHcとほぼ等し
く、図4のラインが負になることはない(なお、図6に
おいて、四角枠内の矢印は、A′、B′、C′、D′各
点における磁化の向きを示す)。従って、軟磁気特性が
損なわれており、透磁率μが低くなっている。このこと
と、またCuが添加してあるため、磁束密度が下がって
いることで出力が低くなっている。
From this, the Hc (so
ft) is Hc when the hard magnetic underlayer 3 has a thickness of 50 nm or more.
15% (1 Oe) of 40% even at 25 nm
It is evaluated as about (2 to 2.5 Oe), which is a sufficiently small value to maintain the soft magnetic characteristics originally possessed by the soft magnetic underlayer 4. Therefore, as shown in Table 1, the magnetic permeability μ and the reproduction output E PP maintain high values. On the other hand, in Comparative Example 2 shown in FIG. 6, since Hc of the soft magnetic underlayer 24 itself is high, Hm (H) is almost equal to Hc and the line in FIG. 4 never becomes negative ( In FIG. 6, the arrows in the square frame indicate the directions of magnetization at the points A ', B', C'and D '). Therefore, the soft magnetic properties are impaired, and the magnetic permeability μ is low. Due to this fact and also because Cu is added, the magnetic flux density is lowered and the output is lowered.

【0038】なお、本実施例1において、円板状ガラス
基板上の硬磁性下地層を一方方向に磁化させるのには、
硬磁性下地層を形成するDCマグネトロンスパッタ時の
基板の半径方向に印加されている磁界によったが、これ
に限定されるものではなく、硬磁性下地層を形成後に、
半径方向の一方方向に着磁すること等によっても磁化出
来る事はいうまでもない。
In Example 1, in order to magnetize the hard magnetic underlayer on the disk-shaped glass substrate in one direction,
It depends on the magnetic field applied in the radial direction of the substrate at the time of DC magnetron sputtering for forming the hard magnetic underlayer, but the invention is not limited to this.
It goes without saying that magnetization can also be achieved by magnetizing in one direction in the radial direction.

【0039】<実施例2>図10は、本発明の垂直磁気
記録媒体の第2の実施例の構成を模式的に示す部分断面
図である。同図に示すように、垂直磁気記録媒体50
は、鏡面研磨した円板状のガラス基板1と、このガラス
基板1の上に順に形成された硬磁性下地層53、軟磁性
下地層4、垂直磁気記録層5及び保護層6とから構成さ
れている。
<Embodiment 2> FIG. 10 is a partial sectional view schematically showing the construction of a second embodiment of the perpendicular magnetic recording medium of the present invention. As shown in FIG.
Is composed of a disk-shaped glass substrate 1 which is mirror-polished, and a hard magnetic underlayer 53, a soft magnetic underlayer 4, a perpendicular magnetic recording layer 5 and a protective layer 6 which are sequentially formed on the glass substrate 1. ing.

【0040】以下、本発明の第2の実施例についてその
具体的な製造方法を説明する。ガラス基板1に形成する
各層53、4、5、6の成膜には、上述の実施例1の製
造に際して使用した図7に示される構造のDCマグネト
ロンスパッタ装置を使用した。
A concrete manufacturing method of the second embodiment of the present invention will be described below. For forming the layers 53, 4, 5, and 6 formed on the glass substrate 1, the DC magnetron sputtering apparatus having the structure shown in FIG. 7 used for manufacturing the above-described Example 1 was used.

【0041】成膜条件は、ガス圧0.067〜0.13
PaのAr雰囲気で、電力密度を0.5〜2.0W/c
2 、ターゲット−基板間距離を60mm、基板温度を
150℃〜250℃とした。なお、ターゲット43は硬
磁性下地層53用としては、直径203mmのCo上の
エロ−ジョンエリアとなるべき近辺に、Smのチップ
(サイズ:5×5×1mm)を32〜48個配置して構
成した複合タ−ゲットを使用した。また、ターゲット4
3は、軟磁性下地層4用としては、直径203mmのC
o−Zr5 −Nb4 at%合金を使用し、垂直磁気記録
層5用としては、同サイズのCo−Cr15−Ta4 at
%合金を使用し、保護層6用として同サイズのSiO2
を使用した。
The film forming conditions are gas pressure 0.067 to 0.13.
Power density of 0.5 to 2.0 W / c in Ar atmosphere of Pa
m 2 , the target-substrate distance was 60 mm, and the substrate temperature was 150 ° C to 250 ° C. As the target 43 for the hard magnetic underlayer 53, 32 to 48 Sm chips (size: 5 × 5 × 1 mm) are arranged near the erosion area on Co having a diameter of 203 mm. The constructed composite target was used. Also, target 4
3 is a C having a diameter of 203 mm for the soft magnetic underlayer 4.
o-Zr5-Nb4 at% alloy is used, and for the perpendicular magnetic recording layer 5, the same size Co-Cr15-Ta4 at is used.
% SiO 2 with the same size as the protective layer 6
It was used.

【0042】まず、直径95mmの鏡面仕上げされたソ
ーダライムガラス基板1上に、上述したCo−Sm複合
タ−ゲットをタ−ゲット43として硬磁性下地層53を
100乃至200nmの膜厚で成膜した。硬磁性下地層
53中のSmの組成は、複合タ−ゲット上のSmチップ
数と配置関係及びスパッタ電力によって変化するが、得
られたSm組成比は11〜33at%であった。
First, a hard magnetic underlayer 53 having a film thickness of 100 to 200 nm is formed on a mirror-finished soda lime glass substrate 1 having a diameter of 95 mm by using the above Co-Sm composite target as a target 43. did. The composition of Sm in the hard magnetic underlayer 53 varies depending on the number of Sm chips on the composite target, the positional relationship, and the sputtering power, but the obtained Sm composition ratio was 11 to 33 at%.

【0043】次いで、Co−Zr5 −Nb4 at%合金
をターゲット43として軟磁性下地層4を500nm成
膜後、直ちにCo−Cr15−Ta4 at%合金をターゲ
ット43として垂直磁気記録層5を75nm成膜した。
ここで直ちに成膜することにより、Co−Zr−Nbと
Co−Cr−Taとが直接結合し、強く垂直配向する垂
直磁気記録層5が得られる。また、成膜中には、マグネ
トロンの磁石41、42によって、常に約4kA/mの
磁界が基板1の半径方向に加えられているので、硬磁性
下地層53と軟磁性下地層4の磁化及び磁化容易軸は基
板1の半径方向に揃えられる。最後に保護層6としてS
iO2 を15nm形成した。
Then, a soft magnetic underlayer 4 having a thickness of 500 nm was formed with a Co--Zr5 --Nb4 at% alloy as a target 43, and a perpendicular magnetic recording layer 5 having a thickness of 75 nm was immediately formed with a Co--Cr15 --Ta4 at% alloy as a target 43. did.
By immediately forming a film here, Co-Zr-Nb and Co-Cr-Ta are directly bonded to each other, and the perpendicular magnetic recording layer 5 having a strong vertical orientation is obtained. During the film formation, a magnetic field of about 4 kA / m is constantly applied in the radial direction of the substrate 1 by the magnets 41 and 42 of the magnetron, so that the magnetization of the hard magnetic underlayer 53 and the soft magnetic underlayer 4 and The easy axis of magnetization is aligned in the radial direction of the substrate 1. Finally S as the protective layer 6
15 nm of iO 2 was formed.

【0044】このようにして成膜を終えた後、実施例1
と同様の磁界中熱処理を行った。すなわち、10-3Pa
以下の真空中雰囲気において、24kA/mの磁界中で
成膜後の垂直磁気記録媒体50をその回転中心軸の回り
に回転させながら、300℃で、3時間の熱処理を行な
って、垂直磁気記録媒体50を得た。
After the film formation was completed in this way, Example 1
The same heat treatment in a magnetic field was performed. That is, 10 -3 Pa
In the following atmosphere in vacuum, the perpendicular magnetic recording medium 50 is subjected to a heat treatment at 300 ° C. for 3 hours while rotating the film-formed perpendicular magnetic recording medium 50 in the magnetic field of 24 kA / m around the rotation center axis thereof to perform perpendicular magnetic recording. The medium 50 was obtained.

【0045】ここで、本実施例2と特性比較するため
に、上述の実施例1と比較例3を用いた。比較例3の垂
直磁気記録媒体は別に製作した。比較例3の垂直磁気記
録媒体51は、図11に示すように構成されており、ガ
ラス基板1と、この上に順に形成された軟磁性下地層
4、垂直磁気記録層5及び保護層6とからなる。各層
4、5、6の材質及び成膜条件は、上述の実施例2の場
合と同一である。
Here, in order to compare the characteristics with the second embodiment, the first embodiment and the third comparative example described above were used. The perpendicular magnetic recording medium of Comparative Example 3 was manufactured separately. A perpendicular magnetic recording medium 51 of Comparative Example 3 is configured as shown in FIG. 11, and includes a glass substrate 1, a soft magnetic underlayer 4, a perpendicular magnetic recording layer 5, and a protective layer 6 which are sequentially formed on the glass substrate 1. Consists of. The material and film forming conditions for each of the layers 4, 5, and 6 are the same as those in the above-described second embodiment.

【0046】次に、これらの試料(実施例2、実施例1
及び比較例3)の特性評価結果について説明する。ま
ず、記録再生特性について述べる。なお、これらの試料
についての記録再生特性は、トラック幅8μm、主磁極
厚0.4μm、コイル巻数60ターンの単磁極ヘッドを
用い、ディスク回転数2070rpm、線速度8m/
s、ヘッド浮上量80nmの条件で測定を行った。
Next, these samples (Example 2, Example 1)
And the characteristic evaluation result of the comparative example 3) is demonstrated. First, the recording / reproducing characteristics will be described. The recording / reproducing characteristics of these samples were as follows: a track width of 8 μm, a main magnetic pole thickness of 0.4 μm, and a single magnetic pole head having a coil winding number of 60 turns, a disk rotation speed of 2070 rpm, and a linear velocity of 8 m /
The measurement was performed under the conditions of s and head flying height of 80 nm.

【0047】100kHzの矩形波信号を記録再生し、
オシロスコ−プによって孤立波再生出力Ep-p (nV/
(μm・t・m/s))を測定した。ここで、再生出力
は、トラック幅(μm)、コイル巻数(t)及び線速度
(m/s)で、規格化してある。比較例1に対する比を
dBで表した。6.67MHzの信号を記録再生し、そ
のときのノイズ成分とシステムノイズとの差分を、帯域
16MHzにわたってスペクトルアナライザにより測定
し、媒体ノイズ(μVrms )を得た。比較例1に対する
比をdBで表した。上記の孤立波再生出力Ep-p と媒体
ノイズの比をS/Nとし、比較例3に対する比をdBで
表した。また、垂直磁気記録媒体を回転開始した直後の
再生出力と、2×104 回転後の再生出力の比を減磁量
(dB)とし、実施例1に対する比をdBで表した。以
上の測定結果を、表2に示す。
Recording and reproducing a rectangular wave signal of 100 kHz,
Oscilloscope - solitary wave by-flops reproduction output E pp (nV /
(Μm · t · m / s)) was measured. Here, the reproduction output is standardized by the track width (μm), the coil winding number (t), and the linear velocity (m / s). The ratio to Comparative Example 1 is expressed in dB. A signal of 6.67 MHz was recorded and reproduced, and the difference between the noise component and the system noise at that time was measured with a spectrum analyzer over a band of 16 MHz to obtain medium noise (μV rms ). The ratio to Comparative Example 1 is expressed in dB. The ratio of the solitary-wave reproduction output E pp to the medium noise was S / N, and the ratio to Comparative Example 3 was expressed in dB. Further, the ratio between the reproduction output immediately after the perpendicular magnetic recording medium was started to rotate and the reproduction output after 2 × 10 4 rotations was the demagnetization amount (dB), and the ratio to Example 1 was expressed in dB. Table 2 shows the above measurement results.

【0048】[0048]

【表2】 [Table 2]

【0049】表2によれば、本発明の実施例2の垂直磁
気記録媒体50は、硬磁性下地層53を有しない比較例
3に対して、再生出力は増加し、媒体ノイズは低下して
おり、結果として、S/Nが2.1dBと大幅に改善さ
れている。実施例1は比較例3に対してはS/Nは同等
である。本発明による垂直磁気記録媒体50は、減磁量
については測定限界程度にまで改善されており、減磁量
を改善した実施例1と同等である。
According to Table 2, in the perpendicular magnetic recording medium 50 of Example 2 of the present invention, the reproduction output was increased and the medium noise was decreased as compared with Comparative Example 3 having no hard magnetic underlayer 53. As a result, the S / N is significantly improved to 2.1 dB. The S / N of Example 1 is equivalent to that of Comparative Example 3. The perpendicular magnetic recording medium 50 according to the present invention is improved in demagnetization amount up to the measurement limit level, which is equivalent to Example 1 in which the demagnetization amount is improved.

【0050】次に、磁気特性について説明する。垂直磁
気記録媒体の磁気特性については、VSMで評価した。
まず、CoSm膜単体の磁気特性を説明する。図15
は、本発明の垂直磁気記録媒体の実施例2における硬磁
性下地層53を構成するCoSm膜単体のM−H曲線を
示す図であり、円板状の基板1の面内について円周方向
と半径方向での測定結果を示す。同図にみるとおり、半
径方向のM−H曲線は、ほぼ1の角型比を示し、一方、
円周方向のM−H曲線は緩やかな傾斜を示す。これよ
り、CoSm膜は、半径方向に強く配向していることが
わかる。また、Smの組成比11〜33at%の範囲内
で同様のM−H曲線が得られており、保磁力Hcは50
〜100Oeの範囲であった。なお、このCoSm膜
は、上述した硬磁性下地層53の製法と同様に製作され
ており、磁界中熱処理も実施されている。
Next, the magnetic characteristics will be described. The magnetic characteristics of the perpendicular magnetic recording medium were evaluated by VSM.
First, the magnetic characteristics of a single CoSm film will be described. Figure 15
FIG. 4 is a diagram showing an MH curve of a single CoSm film that constitutes the hard magnetic underlayer 53 in Example 2 of the perpendicular magnetic recording medium of the present invention. The measurement results in the radial direction are shown. As can be seen in the figure, the radial MH curve exhibits a squareness ratio of approximately 1, while
The MH curve in the circumferential direction shows a gentle slope. From this, it is understood that the CoSm film is strongly oriented in the radial direction. In addition, the same MH curve was obtained within the range of the composition ratio of Sm of 11 to 33 at%, and the coercive force Hc was 50.
Was in the range of ~ 100 Oe. The CoSm film is manufactured in the same manner as the above-described method for manufacturing the hard magnetic underlayer 53, and the heat treatment in the magnetic field is also performed.

【0051】次に、硬磁性下地層/軟磁性下地層の複合
層のM−H曲線を説明する。まず、硬磁性下地層として
CoSm膜を、軟磁性下地層としてCoZrNb膜を用
いたときの複合層のM−H曲線の推定を、磁気的相互作
用を考慮したシミュレ−ションにより行った。図16に
は、シミュレ−ションに用いられたCoSm膜及びCo
ZrNb膜単体のM−H曲線を示す。図17は、CoS
m膜とCoZrNb膜の複合層について、CoSm膜と
CoZrNb膜との間に磁気的相互作用(静磁結合及び
交換結合)がないとしてシミュレ−ションした結果得ら
れたM−H曲線を示している。すなわち、図16中の2
曲線を単純に重ね合わせた結果が得られている。
Next, the MH curve of the hard magnetic underlayer / soft magnetic underlayer composite layer will be described. First, the estimation of the MH curve of the composite layer when the CoSm film was used as the hard magnetic underlayer and the CoZrNb film was used as the soft magnetic underlayer was performed by simulation in consideration of magnetic interaction. FIG. 16 shows the CoSm film and Co used in the simulation.
The MH curve of a ZrNb film simple substance is shown. FIG. 17 shows CoS
The MH curve obtained as a result of simulating the composite layer of the m film and the CoZrNb film assuming that there is no magnetic interaction (magnetostatic coupling and exchange coupling) between the CoSm film and the CoZrNb film is shown. . That is, 2 in FIG.
Results are obtained by simply superimposing the curves.

【0052】一方、図18は、CoSm膜とCoZrN
b膜の複合層について、CoSm膜とCoZrNb膜と
の間に交換結合の磁気的相互作用のみがあるとしてシミ
ュレ−ションした結果得られたM−H曲線を示してい
る。見掛上の保磁力Hcは大きくなっている。また、図
20は、CoSm膜とCoZrNb膜の複合層につい
て、CoSm膜とCoZrNb膜との間に静磁結合の磁
気的相互作用のみがあるとしてシミュレ−ションした結
果得られたM−H曲線を示している。見掛上の保磁力H
cは負の値を示している。
On the other hand, FIG. 18 shows a CoSm film and a CoZrN film.
The MH curve obtained as a result of simulating the composite layer of the b film as having only the magnetic interaction of exchange coupling between the CoSm film and the CoZrNb film is shown. The apparent coercive force Hc is large. Further, FIG. 20 shows an MH curve obtained as a result of simulating a composite layer of a CoSm film and a CoZrNb film assuming that only a magnetic interaction of magnetostatic coupling exists between the CoSm film and the CoZrNb film. Shows. Apparent coercive force H
c indicates a negative value.

【0053】実際の複合膜のM−H曲線を図14に示
す。図14において、(A)は、本発明の垂直磁気記録
媒体の実施例2を構成する、軟磁性下地層/硬磁性下地
層の複合層の間に中間層がある場合のM−H曲線を、
(B)は、本発明の垂直磁気記録媒体の実施例2を構成
する、軟磁性下地層/硬磁性下地層の複合層のM−H曲
線を、それぞれ示す。なお、硬磁性下地層としてCoS
m膜を、軟磁性下地層としてCoZrNb膜を、中間層
としては2nmのSiO2 層を、上述の実施例2と同様
に成膜した。
The MH curve of the actual composite film is shown in FIG. In FIG. 14, (A) shows an MH curve in the case where there is an intermediate layer between the composite layer of the soft magnetic underlayer / hard magnetic underlayer, which constitutes Example 2 of the perpendicular magnetic recording medium of the present invention. ,
(B) shows the MH curves of the composite layer of the soft magnetic underlayer / hard magnetic underlayer constituting Example 2 of the perpendicular magnetic recording medium of the present invention. In addition, CoS is used as the hard magnetic underlayer.
An m film, a CoZrNb film as a soft magnetic underlayer, and a 2 nm SiO 2 layer as an intermediate layer were formed in the same manner as in Example 2 described above.

【0054】図14(A)に示すM−H曲線は、図17
に示すM−H曲線と相似であり、中間層の存在により、
CoSm膜とCoZrNb膜の磁気的相互作用が断ち切
られている。一方、図14(B)に示すM−H曲線は、
図18に示すM−H曲線と相似であり、CoSm膜とC
oZrNb膜との間には強い交換結合が作用しているこ
とがわかる。なお、図20に示すM−H曲線の形より、
CoSm膜とCoZrNb膜の間に、静磁結合が単独で
は作用していないことがわかる。
The MH curve shown in FIG. 14A is shown in FIG.
It is similar to the M-H curve shown in FIG.
The magnetic interaction between the CoSm film and the CoZrNb film is cut off. On the other hand, the MH curve shown in FIG.
It is similar to the MH curve shown in FIG.
It can be seen that strong exchange coupling works with the oZrNb film. From the shape of the MH curve shown in FIG. 20,
It can be seen that magnetostatic coupling alone does not act between the CoSm film and the CoZrNb film.

【0055】各試料につき、M−H曲線を測定し、軟磁
性下地層/硬磁性下地層の複合層の印加磁界とその磁界
に対応したマイナ−ル−プの反転磁界との関係を明らか
にした。軟磁性下地層/硬磁性下地層の複合層のM−H
(磁化)曲線を説明する。まず、図19に示した、複合
層について得られる、印加磁界Hと反転磁界Hmとの関
係を示すマイナ−ル−プについて説明する。図19にお
いて、横軸は印加磁界Hの強度を、縦軸は磁化Mを、u
は飽和磁化曲線(部分)を、vはマイナ−ル−プをそれ
ぞれ示す。なお、このM−H曲線の測定は基板1の面内
方向に磁界を印加して行ったので、垂直磁気記録層5が
あっても、この垂直磁気記録層5は、基板1面に垂直方
向に強い異方性を持つため、以下に述べる測定結果に影
響を与えない事が分かっている。
The MH curve of each sample was measured to clarify the relationship between the applied magnetic field of the composite layer of the soft magnetic underlayer / hard magnetic underlayer and the reversal magnetic field of the minor loop corresponding to the magnetic field. did. MH of composite layer of soft magnetic underlayer / hard magnetic underlayer
The (magnetization) curve will be described. First, the minor loop showing the relationship between the applied magnetic field H and the reversal magnetic field Hm obtained for the composite layer shown in FIG. 19 will be described. In FIG. 19, the horizontal axis represents the strength of the applied magnetic field H, the vertical axis represents the magnetization M, and u
Indicates a saturation magnetization curve (part), and v indicates a minor loop. Since the measurement of the MH curve was performed by applying a magnetic field in the in-plane direction of the substrate 1, even if the perpendicular magnetic recording layer 5 was present, the perpendicular magnetic recording layer 5 was perpendicular to the surface of the substrate 1. It has been found that since it has a strong anisotropy, it does not affect the measurement results described below.

【0056】まず、磁化されていない複合層に、正方向
に増加する磁界Hを印加すると、図に示されていない初
磁化曲線を辿り、正方向に磁化され、硬磁性下地層を正
方向に充分飽和する磁界強度であるa点に達し、磁化M
は正方向に飽和する。次に、印加磁界Hを減少させる
と、磁化Mは曲線uを辿り減少していく。磁界Hが0に
達すると、今度は負方向に磁界Hを増加させていく。磁
界Hがc点で示す−Hc(保磁力)に達すると、磁化M
は0となる。さらに、負方向に磁界Hを増加させると、
複合層は負方向に磁化され、磁界Hが−H1になるとb
点に達する。
First, when a magnetic field H increasing in the positive direction is applied to the non-magnetized composite layer, the initial magnetization curve not shown is followed, and the hard magnetic underlayer is positively magnetized in the positive direction. At the point a, which is a magnetic field strength that is sufficiently saturated, the magnetization M
Is saturated in the positive direction. Next, when the applied magnetic field H is decreased, the magnetization M follows the curve u and decreases. When the magnetic field H reaches 0, this time the magnetic field H is increased in the negative direction. When the magnetic field H reaches −Hc (coercive force) indicated by the point c, the magnetization M
Is 0. Further, when the magnetic field H is increased in the negative direction,
The composite layer is magnetized in the negative direction, and when the magnetic field H becomes -H1, b
Reach the point.

【0057】次に、b点において磁界を反転し、正方向
に磁界Hを変化させていくと、M−H曲線はマイナ−ル
−プを描き、曲線vに沿って磁化Mは変化していく。そ
して、磁化Mが0となったときのd点で示される磁界H
をHm(H1)として求める(Hmを反転磁界とす
る)。さらに磁界Hを正方向に変化させていくと、正方
向に磁化され、再びa点に達する。この操作を繰り返
し、印加磁界Hと反転磁界Hmとの関係を求めた。
Next, when the magnetic field is inverted at point b and the magnetic field H is changed in the positive direction, the MH curve draws a minor loop, and the magnetization M changes along the curve v. Go. Then, the magnetic field H indicated by the point d when the magnetization M becomes 0
Is calculated as Hm (H1) (Hm is a reversal magnetic field). When the magnetic field H is further changed in the positive direction, it is magnetized in the positive direction and reaches point a again. By repeating this operation, the relationship between the applied magnetic field H and the reversal magnetic field Hm was obtained.

【0058】図12に、本発明の実施例2である、硬磁
性下地層2が半径配向したCo−Smのときの軟磁性下
地層3/硬磁性下地層2の複合層の、印加磁界Hとその
磁界に対応したマイナ−ル−プの反転磁界Hmとの関係
を、実施例1と共に示す。本実施例2においては、Hが
50Oe(4kA/m)まではHmは負の一定の値を示
している。この事は、媒体の保存状態において、50O
eより小さな磁界が硬磁性下地層53の磁化と反対方向
に仮に加わっても、磁界を0に戻せば再び元の磁化状態
に復帰することを示している。
FIG. 12 shows the applied magnetic field H of the composite layer of the soft magnetic underlayer 3 / hard magnetic underlayer 2 when the hard magnetic underlayer 2 is Co-Sm in which the hard magnetic underlayer 2 is radially oriented according to the second embodiment of the present invention. And the reversal magnetic field Hm of the minor loop corresponding to the magnetic field are shown together with the first embodiment. In the second embodiment, Hm shows a constant negative value until H reaches 50 Oe (4 kA / m). This means that when the medium is stored,
It is shown that even if a magnetic field smaller than e is applied in the opposite direction to the magnetization of the hard magnetic underlayer 53, if the magnetic field is returned to 0, the original magnetization state is restored again.

【0059】一方、実施例1の軟磁性下地層3/硬磁性
下地層7の複合層では、印加磁界Hに対してHmは単調
に変化しており、これは、媒体保存時に、反対方向に保
磁力をわずかに越える磁界が加わると、元の磁化状態に
は復帰せず、媒体を使用するときに、減磁、スパイクノ
イズを引き起こす危険性のあることを示すものである
(もちろん、上述の実施例1で説明したように、従来例
に対しては、保磁力そのものが遥かに大きくなってお
り、減磁が改善されていることは明白である)。
On the other hand, in the composite layer of the soft magnetic underlayer 3 / hard magnetic underlayer 7 of Example 1, Hm changes monotonically with respect to the applied magnetic field H, which is the opposite direction when the medium is stored. If a magnetic field slightly exceeding the coercive force is applied, it will not return to the original magnetized state and there is a risk of demagnetization and spike noise when using the medium (of course, the above-mentioned. As described in Example 1, it is clear that the coercive force itself is much larger than that of the conventional example, and the demagnetization is improved).

【0060】次に、硬磁性下地層53、3の結晶性をX
線解析法によって調べた結果について説明する。図13
は、本発明の垂直磁気記録媒体の実施例1及び実施例2
の垂直磁気記録媒体のX線回折パタ−ンを示す図であ
る。同図に示すように、実施例1の硬磁性下地層3にお
いては、bcc−Cr及びhcp−CoCrTaの明確
なピ−クが観測され、明らかに結晶質である事がわかっ
た。一方、本実施例2の硬磁性下地層53においては、
CoSmからのピ−クは観測されず、これより硬磁性下
地層53は、非晶質もしくは微結晶質であることがわか
った。なお、回折には、Cuタ−ゲットを使用し、実施
例2の場合は、回折ピ−クを確認するために、実施例1
に対し4倍のタ−ゲット電流を流した。
Next, the crystallinity of the hard magnetic underlayers 53 and 3 is set to X.
The results of the line analysis method will be described. FIG.
Are Examples 1 and 2 of the perpendicular magnetic recording medium of the present invention.
FIG. 6 is a view showing an X-ray diffraction pattern of the perpendicular magnetic recording medium of FIG. As shown in the figure, in the hard magnetic underlayer 3 of Example 1, clear peaks of bcc-Cr and hcp-CoCrTa were observed, and it was found that they were clearly crystalline. On the other hand, in the hard magnetic underlayer 53 of the second embodiment,
No peaks from CoSm were observed, which indicates that the hard magnetic underlayer 53 is amorphous or microcrystalline. Note that a Cu target was used for diffraction, and in the case of Example 2, in order to confirm the diffraction peak, Example 1 was used.
A target current that is four times that of the target current was applied.

【0061】さらに、走査型電子顕微鏡(SEM)によ
って、単独に基板1上に作製された硬磁性下地層53、
3の薄膜表面を観察したところ、実施例1の硬磁性下地
層3については、明瞭な結晶粒が観察されたのに対し、
本実施例2の硬磁性下地層53のCoSmには、結晶粒
は見られず、表面も平滑である事がわかった。
Further, by a scanning electron microscope (SEM), a hard magnetic underlayer 53, which is independently formed on the substrate 1,
As a result of observing the thin film surface of No. 3, clear crystal grains were observed in the hard magnetic underlayer 3 of Example 1, whereas
It was found that crystal grains were not found in CoSm of the hard magnetic underlayer 53 of Example 2 and the surface was smooth.

【0062】なお、使用する硬磁性下地層53の磁気特
性および膜厚の範囲は、軟磁性下地層4の磁気特性、膜
厚との関連で決定され、図12に示したカ−ブにおい
て、Hmが立ち上がる磁界が外来磁界に比べて充分大き
くなるように、例えば500A/m以上になるように設
定すればよい。
The magnetic characteristics and the range of the film thickness of the hard magnetic underlayer 53 to be used are determined in relation to the magnetic characteristics and the film thickness of the soft magnetic underlayer 4, and in the curve shown in FIG. The magnetic field at which Hm rises may be set to be sufficiently larger than the external magnetic field, for example, 500 A / m or more.

【0063】[0063]

【発明の効果】以上説明したように、請求項1による本
発明の垂直磁気記録媒体によれば、円板状の基板と、こ
の基板上に形成された軟磁性下地層と、この軟磁性下地
層上に形成された垂直磁気記録層とを備えた垂直磁気記
録媒体において、前記基板と前記軟磁性下地層との間
に、全ての磁化方向が前記基板の半径方向の外周向き或
いは中心向きのいずれかである磁化を有する硬磁性下地
層を設けた事により、媒体の回転による減磁を防止し、
媒体ノイズを低減し、高い再生出力を得ることが出来、
それにより、高性能且つ高品質な垂直磁気記録媒体を提
供する事が出来る。
As described above, according to the perpendicular magnetic recording medium of the present invention according to claim 1, the disk-shaped substrate, the soft magnetic underlayer formed on this substrate, and the soft magnetic underlayer. In a perpendicular magnetic recording medium having a perpendicular magnetic recording layer formed on an underlayer, all the magnetization directions between the substrate and the soft magnetic underlayer are the outer peripheral direction or the center direction in the radial direction of the substrate. By providing a hard magnetic underlayer having either magnetization, demagnetization due to rotation of the medium is prevented,
Medium noise can be reduced and high playback output can be obtained.
As a result, a high-performance and high-quality perpendicular magnetic recording medium can be provided.

【0064】また、請求項2による本発明の垂直磁気記
録媒体によれば、円板状の基板と、この基板上に形成さ
れた軟磁性下地層と、この軟磁性下地層上に形成された
垂直磁気記録層とを備えた垂直磁気記録媒体において、
前記基板と前記軟磁性下地層との間に、全ての磁化方向
が前記基板の半径方向の外周向き或いは中心向きのいず
れかであって配向方向が前記基板の面内である面内配向
硬磁性下地層を設けた事により、媒体の回転による減磁
を防止し、媒体ノイズを低減し、高い再生出力を得るこ
とが出来、それにより、高性能且つ高品質な垂直磁気記
録媒体を提供する事が出来る。
According to the perpendicular magnetic recording medium of the present invention according to claim 2, a disk-shaped substrate, a soft magnetic underlayer formed on this substrate, and a soft magnetic underlayer formed on this substrate. In a perpendicular magnetic recording medium having a perpendicular magnetic recording layer,
In-plane orientation hard magnetic between the substrate and the soft magnetic underlayer, in which all the magnetization directions are either the outer circumferential direction or the central direction in the radial direction of the substrate and the orientation direction is in the plane of the substrate. By providing the underlayer, demagnetization due to rotation of the medium can be prevented, medium noise can be reduced, and high reproduction output can be obtained, thereby providing a high-performance and high-quality perpendicular magnetic recording medium. Can be done.

【0065】また、請求項3による本発明の垂直磁気記
録媒体によれば、円板状の基板と、この基板上に形成さ
れた軟磁性下地層と、この軟磁性下地層上に形成された
垂直磁気記録層とを備えた垂直磁気記録媒体において、
前記基板と前記軟磁性下地層との間に、全ての磁化が前
記基板の半径方向の外周向き或いは中心向きのいずれか
であって配向方向が前記半径方向である半径配向硬磁性
下地層を設けた事により、媒体の回転による減磁を防止
し、媒体ノイズを低減し、高い再生出力を得ることが出
来、それにより、高性能且つ高品質な垂直磁気記録媒体
を提供する事が出来る。
According to the perpendicular magnetic recording medium of the third aspect of the present invention, the disk-shaped substrate, the soft magnetic underlayer formed on the substrate, and the soft magnetic underlayer are formed. In a perpendicular magnetic recording medium having a perpendicular magnetic recording layer,
Between the substrate and the soft magnetic underlayer, provided is a radially oriented hard magnetic underlayer in which all the magnetizations are either in the radial direction toward the outer periphery or in the central direction and the orientation direction is the radial direction. As a result, demagnetization due to rotation of the medium can be prevented, medium noise can be reduced, and a high reproduction output can be obtained, whereby a high-performance and high-quality perpendicular magnetic recording medium can be provided.

【0066】また、請求項4による本発明の垂直磁気記
録媒体によれば、請求項3に記載の垂直磁気記録媒体で
あって、前記半径配向硬磁性下地層をSm(サマリュウ
ム)を含むCo合金膜とした事により、媒体の回転によ
る減磁を防止し、媒体ノイズを低減し、高い再生出力を
得ることが出来、それにより、高性能且つ高品質な垂直
磁気記録媒体を提供する事が出来る。
According to the perpendicular magnetic recording medium of the present invention according to claim 4, the perpendicular magnetic recording medium according to claim 3, wherein the radially oriented hard magnetic underlayer is a Co alloy containing Sm (samarium). By using a film, demagnetization due to rotation of the medium can be prevented, medium noise can be reduced, and high reproduction output can be obtained, thereby providing a high-performance and high-quality perpendicular magnetic recording medium. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の垂直磁気記録媒体の第1の実施例の構
成を模式的に示す部分断面図である。
FIG. 1 is a partial cross-sectional view schematically showing the configuration of a first embodiment of a perpendicular magnetic recording medium of the present invention.

【図2】第1の比較例の垂直磁気記録媒体の構成を模式
的に示す部分断面図である。
FIG. 2 is a partial cross-sectional view schematically showing the configuration of a perpendicular magnetic recording medium of a first comparative example.

【図3】第1の従来例及び第2の比較例の垂直磁気記録
媒体の構成を模式的に示す部分断面図である。
FIG. 3 is a partial cross-sectional view schematically showing the configurations of perpendicular magnetic recording media of a first conventional example and a second comparative example.

【図4】軟磁性下地層/硬磁性下地層のM−H曲線にお
ける規格化した印加磁界H/Hcとマイナ−ル−プのH
m(H)との関係を示すグラフ図である。
FIG. 4 shows the normalized applied magnetic field H / Hc in the MH curve of the soft magnetic underlayer / hard magnetic underlayer and the H of the minor loop.
It is a graph which shows the relationship with m (H).

【図5】本発明の垂直磁気記録媒体の第1の実施例を構
成する軟磁性下地層/硬磁性下地層の複合層のM−H曲
線を示すグラフ図である。
FIG. 5 is a graph showing an MH curve of a composite layer of a soft magnetic underlayer / hard magnetic underlayer which constitutes the first embodiment of the perpendicular magnetic recording medium of the present invention.

【図6】第2の比較例の垂直磁気記録媒体を構成する軟
磁性下地層のM−H曲線を示すグラフ図である。
FIG. 6 is a graph showing an MH curve of a soft magnetic underlayer forming the perpendicular magnetic recording medium of the second comparative example.

【図7】垂直磁気記録媒体の製造に使用されるDCマグ
ネトロンスパッタ装置のターゲット電極付近の構成を示
す概略断面図である。
FIG. 7 is a schematic cross-sectional view showing a configuration near a target electrode of a DC magnetron sputtering apparatus used for manufacturing a perpendicular magnetic recording medium.

【図8】垂直磁気記録媒体の製造工程の1つである磁界
中熱処理を説明するための概念図である。
FIG. 8 is a conceptual diagram for explaining heat treatment in a magnetic field, which is one of the manufacturing steps of a perpendicular magnetic recording medium.

【図9】第2の従来例の垂直磁気記録媒体の構成を模式
的に示す部分断面図である。
FIG. 9 is a partial cross-sectional view schematically showing the configuration of a perpendicular magnetic recording medium of a second conventional example.

【図10】本発明の垂直磁気記録媒体の第2の実施例の
構成を模式的に示す部分断面図である。
FIG. 10 is a partial cross-sectional view schematically showing the configuration of a second embodiment of the perpendicular magnetic recording medium of the present invention.

【図11】第3の比較例の垂直磁気記録媒体の構成を模
式的に示す部分断面図である。
FIG. 11 is a partial cross-sectional view schematically showing the configuration of a perpendicular magnetic recording medium of a third comparative example.

【図12】本発明の垂直磁気記録媒体の第1及び第2の
実施例の垂直磁気記録媒体を構成する軟磁性下地層/硬
磁性下地層の複合層の、印加磁界Hとその磁界に対応し
たマイナ−ル−プの反転磁界Hmとの関係を表すグラフ
図である。
FIG. 12 shows applied magnetic field H and its magnetic field of a composite layer of a soft magnetic underlayer / hard magnetic underlayer constituting the perpendicular magnetic recording media of the first and second embodiments of the perpendicular magnetic recording medium of the present invention. It is a graph showing the relationship with the switching field Hm of the minor loop.

【図13】本発明の垂直磁気記録媒体の第1及び第2の
実施例の垂直磁気記録媒体のX線回折パタ−ンを示す図
である。
FIG. 13 is a diagram showing X-ray diffraction patterns of the perpendicular magnetic recording media of the first and second embodiments of the perpendicular magnetic recording medium of the present invention.

【図14】本発明の垂直磁気記録媒体の第2の実施例を
構成する、軟磁性下地層/硬磁性下地層の複合層の間に
中間層がある場合とない場合のM−H曲線を示す図であ
る。
FIG. 14 is a graph showing MH curves of the soft magnetic underlayer / hard magnetic underlayer composite layer in the second embodiment of the perpendicular magnetic recording medium of the present invention, with and without an intermediate layer. FIG.

【図15】本発明の垂直磁気記録媒体の第2の実施例に
おける硬磁性下地層2を構成するCoSm膜単体のM−
H曲線を示す図である。
FIG. 15 is an M− of a single CoSm film forming the hard magnetic underlayer 2 in the second embodiment of the perpendicular magnetic recording medium of the present invention.
It is a figure which shows a H curve.

【図16】本発明の垂直磁気記録媒体の第2の実施例を
構成する軟磁性下地層と硬磁性下地層それぞれについ
て、シミュレ−ションした結果得られたM−H曲線を示
す図である。
FIG. 16 is a diagram showing MH curves obtained as a result of simulation for each of the soft magnetic underlayer and the hard magnetic underlayer constituting the second embodiment of the perpendicular magnetic recording medium of the present invention.

【図17】本発明の垂直磁気記録媒体の第2の実施例を
構成する、軟磁性下地層/硬磁性下地層の複合層につい
て、軟磁性下地層と硬磁性下地層との間に磁気的相互作
用がないとしてシミュレ−ションした結果得られたM−
H曲線を示す図である。
FIG. 17 shows a magnetic layer between a soft magnetic underlayer and a hard magnetic underlayer of a composite layer of a soft magnetic underlayer / hard magnetic underlayer which constitutes a second embodiment of the perpendicular magnetic recording medium of the present invention. M- obtained as a result of simulating that there is no interaction
It is a figure which shows a H curve.

【図18】本発明の垂直磁気記録媒体の第2の実施例を
構成する、軟磁性下地層/硬磁性下地層の複合層につい
て、軟磁性下地層と硬磁性下地層との間に交換相互作用
があるとしてシミュレ−ションした結果得られたM−H
曲線を示す図である。
FIG. 18 shows a soft magnetic underlayer / hard magnetic underlayer composite layer constituting the second embodiment of the perpendicular magnetic recording medium of the present invention, and the soft magnetic underlayer and the hard magnetic underlayer are exchanged with each other. MH obtained as a result of simulating that it has an action
It is a figure which shows a curve.

【図19】印加磁界Hと反転磁界Hmとの関係を説明す
るためのマイナ−ル−プを示す図である。
FIG. 19 is a diagram showing a minor loop for explaining the relationship between an applied magnetic field H and a reversal magnetic field Hm.

【図20】本発明の垂直磁気記録媒体の第2の実施例を
構成する、軟磁性下地層/硬磁性下地層の複合層につい
て、軟磁性下地層と硬磁性下地層との間に静磁結合があ
るとしてシミュレ−ションした結果得られたM−H曲線
を示す図である。
FIG. 20 shows a magnetostatic layer between a soft magnetic underlayer and a hard magnetic underlayer of a composite layer of a soft magnetic underlayer / hard magnetic underlayer which constitutes a second embodiment of the perpendicular magnetic recording medium of the present invention. It is a figure which shows the MH curve obtained as a result of simulating as having a bond.

【符号の説明】[Explanation of symbols]

1 円形基板 2 クロム層 3 硬磁性下地層 4 軟磁性下地層 5 垂直磁気記録層 6 保護層 9 回転中心軸 10 垂直磁気記録媒体(実施例1) 11 垂直磁気記録媒体(比較例1) 12 垂直磁気記録媒体(従来例1) 13 垂直磁気記録媒体(従来例2) 21 ガラス基板 24 軟磁性下地層 25 垂直磁気記録層 26 保護層 31 ガラス基板 32 クロム層 34 軟磁性下地層 35 垂直磁気記録層 36 保護層 37 カ−ボン層 41 第1の永久磁石 42 第2の希土類永久磁石 43 ターゲット 50 垂直磁気記録媒体(実施例2) 51 垂直磁気記録媒体(比較例1) 53 硬磁性下地層 1 Circular Substrate 2 Chromium Layer 3 Hard Magnetic Underlayer 4 Soft Magnetic Underlayer 5 Perpendicular Magnetic Recording Layer 6 Protective Layer 9 Rotation Center Axis 10 Perpendicular Magnetic Recording Medium (Example 1) 11 Perpendicular Magnetic Recording Medium (Comparative Example 1) 12 Perpendicular Magnetic Recording Medium (Conventional Example 1) 13 Perpendicular Magnetic Recording Medium (Conventional Example 2) 21 Glass Substrate 24 Soft Magnetic Underlayer 25 Perpendicular Magnetic Recording Layer 26 Protective Layer 31 Glass Substrate 32 Chrome Layer 34 Soft Magnetic Underlayer 35 Perpendicular Magnetic Recording Layer 36 Protective Layer 37 Carbon Layer 41 First Permanent Magnet 42 Second Rare Earth Permanent Magnet 43 Target 50 Perpendicular Magnetic Recording Medium (Example 2) 51 Perpendicular Magnetic Recording Medium (Comparative Example 1) 53 Hard Magnetic Underlayer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】円板状の基板と、この基板上に形成された
軟磁性下地層と、この軟磁性下地層上に形成された垂直
磁気記録層とを備えた垂直磁気記録媒体において、 前記基板と前記軟磁性下地層との間に、全ての磁化方向
が前記基板の半径方向の外周向き或いは中心向きのいず
れかである磁化を有する硬磁性下地層を設けた事を特徴
とする垂直磁気記録媒体。
1. A perpendicular magnetic recording medium comprising a disk-shaped substrate, a soft magnetic underlayer formed on the substrate, and a perpendicular magnetic recording layer formed on the soft magnetic underlayer. A perpendicular magnetic layer characterized in that a hard magnetic underlayer having a magnetization in which all the magnetization directions are either the outer peripheral direction or the central direction in the radial direction of the substrate is provided between the substrate and the soft magnetic underlayer. recoding media.
【請求項2】円板状の基板と、この基板上に形成された
軟磁性下地層と、この軟磁性下地層上に形成された垂直
磁気記録層とを備えた垂直磁気記録媒体において、 前記基板と前記軟磁性下地層との間に、全ての磁化方向
が前記基板の半径方向の外周向き或いは中心向きのいず
れかであって配向方向が前記基板の面内である面内配向
硬磁性下地層を設けた事を特徴とする垂直磁気記録媒
体。
2. A perpendicular magnetic recording medium comprising a disk-shaped substrate, a soft magnetic underlayer formed on the substrate, and a perpendicular magnetic recording layer formed on the soft magnetic underlayer. Between the substrate and the soft magnetic underlayer, an in-plane oriented hard magnetic layer in which all the magnetization directions are either the outer peripheral direction or the central direction in the radial direction of the substrate and the orientation direction is in the plane of the substrate. A perpendicular magnetic recording medium having a stratum.
【請求項3】円板状の基板と、この基板上に形成された
軟磁性下地層と、この軟磁性下地層上に形成された垂直
磁気記録層とを備えた垂直磁気記録媒体において、 前記基板と前記軟磁性下地層との間に、全ての磁化が前
記基板の半径方向の外周向き或いは中心向きのいずれか
であって配向方向が前記半径方向である半径配向硬磁性
下地層を設けた事を特徴とする垂直磁気記録媒体。
3. A perpendicular magnetic recording medium comprising a disk-shaped substrate, a soft magnetic underlayer formed on the substrate, and a perpendicular magnetic recording layer formed on the soft magnetic underlayer. Between the substrate and the soft magnetic underlayer, provided was a radially oriented hard magnetic underlayer in which all the magnetization was either in the radial direction toward the outer periphery or in the central direction, and the orientation was in the radial direction. Perpendicular magnetic recording medium characterized.
【請求項4】請求項3に記載の垂直磁気記録媒体であっ
て、前記半径配向硬磁性下地層をSm(サマリュウム)
を含むCo合金膜とした事を特徴とする垂直磁気記録媒
体。
4. The perpendicular magnetic recording medium according to claim 3, wherein the radially oriented hard magnetic underlayer is Sm (samarium).
A perpendicular magnetic recording medium comprising a Co alloy film containing
JP27768793A 1993-09-13 1993-10-08 Perpendicular magnetic recording media Expired - Fee Related JP2947029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27768793A JP2947029B2 (en) 1993-09-13 1993-10-08 Perpendicular magnetic recording media

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25117893 1993-09-13
JP5-251178 1993-09-13
JP27768793A JP2947029B2 (en) 1993-09-13 1993-10-08 Perpendicular magnetic recording media

Publications (2)

Publication Number Publication Date
JPH07129946A true JPH07129946A (en) 1995-05-19
JP2947029B2 JP2947029B2 (en) 1999-09-13

Family

ID=26540087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27768793A Expired - Fee Related JP2947029B2 (en) 1993-09-13 1993-10-08 Perpendicular magnetic recording media

Country Status (1)

Country Link
JP (1) JP2947029B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074638A (en) * 2000-08-24 2002-03-15 Fujitsu Ltd Magnetic information recording medium
US6723457B2 (en) 2001-05-14 2004-04-20 Hitachi, Ltd. Perpendicular magnetic recording media, manufacturing process of the same, and magnetic storage apparatus using the same
US6747830B2 (en) * 2001-09-27 2004-06-08 Kabushiki Kaisha Toshiba Perpendicular magnetic recording/reading apparatus
US6759148B2 (en) 2000-09-01 2004-07-06 Hitachi, Ltd. Perpendicular magnetic recording media and magnetic storage apparatus using the same
US6808824B2 (en) 2001-11-27 2004-10-26 Hitachi, Ltd. Perpendicular magnetic recording media
US6858330B2 (en) 2000-12-28 2005-02-22 Hitachi, Ltd. Perpendicular magnetic recording media and magnetic storage apparatus using the same
US7041393B2 (en) 2002-07-05 2006-05-09 Hitachi Global Storage Technologies Japan, Ltd. Perpendicular magnetic recording media, manufacturing process of the same, and magnetic storage apparatus using the same
US7105239B2 (en) 2001-11-27 2006-09-12 Kabushiki Kaisha Toshiba Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus using the same
US7153596B2 (en) 2003-05-20 2006-12-26 Hitachi, Ltd. Perpendicular magnetic recording medium, manufacturing process of the same, and magnetic storage apparatus using the same
US7166375B2 (en) 2000-12-28 2007-01-23 Showa Denko K.K. Magnetic recording medium utilizing a multi-layered soft magnetic underlayer, method of producing the same and magnetic recording and reproducing device
US7781080B2 (en) 2006-09-13 2010-08-24 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium
US7875371B2 (en) 2004-04-15 2011-01-25 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium, manufacturing process of the same, and magnetic recording/reproducing apparatus using the same
US8071228B2 (en) 2006-11-10 2011-12-06 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112789B2 (en) 2000-09-21 2008-07-02 株式会社東芝 Perpendicular magnetic recording type magnetic disk drive

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074638A (en) * 2000-08-24 2002-03-15 Fujitsu Ltd Magnetic information recording medium
US6759148B2 (en) 2000-09-01 2004-07-06 Hitachi, Ltd. Perpendicular magnetic recording media and magnetic storage apparatus using the same
US7138195B2 (en) 2000-09-01 2006-11-21 Hitachi, Ltd. Perpendicular magnetic recording media and magnetic storage
US7166375B2 (en) 2000-12-28 2007-01-23 Showa Denko K.K. Magnetic recording medium utilizing a multi-layered soft magnetic underlayer, method of producing the same and magnetic recording and reproducing device
US6858330B2 (en) 2000-12-28 2005-02-22 Hitachi, Ltd. Perpendicular magnetic recording media and magnetic storage apparatus using the same
US6723457B2 (en) 2001-05-14 2004-04-20 Hitachi, Ltd. Perpendicular magnetic recording media, manufacturing process of the same, and magnetic storage apparatus using the same
US6747830B2 (en) * 2001-09-27 2004-06-08 Kabushiki Kaisha Toshiba Perpendicular magnetic recording/reading apparatus
US6808824B2 (en) 2001-11-27 2004-10-26 Hitachi, Ltd. Perpendicular magnetic recording media
US7105239B2 (en) 2001-11-27 2006-09-12 Kabushiki Kaisha Toshiba Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus using the same
US7316852B2 (en) 2001-11-27 2008-01-08 Hitachi Global Storage Technologies Japan, Ltd. Perpendicular magnetic recording media
US7041393B2 (en) 2002-07-05 2006-05-09 Hitachi Global Storage Technologies Japan, Ltd. Perpendicular magnetic recording media, manufacturing process of the same, and magnetic storage apparatus using the same
US7153596B2 (en) 2003-05-20 2006-12-26 Hitachi, Ltd. Perpendicular magnetic recording medium, manufacturing process of the same, and magnetic storage apparatus using the same
US7875371B2 (en) 2004-04-15 2011-01-25 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium, manufacturing process of the same, and magnetic recording/reproducing apparatus using the same
US7781080B2 (en) 2006-09-13 2010-08-24 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium
US8071228B2 (en) 2006-11-10 2011-12-06 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium

Also Published As

Publication number Publication date
JP2947029B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
JP2947029B2 (en) Perpendicular magnetic recording media
JP2006286105A (en) Magnetic recording medium and magnetic storage device
JP2003162807A (en) Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus using the same
JP2005302238A (en) Perpendicular magnetic recording medium and its manufacturing method
US4621030A (en) Perpendicular magnetic recording medium and manufacturing method thereof
US6846581B2 (en) Perpendicular magnetic recording medium and magnetic recording-reproducing apparatus using the same
JP2004039033A (en) Magnetic recording medium and magnetic recording/reproducing device
JP2001155321A (en) Magnetic recording medium
JP3612087B2 (en) Magnetic recording medium
JPH11102510A (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JPH08129738A (en) Magnetic recording medium and magnetic recording-reproducing device
US4609593A (en) Magnetic recording medium
JP2002216333A (en) Magnetic recording medium and magnetic recording machine
JP2780588B2 (en) Stacked magnetic head core
JPH11191217A (en) Manufacture of perpendicular magnetic recording medium
JP2006114162A (en) Perpendicular magnetic recording medium and magnetic recording apparatus using the same
JP2004272957A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2579184B2 (en) Magnetic recording media
JP2817870B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2002063714A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording and reproducing apparatus
JPH05303734A (en) Perpendicular magnetic recording medium
JP2004118977A (en) Vertical magnetic recording medium and magnetic recording and reproducing device
JP3617400B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2004227667A (en) Method for manufacturing magnetic recording medium
JP2001148109A (en) Magnetic disk and magnetic disk device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080702

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120702

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120702

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees