JPH11102510A - Perpendicular magnetic recording medium and magnetic recording device using the same - Google Patents

Perpendicular magnetic recording medium and magnetic recording device using the same

Info

Publication number
JPH11102510A
JPH11102510A JP9265445A JP26544597A JPH11102510A JP H11102510 A JPH11102510 A JP H11102510A JP 9265445 A JP9265445 A JP 9265445A JP 26544597 A JP26544597 A JP 26544597A JP H11102510 A JPH11102510 A JP H11102510A
Authority
JP
Japan
Prior art keywords
magnetic
film
substrate
magnetic film
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9265445A
Other languages
Japanese (ja)
Inventor
Yukio Honda
幸雄 本多
Yoshiyuki Hirayama
義幸 平山
Nobuyuki Inaba
信幸 稲葉
Kiyonari Itou
研也 伊藤
Masaaki Futamoto
正昭 二本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9265445A priority Critical patent/JPH11102510A/en
Publication of JPH11102510A publication Critical patent/JPH11102510A/en
Priority to US09/379,462 priority patent/US6403203B2/en
Priority to US09/594,570 priority patent/US6447936B1/en
Priority to US09/947,411 priority patent/US6534164B2/en
Priority to US10/022,435 priority patent/US6592976B2/en
Priority to US10/126,780 priority patent/US6607849B2/en
Priority to US10/202,875 priority patent/US6716516B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To control fine magnetic-domain structure at the time of magnetic recording, and to obtain excellent low noise characteristics, by forming two layers or more of magnetic films on a substrate, making the vertical magnetic anisotropy of a second magnetic film on the side far from a substrate surface larger than that of a first magnetic film on the side near the substrate side and improving the magnetic isolating properties of the first magnetic film. SOLUTION: A foundation layer 12 for controlling the crystal grain size and magnetic anisotropy of a magnetic film is formed on a substrate 11. A magnetic film consisting of a magnetic material having excellent isolating properties is formed on the foundation layer 12 as a first magnetic film 13, and a magnetic film having a vertical magnetic isotropic constant Ku in the film-surface vertical direction larger than that of the first magnetic film 13 as a second magnetic film 15 and a protective film 16 are formed on the first magnetic film 13 directly or through a nonmagnetic intermediate layer 14. Accordingly, the high S/N characteristics of a regenerative signal having the small fluctuation structure of the magnetization transition of a recording magnetic domain resulting in medium noises and having no irregular magnetic-domain structure can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、再生ノイズが小さ
く高密度磁気記録に好適な垂直磁気記録媒体およびこれ
を用いた磁気記録装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium having low reproduction noise and suitable for high-density magnetic recording, and a magnetic recording apparatus using the same.

【0002】[0002]

【従来の技術】現在、実用的に用いられている磁気記録
方式は、磁気記録媒体面に平行に、かつ磁極のN極とN
極、S極とS極を互いに突き合わせる方向に磁化して磁
気記録を行う面内磁気記録方式である。面内磁気記録に
おいて線記録密度を向上するには、記録時の反磁界の影
響を減少するために記録媒体である磁性膜の残留磁化(B
r)と磁性膜厚(t)の積を小さくし、保磁力を増大する必
要がある。また磁化遷移から発生する媒体ノイズを減少
するために、磁性膜の磁化容易軸を基板面に平行に配向
させと共に、結晶粒径の制御が必要である。磁性薄膜の
結晶配向性や粒径を制御するために、基板と磁性膜の間
に構造制御用の下地層を形成する。
2. Description of the Related Art Currently, practically used magnetic recording systems include an N-pole and an N-pole, which are parallel to the surface of a magnetic recording medium and are magnetic poles.
This is an in-plane magnetic recording system in which magnetic recording is performed by magnetizing the poles, the S pole, and the S pole in a direction in which they face each other. In order to improve the linear recording density in in-plane magnetic recording, the residual magnetization (B
It is necessary to reduce the product of r) and the magnetic film thickness (t) to increase the coercive force. In addition, in order to reduce medium noise generated from the magnetization transition, it is necessary to orient the easy axis of the magnetic film parallel to the substrate surface and to control the crystal grain size. In order to control the crystal orientation and grain size of the magnetic thin film, an underlayer for structure control is formed between the substrate and the magnetic film.

【0003】磁性膜としては、Coを主成分とし、これに
Cr,Ta,Pt,Rh,Pd,Ti,Ni,Nb,Hfなどを添加したCo合金薄膜
が用いられる。磁性薄膜を構成するCo合金は、主として
六方稠密格子構造(以下、hcp構造という)の材料を用
いる。この結晶のc軸、<00.1>方向に磁化容易軸
を持ち、この磁化容易軸を面内方向に配向させる。磁性
薄膜の結晶配向性や粒径を制御するために、基板と磁性
膜の間に構造制御用の下地層を形成する。下地層として
は、Crを主成分とし、これにTi,Mo,V,W,Pt,Pdなどを添
加した材料を用いる。磁性薄膜は真空蒸着法やスパッタ
リング法により形成する。前記したように、面内磁気記
録において媒体ノイズを小さくし線記録密度を向上する
には、磁性膜の残留磁化(Br)と磁性膜厚(t)の積を小さ
くする必要があり、このために磁性膜の膜厚を20 nm以
下まで薄くし結晶粒の微細化が検討されている。しかし
このような媒体では、熱揺らぎにより記録磁化減少する
極めて重大な課題があり、高密度記録の障害となってい
る。
[0003] The magnetic film mainly contains Co,
A Co alloy thin film to which Cr, Ta, Pt, Rh, Pd, Ti, Ni, Nb, Hf or the like is added is used. As the Co alloy constituting the magnetic thin film, a material having a hexagonal close-packed lattice structure (hereinafter, referred to as an hcp structure) is mainly used. The crystal has an easy axis in the c-axis, <00.1> direction, and the easy axis is oriented in the in-plane direction. In order to control the crystal orientation and grain size of the magnetic thin film, an underlayer for structure control is formed between the substrate and the magnetic film. As the underlayer, a material containing Cr as a main component and Ti, Mo, V, W, Pt, Pd or the like added thereto is used. The magnetic thin film is formed by a vacuum evaporation method or a sputtering method. As described above, in order to reduce medium noise and improve linear recording density in in-plane magnetic recording, it is necessary to reduce the product of the residual magnetization (Br) of the magnetic film and the magnetic film thickness (t). Attempts are being made to reduce the thickness of the magnetic film to 20 nm or less and to refine crystal grains. However, in such a medium, there is a very serious problem that the recording magnetization is reduced due to thermal fluctuation, which is an obstacle to high-density recording.

【0004】一方、垂直磁気記録方式は、記録媒体面に
垂直に、かつ隣り合う記録ビットが互いに反平行に磁区
を形成する記録する方式であり、記録ビットの境界での
反磁界が小さくなる利点があり、高密度磁気記録の有力
な手段の一つである。
On the other hand, the perpendicular magnetic recording method is a method of recording in which adjacent recording bits form magnetic domains perpendicular to the recording medium surface and antiparallel to each other, and has the advantage of reducing the demagnetizing field at the boundary between recording bits. And is one of the powerful means of high-density magnetic recording.

【0005】面内記録による高密度記録のためには、前
記したように磁性膜の厚さを20nm以下にする必要があ
り、この場合、熱的な揺らぎにより記録磁化が消失する
問題がある。これに対して垂直記録では、面内記録に比
べて磁性膜厚を厚くでき、記録磁化を安定に保持できる
利点がある。垂直記録において、磁化遷移から発生する
媒体ノイズを減少し、線記録密度を向上するために、磁
性膜の磁化容易軸を基板面に垂直に配向させると共に、
結晶粒径の制御が必要である。
For high-density recording by in-plane recording, the thickness of the magnetic film needs to be 20 nm or less as described above. In this case, there is a problem that the recording magnetization is lost due to thermal fluctuation. On the other hand, perpendicular recording has the advantage that the magnetic film thickness can be made thicker than in-plane recording, and the recording magnetization can be stably maintained. In perpendicular recording, in order to reduce medium noise generated from magnetization transition and improve linear recording density, the easy axis of the magnetic film is oriented perpendicular to the substrate surface,
It is necessary to control the crystal grain size.

【0006】磁性膜としては、Coを主成分とし、これに
Cr,Ta,Pt,Rh,Pd,Ti,Ni,Nb,Hfなどを添加したCo合金薄膜
が用いられる。磁性薄膜を構成するCo合金は、主として
六方稠密格子構造(以下、hcp構造という)の材料を用
いる。この結晶のc軸、<00.1>方向に磁化容易軸
を持ち、この磁化容易軸を垂直方向に配向させる。磁性
薄膜は真空蒸着法やスパッタリング法により形成する。
磁気記録したときの線記録密度や再生出力を向上し、再
生ノイズを減少させて磁気記録特性を向上するために、
上記のCo合金薄膜のc軸の垂直配向性を向上すると共
に、結晶粒径の制御が必要であり、このために基板と磁
性膜の間に構造制御用の下地層を形成するなどの改善策
が従来から行われている。
[0006] The magnetic film contains Co as a main component.
A Co alloy thin film to which Cr, Ta, Pt, Rh, Pd, Ti, Ni, Nb, Hf or the like is added is used. As the Co alloy constituting the magnetic thin film, a material having a hexagonal close-packed lattice structure (hereinafter, referred to as an hcp structure) is mainly used. The crystal has an easy axis in the c-axis, <00.1> direction, and the easy axis is oriented in the vertical direction. The magnetic thin film is formed by a vacuum evaporation method or a sputtering method.
In order to improve the linear recording density and reproduction output when performing magnetic recording, reduce reproduction noise and improve magnetic recording characteristics,
It is necessary to improve the c-axis vertical orientation of the above-mentioned Co alloy thin film and control the crystal grain size. For this purpose, improvement measures such as forming an underlayer for structure control between the substrate and the magnetic film are required. Is conventionally performed.

【0007】しかしながら、数Gb/in2以上、特に10Gb/i
n2以上の超高密度磁気記録を実現するには、線記録密度
の向上の他に再生信号に含まれるノイズ、特に媒体の微
細構造に起因する媒体ノイズの低減が重要である。この
ためには磁性薄膜の結晶配向に加えてより高度な薄膜構
造の制御が必要である。媒体ノイズの低減のために従来
様々の改良が試みられている。例えば、(1)磁性粒子
間の磁気的相互作用を小さくするためにCoCr系合金中の
非磁性Crを結晶粒界や粒内に偏析させる方法、(2)ス
パッタリングガス圧力を制御することにより磁性粒子を
形態的に孤立させる方法などである。このような従来技
術による媒体構造の改良により媒体ノイズの低減が促進
されたが、垂直磁気記録における媒体ノイズの起源であ
るところの、磁化方向と逆向きに形成される逆磁区およ
びこれに伴う不規則磁区の低減効果は得られていない。
However, several Gb / in 2 or more, especially 10 Gb / i
In order to realize ultra-high density magnetic recording of n 2 or more, it is important to reduce the noise included in the reproduction signal, in particular, the medium noise caused by the fine structure of the medium, in addition to the improvement of the linear recording density. For this purpose, it is necessary to control the thin film structure at a higher level in addition to the crystal orientation of the magnetic thin film. Conventionally, various improvements have been attempted to reduce medium noise. For example, (1) a method of segregating non-magnetic Cr in a CoCr-based alloy at a crystal grain boundary or in a grain to reduce magnetic interaction between magnetic particles, and (2) a method of controlling a sputtering gas pressure to control magnetic properties. For example, a method of isolating particles morphologically. Although the improvement of the medium structure according to the prior art has promoted the reduction of the medium noise, the reverse magnetic domain formed in the direction opposite to the magnetization direction, which is the origin of the medium noise in the perpendicular magnetic recording, and the non-magnetic domain associated therewith. The effect of reducing the ordered magnetic domains has not been obtained.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上述
した従来技術の欠点を解消し、基板上に形成する垂直磁
化膜の垂直磁気異方性や結晶配向、あるいは磁性粒子間
の相互作用を制御することによって、磁気記録したとき
の微細な磁区構造を制御し、優れた低ノイズ特性を有し
超高密度磁気記録に好適な垂直磁気記録媒体およびこれ
を用いた磁気記録装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to solve the above-mentioned drawbacks of the prior art, and to describe the perpendicular magnetic anisotropy and crystal orientation of a perpendicular magnetization film formed on a substrate, or the interaction between magnetic particles. To provide a perpendicular magnetic recording medium having excellent low-noise characteristics and suitable for ultra-high-density magnetic recording, and a magnetic recording apparatus using the same by controlling a fine magnetic domain structure when magnetic recording is performed. It is in.

【0009】[0009]

【課題を解決するための手段】本発明は、基板上に垂直
磁気異方性の異なる少なくとも2層以上の磁性膜を形成
し、前記磁性膜において基板面から遠い側の第2の磁性
膜の垂直磁気異方性を基板面に近い側の第1の磁性膜の
垂直磁気異方性に比べて大きくし、基板面に近い側の第
1の磁性膜の磁気的孤立性を向上させる、いわゆる各々
の磁性膜に役割分担を付与することにより、前記の目的
を達成する。
According to the present invention, at least two magnetic films having different perpendicular magnetic anisotropies are formed on a substrate, and the second magnetic film on the side of the magnetic film far from the substrate surface is formed. The perpendicular magnetic anisotropy is made larger than the perpendicular magnetic anisotropy of the first magnetic film closer to the substrate surface, and the magnetic isolation of the first magnetic film closer to the substrate surface is improved. The above object is achieved by assigning roles to the respective magnetic films.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施例を挙げ、図
面を参照しながら詳細に説明する。図において、同一の
符号を付したものは、同じ性能特性を有する部分を示
す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. In the drawings, the components denoted by the same reference numerals indicate portions having the same performance characteristics.

【0011】図1により、本発明の磁気録装置の一実施
例を説明する。磁気記録装置は、磁気ディスク1、記録
再生用の磁気ヘッド2、磁気ヘッドを支持するサスペン
ジョン3、アクチュエータ4、ボイスコイルモータ5、
記録再生回路6、位置決め回路7、インターフェース制
御回路8などで構成される。磁気ディスク1は、ガラス
基板、Si基板、NiP被覆アルミニウム基板、カーボン基
板など円盤状の基板上に磁性膜の結晶配向性などの構造
制御用の下地層、この上に形成された磁性膜、および保
護膜などで構成され、保護膜上には潤滑膜を被覆した磁
気録媒体である。磁性膜は、Coを主成分としこれにC
r,Pt,Ti,Ru,Ta,W,Mo,Pdなどを添
加したを用い、磁性膜の磁化容易軸を基板面に垂直方向
に配向させる。磁性膜の磁化容易軸を基板面に垂直に配
向した垂直記録媒体を得るために、構造制御用の下地層
として非磁性のCoCr合金、Ti,TiCr合金あるいはこれら
にPt,Ru,Ta,Mo,Pdなどを添加したhcp構造の多結晶もし
くは非晶質下地層やSi,Geなどの非晶質下地層を用い
る。
An embodiment of the magnetic recording apparatus according to the present invention will be described with reference to FIG. The magnetic recording device includes a magnetic disk 1, a magnetic head 2 for recording and reproduction, a suspension 3 for supporting the magnetic head, an actuator 4, a voice coil motor 5,
It comprises a recording / reproducing circuit 6, a positioning circuit 7, an interface control circuit 8, and the like. The magnetic disk 1 is formed on a disk-shaped substrate such as a glass substrate, a Si substrate, a NiP-coated aluminum substrate, and a carbon substrate, for controlling a structure such as crystal orientation of a magnetic film, a magnetic film formed thereon, The magnetic recording medium includes a protective film and the like, and a lubricating film is coated on the protective film. The magnetic film contains Co as a main component and C
The axis of easy magnetization of the magnetic film is oriented in the direction perpendicular to the substrate surface by using r, Pt, Ti, Ru, Ta, W, Mo, Pd, or the like. In order to obtain a perpendicular recording medium in which the axis of easy magnetization of the magnetic film is oriented perpendicular to the substrate surface, a nonmagnetic CoCr alloy, Ti, TiCr alloy or Pt, Ru, Ta, Mo, An hcp structure polycrystalline or amorphous underlayer to which Pd or the like is added or an amorphous underlayer such as Si or Ge is used.

【0012】磁気ヘッドは、スライダー、この上に設け
られた磁気記録用ヘッドの磁極および記録信号再生用の
磁気抵抗効果型、巨大磁気抵抗効果型、もしくはスピン
バルブ型素子あるいは磁気トンネル型素子で構成され
る。磁気記録時のトラック端部の記録磁区の乱れを低下
するために記録用ヘッドのトレーリング側、リーディン
グ側磁極のトラック両端部は揃っていることが望まし
い。再生用ヘッドのトラック幅は、前記の記録用ヘッド
磁極のトラック幅より狭いことが、記録トラック両端部
から生じる再生ノイズを低減するのに好適である。
The magnetic head comprises a slider, a magnetic pole of a magnetic recording head provided thereon, and a magnetoresistive, giant magnetoresistive, spin valve or magnetic tunnel element for reproducing a recorded signal. Is done. In order to reduce the disturbance of the recording magnetic domain at the end of the track at the time of magnetic recording, it is preferable that both ends of the track of the trailing and leading magnetic poles of the recording head are aligned. It is preferable that the track width of the reproducing head is smaller than the track width of the recording head magnetic pole in order to reduce reproduction noise generated from both ends of the recording track.

【0013】磁気ヘッド2は、サスペンジョン3によっ
て支持され、かつ磁気ヘッドが磁気ディスクの内周側か
ら外周側に向かって移動したときに生ずるヨー角を補正
する機能が設けてある。
The magnetic head 2 is supported by the suspension 3 and has a function of correcting a yaw angle generated when the magnetic head moves from the inner circumference to the outer circumference of the magnetic disk.

【0014】図2により、本発明の内容を更に詳細に説
明する。
The contents of the present invention will be described in more detail with reference to FIG.

【0015】基板11は、表面に熱酸化Si膜を形成した
円盤状のSiディスクを用いた。基板としては、 Siディ
スクの他にガラス基板、NiP被服Al基板、カーボン基
板、あるいは高分子基板などを用いることができる。洗
浄した基板11をスパッタリング装置に設置し、1x10-8
Torrの真空まで排気した。続いて基板11を230℃
に加熱して、磁性膜の結晶粒径や磁気異方性の制御行う
ための下地層12を形成した。下地層12は、この上に
形成する磁性膜の種類により任意に選ぶことができる。
磁性膜としては、六方稠密構造、体心立法格子構造、面
心六法格子構造、あるいは斜方晶構造の材料を用いるこ
とができ、例えば磁性膜としてCoを主成分とするhcp
(六方稠密構造)構造の材料を用いる場合、最も一般的
にはTi,Ta,Ru,Hf,Co ,などのhcp構造の材料を主成分と
し、これにCr,V,Wなどを添加した材料や、あるいはSi,G
eを始めとする非晶質状の材料を選択することが可能で
ある。また下地層12としては、単一の材料からなる1
層構造の下地層、あるいは異種の材料からなる2層以上
の構造からなる下地層を用いることができる。本実施例
では、基板11上に第1の下地層としてhcp構造のTi-10
at%Cr 合金膜を膜厚30 nm形成し、更にこの上にCo-35at
%Cr 合金からなる非磁性の合金膜を厚さ20 nm形成した
2層下地層の構成とした。下地層12はhcp構造を有
し、その成長方位は<002>方位が基板面に垂直に配向し
ていた。
As the substrate 11, a disk-shaped Si disk having a thermally oxidized Si film formed on its surface was used. As the substrate, a glass substrate, a NiP-coated Al substrate, a carbon substrate, a polymer substrate, or the like can be used in addition to the Si disk. The cleaned substrate 11 is set in a sputtering apparatus, and 1x10 -8
Evacuated to Torr vacuum. Subsequently, the substrate 11 is set at 230 ° C.
To form an underlayer 12 for controlling the crystal grain size and magnetic anisotropy of the magnetic film. The underlayer 12 can be arbitrarily selected depending on the type of the magnetic film formed thereon.
As the magnetic film, a material having a hexagonal close-packed structure, a body-centered cubic lattice structure, a face-centered hexagonal lattice structure, or an orthorhombic structure can be used.
When a material with a (hexagonal close-packed structure) structure is used, it is most commonly made of a material with an hcp structure such as Ti, Ta, Ru, Hf, Co, etc., to which Cr, V, W, etc. is added. Or or Si, G
It is possible to select an amorphous material such as e. The underlayer 12 is made of a single material 1
An underlayer having a layered structure or an underlayer having a structure of two or more layers made of different materials can be used. In this embodiment, a hc-structure Ti-10 is formed on the substrate 11 as a first underlayer.
An at% Cr alloy film is formed to a thickness of 30 nm, and Co-35at
A two-layer underlayer in which a nonmagnetic alloy film made of% Cr alloy was formed to a thickness of 20 nm was used. The underlayer 12 had an hcp structure, and its <002> orientation was perpendicular to the substrate surface.

【0016】この上に引き続き同一真空中で記録膜とな
る磁性膜、保護膜を順次形成した。本発明の一実施例の
媒体Aは、図2(a)に示すごとく、前記下地層12の上に
第1磁性膜13として磁気的な孤立性の良い材料からな
る薄膜を形成し、更にこの上に第2磁性膜15として膜
面垂直方向の垂直磁気異方性定数Kuが前記の第1磁性層
に比べて大きい磁性膜を形成して構成される。磁性膜と
しては、 Coを主成分とし、これにCr,Fe,Mo,V,Ta,
Pt,Si,B,Ir,W,Hf,Nb,Ru,Niおよび希土類元
素の中から選ばれる少なくとも1種類以上の元素または
含んだ材料を用いることができる。第1磁性膜13と第
2磁性膜15は、これを構成する薄膜の結晶構造は同一
でも、あるいは異なっても良い。媒体Aにおける第1磁
性膜13としては、例えばCo-17at%Cr-3at%Ta合金やCo-
15at%Cr-10at%Pt-3at%Ta合金など、 Cr, Mo,V,Ta,
Pt,Si,B,Ir,W,Hf,Nb,Ruなどの非磁性元素を
多量に添加材料を用いることができる。これら第1磁性
膜は非磁性のCrやTaなどの添加により磁性結晶粒の粒界
や粒内に非磁性層や弱磁性層を局所的に偏析させること
ができ、磁性粒子の磁気的孤立性を向上する効果が電子
顕微鏡を用いた組成分析などで確認されている。またPt
の添加により磁性膜の磁気異方性を向上できる。媒体A
における第2磁性膜15としては、例えばCo-50at%Pt
合金、Co-20at%Pt-5at%Cr合金、Co-18at%Pt-10at%Cr合
金などを用いることができる。第2磁性膜15は第1磁
性膜13に比べて非磁性層の局所的な偏析構造は少な
く、磁気的な孤立性は劣るが、磁気異方性定数は大き
い。媒体Aにおける第1磁性膜13の膜面垂直方向の磁
気異方性定数Kuaは、1x106erg/cc から4x106erg/cc の
範囲であった。一方第2磁性膜の磁気異方性定数Kubは5
x106erg/ccから1x107erg/ccの範囲であったが、第2磁
性膜として例えばPt/Co多層膜垂直磁性膜あるいはPd/Co
多層膜垂直磁性膜など更に大きいKu値(1x107erg/cc以
上)を有する材料を用いると本発明の効果は一段と向上
する。本実施例における媒体Aの第1磁性膜13の膜厚
(t1)、第2磁性膜15の膜厚(t2)はそれぞれt1=30 nm、
t2=20 nmとした。これら磁性膜厚はt1≧t2条件を満たし
ておれば、他の膜厚の組み合わせを用いても良い。第2
磁性膜の上には保護膜16としてカーボン(c)膜を厚
さ5 nm形成した。
Subsequently, a magnetic film and a protective film to be a recording film were successively formed in the same vacuum in succession. In the medium A of one embodiment of the present invention, as shown in FIG. 2A, a thin film made of a material having good magnetic isolation is formed as the first magnetic film 13 on the underlayer 12, The second magnetic film 15 is formed by forming a magnetic film having a perpendicular magnetic anisotropy constant Ku in a direction perpendicular to the film surface larger than that of the first magnetic layer. The magnetic film is mainly composed of Co, which contains Cr, Fe, Mo, V, Ta,
At least one element selected from Pt, Si, B, Ir, W, Hf, Nb, Ru, Ni and rare earth elements or a material containing at least one element can be used. The crystal structure of the thin film constituting the first magnetic film 13 and the second magnetic film 15 may be the same or different. As the first magnetic film 13 in the medium A, for example, a Co-17at% Cr-3at% Ta alloy or a Co-
Cr, Mo, V, Ta, 15at% Cr-10at% Pt-3at% Ta alloy
A large amount of non-magnetic elements such as Pt, Si, B, Ir, W, Hf, Nb, and Ru can be used. These first magnetic films can locally segregate the nonmagnetic layer or the weak magnetic layer in the grain boundaries or within the magnetic crystal grains by adding nonmagnetic Cr or Ta. Has been confirmed by composition analysis and the like using an electron microscope. Also Pt
Can improve the magnetic anisotropy of the magnetic film. Medium A
The second magnetic film 15 is, for example, Co-50at% Pt
An alloy, a Co-20at% Pt-5at% Cr alloy, a Co-18at% Pt-10at% Cr alloy, or the like can be used. The second magnetic film 15 has less local segregation structure of the non-magnetic layer and is less magnetically isolated than the first magnetic film 13, but has a large magnetic anisotropy constant. Anisotropy constant Kua direction perpendicular to the film plane of the first magnetic layer 13 in medium A was in the range of 1x10 6 erg / cc of 4x10 6 erg / cc. On the other hand, the magnetic anisotropy constant Kub of the second magnetic film is 5
The range from x10 6 erg / cc to 1 × 10 7 erg / cc, but as the second magnetic film, for example, a Pt / Co multilayer perpendicular magnetic film or Pd / Co
When a material having a larger Ku value (1 × 10 7 erg / cc or more) such as a multilayer perpendicular magnetic film is used, the effect of the present invention is further improved. Thickness of first magnetic film 13 of medium A in the present embodiment
(t1), the thickness (t2) of the second magnetic film 15 is t1 = 30 nm, respectively.
t2 was set to 20 nm. As long as the magnetic film thickness satisfies the condition of t1 ≧ t2, another combination of film thicknesses may be used. Second
On the magnetic film, a carbon (c) film having a thickness of 5 nm was formed as a protective film 16.

【0017】本発明の他の実施例の媒体Bは、図2(b)
に示すごとく、前記下地層12の上に第1磁性膜13と
して磁気的な孤立性の良い材料からなる薄膜を形成し、
この上に非磁性中間層14を介して第2磁性膜15とし
て膜面垂直方向の垂直磁気異方性定数Kuが大きい磁性
膜、及び保護膜16を形成して構成される。第1、第2
磁性膜の材料および膜厚は媒体Aと同様に設定できる。
媒体Bにおいて、非磁性中間層14は、第2磁性膜15
のエピタキシャル成長を促進する効果と、第2磁性膜の
結晶粒の粗大化を押さえる効果、第1、第2磁性膜間の
磁気的相互作用の強さを制御する役割がある。非磁性中
間層14の材料は、非磁性材料の前記の下地層12と同
じものを用いることができ、その膜厚は1原子層以上、
10 nm以下が望ましい。本実施例では5 nmとした。
A medium B according to another embodiment of the present invention is shown in FIG.
As shown in FIG. 1, a thin film made of a material having good magnetic isolation is formed as the first magnetic film 13 on the underlayer 12.
A magnetic film having a large perpendicular magnetic anisotropy constant Ku in the direction perpendicular to the film surface and a protective film 16 are formed thereon as a second magnetic film 15 with a non-magnetic intermediate layer 14 interposed therebetween. 1st, 2nd
The material and thickness of the magnetic film can be set in the same manner as in the medium A.
In the medium B, the non-magnetic intermediate layer 14 includes the second magnetic film 15
Has the effect of promoting the epitaxial growth of, the effect of suppressing the coarsening of the crystal grains of the second magnetic film, and the role of controlling the strength of the magnetic interaction between the first and second magnetic films. The material of the non-magnetic intermediate layer 14 can be the same as that of the underlayer 12 of the non-magnetic material.
10 nm or less is desirable. In this embodiment, the thickness is 5 nm.

【0018】比較のために図2(c)〜(f)に示した構成の
5種類の媒体を作製した。比較用媒体Aは、図2(c)に示
した様に、基板11の上に形成した下地層12を介して
単一の材料からなる磁性膜13を膜厚 50 nm、および保
護層16を形成して構成される。ここでは磁性膜として
は、媒体Aにおける第1磁性膜と同じ材料を用いた。比
較用媒体Bは、図2(d)に示した様に、基板11の上に
形成した下地層12を介して単一の材料からなる磁性膜
15膜厚 50 nm、および保護層16を形成して構成され
る。ここでは磁性膜としては、媒体Aにおける第2磁性
膜と同じ高Kuの材料を用いた。比較用媒体Cは、図2
(e)に示した様に、基板11の上に下部磁性膜17を形
成し、この上に上部磁性膜18、保護膜16の順に形成
した構造の媒体である。ここで下部磁性膜17として
は、膜面垂直方向の保磁力(Hc)が小さい材料、例えば10
00 Oe(エルステッド)以下とし、本実施例ではCoNiReP
やNiPからなる材料を用いた。上部磁性膜18として
は、膜面垂直方向の保磁力が前記の下部磁性膜17に比
べて大きい(1000〜1500 Oe)材料からなる、例えばCoN
iRePを用いた。ここでは材料の組成を変えることによ
り、薄膜の保磁力を変えた。比較用媒体Dは、図2(f)
に示した様に、非磁性体19と磁性体20が交互に積層
された構造となっている。比較用媒体Dでは、非磁性体
19として膜厚 0.4 nmのPd、磁性体20として膜厚 0.
2 nmのCo-15at% Cr-3at% Ta合金膜とし、これを50周
期積層した構造の媒体を用いた。この媒体の膜面垂直方
向の磁気異方性定数Kuは、約8x106 erg/cc であった。
比較用媒体Eは、比較用媒体Dと同様に図2(f)に示した
様に、非磁性体19と磁性体20が交互に積層された構
造となっており、非磁性体19として膜厚1.2 nmのPt、
磁性体20として膜厚0.4 nmのCoとしこれを20周期積層
した構造の媒体を用いた。この媒体の膜面垂直方向の磁
気異方性定数Kuは、約2x107erg/cc であった。
For comparison, five types of media having the structures shown in FIGS. 2C to 2F were prepared. As shown in FIG. 2 (c), the comparative medium A has a magnetic film 13 made of a single material having a thickness of 50 nm and a protective layer 16 having a thickness of 50 nm via an underlayer 12 formed on a substrate 11. It is formed and formed. Here, the same material as the first magnetic film in the medium A was used as the magnetic film. As shown in FIG. 2D, the comparative medium B has a magnetic film 15 made of a single material, a thickness of 50 nm, and a protective layer 16 formed through a base layer 12 formed on a substrate 11. It is composed. Here, the same high-Ku material as the second magnetic film in the medium A was used as the magnetic film. The comparison medium C is shown in FIG.
As shown in (e), this is a medium having a structure in which a lower magnetic film 17 is formed on a substrate 11, and an upper magnetic film 18 and a protective film 16 are formed thereon in this order. Here, as the lower magnetic film 17, a material having a small coercive force (Hc) in a direction perpendicular to the film surface, for example, 10
00 Oe (Oersted) or less, and in this embodiment, CoNiReP
And a material made of NiP. The upper magnetic film 18 is made of a material having a larger coercive force (1000 to 1500 Oe) than the lower magnetic film 17 in the direction perpendicular to the film surface.
iReP was used. Here, the coercive force of the thin film was changed by changing the composition of the material. The comparison medium D is shown in FIG.
As shown in (1), a non-magnetic body 19 and a magnetic body 20 are alternately stacked. In Comparative Medium D, Pd having a thickness of 0.4 nm was used as the non-magnetic material 19, and Pd was used as a non-magnetic material 20.
A medium having a structure in which a Co-15at% Cr-3at% Ta alloy film of 2 nm was laminated for 50 periods was used. The magnetic anisotropy constant Ku of the medium in the direction perpendicular to the film surface was about 8 × 10 6 erg / cc.
As shown in FIG. 2F, the comparative medium E has a structure in which the non-magnetic material 19 and the magnetic material 20 are alternately laminated as shown in FIG. 1.2 nm thick Pt,
As the magnetic material 20, a medium having a structure in which Co having a thickness of 0.4 nm was stacked for 20 periods was used. The magnetic anisotropy constant Ku of the medium in the direction perpendicular to the film surface was about 2 × 10 7 erg / cc.

【0019】表1に本発明の実施例の媒体の特性を比較
して示した。
Table 1 shows the characteristics of the media of the present invention in comparison.

【0020】[0020]

【表1】 [Table 1]

【0021】表において、磁気記録はリング型磁気ヘッ
ド(トラック幅2μm、ギャップ長0.2μm)を使用し、
再生は磁気抵抗効果型ヘッド(MRヘッド)を使用し、記
録再生時の磁気スペーシング(媒体磁性膜の表面と磁気
ヘッドの磁極間の距離)30 nmとした。表1において、
出力半減記録密度D50は、低線記録密度(5 kFCI)の再生
信号出力に対して再生信号出力が1/2になる線記録密度
を示し、Flux Chang perInch(FCI)で表示した。またノ
イズN/S0は、線記録密度250 kFCIで測定したノイズを低
線記録密度(5 kFCI)における再生信号出力で規格化した
値で表示した。表1の比較から明らかな様に、本発明の
媒体AおよびBは、比較用の従来媒体に比べて、高い出力
半減記録密度と低ノイズ特性が実現されており、超高密
度磁気記録に好適な媒体であることが明らかである。
In the table, the magnetic recording uses a ring-type magnetic head (track width 2 μm, gap length 0.2 μm),
A magnetoresistive head (MR head) was used for reproduction, and the magnetic spacing during recording / reproduction (distance between the surface of the medium magnetic film and the magnetic pole of the magnetic head) was 30 nm. In Table 1,
Output half recording density D 50 represents a linear recording density reproduced signal output is halved relative to the reproduced signal output of the low linear recording density (5 kFCI), viewed in Flux Chang perInch (FCI). Further, the noise N / S 0 was represented by a value obtained by standardizing a noise measured at a linear recording density of 250 kFCI with a reproduction signal output at a low linear recording density (5 kFCI). As is clear from the comparison in Table 1, the mediums A and B of the present invention realize a higher output half-density recording density and lower noise characteristics than the conventional medium for comparison, and are suitable for ultra-high density magnetic recording. It is clear that this is a good medium.

【0022】媒体の低ノイズ特性の原因を比較するため
に、磁気記録した試料の記録磁化状態を磁気力顕微鏡(M
FM:Magnetic Force Microscope ) 観察し、その結果を
図3に比較して示す。
In order to compare the causes of the low noise characteristics of the medium, the recorded magnetization state of the magnetically recorded sample was measured using a magnetic force microscope (M
FM: Magnetic Force Microscope), and the results are shown in comparison with FIG.

【0023】図3(a)は、前記図2(a)および(b)に示し
た本発明の媒体A、媒体Bの記録磁化状態の一例を示
す。垂直磁気記録は媒体全面を直流消去した後に、前記
のリング型の磁気ヘッドにより行った。図は、直流消去
領域31、に記録磁区32を記録した状態を示してい
る。図において、明暗のコントラストは、磁化の平均の
向きが同じであることを示している。図から明らかなよ
うに、本発明の媒体A及び媒体Bでは、鮮明な記録磁区
32が形成されており、また磁化遷移33の揺らぎも小
さく、揺らぎの振幅は約30 nmと微細であり、これはこ
の媒体の磁性粒子の平均径とほぼ同じ大きさであった。
一方、図3(b)は、比較用媒体Aの記録磁化状態を示す。
この場合、磁性薄膜の結晶配向を向上し、磁性粒子の微
細化と磁気的な孤立性を改善することにより同図(b)の
ように、磁化遷移の揺らぎが小さい磁化鮮明な記録磁区
を形成できるが、図に示したように、直流消去領域31
や記録磁区32の内部に磁性結晶粒径の2倍以上の大き
さの不規則な形をした不規則磁区34が多く形成され
る。この不規則磁区34は、主として反磁界の影響によ
り磁化の向きと逆方向に形成される逆磁区と呼ばれるも
のであり、これら不規則磁区34は、記録再生時の媒体
ノイズの原因となり、また高密度記録の障害になる。図
3(c)は、比較用媒体Bの記録磁化状態を示す。この場
合、磁性膜の磁気異方性定数が大きく設定されている
が、磁性粒子間の磁気的な相互作用が強い。このため不
規則磁区の生成は極めて少ないが、図に示したように磁
化遷移の揺らぎ構造が極めて大きく、これが媒体ノイズ
の増大と記録密度向上の障害となる。図3(d)は、比較
用媒体Cの記録磁化状態を示す。この場合、磁化遷移の
揺らぎと不規則磁区の径が大きい。図3(e)は、比較用
媒体Eの記録磁化状態を示す。この場合、媒体の垂直磁
気異方性定数Kuが2x107erg/cc と大きいため、直流消去
領域31や記録磁区32の内部に不規則磁区のない鮮明
な記録磁区が形成されるが、磁性粒子間の磁気的相互作
用が強く、このため磁化遷移33が大きく揺らいでい
る。図3(f)は、比較用媒体Dの記録磁化状態を示す。
この場合、磁化遷移の揺らぎ構造が小さく本発明の媒体
に類似した鮮明な記録磁区が形成されるが、記録磁区3
2や直流消去領域31に不規則磁区34が形成される。
FIG. 3 (a) shows an example of the recording magnetization state of the medium A and medium B of the present invention shown in FIGS. 2 (a) and (b). Perpendicular magnetic recording was performed by the above-described ring type magnetic head after DC erasing was performed on the entire surface of the medium. The figure shows a state in which a recording magnetic domain 32 has been recorded in the DC erasure area 31. In the figure, the contrast between light and dark indicates that the average direction of magnetization is the same. As is clear from the figure, in the media A and B of the present invention, clear recording magnetic domains 32 are formed, the fluctuation of the magnetization transition 33 is small, and the amplitude of the fluctuation is as fine as about 30 nm. Was approximately the same size as the average diameter of the magnetic particles of this medium.
On the other hand, FIG. 3B shows the recording magnetization state of the comparative medium A.
In this case, by improving the crystal orientation of the magnetic thin film, miniaturizing the magnetic particles and improving the magnetic isolation, a clear magnetic domain with small fluctuation of the magnetization transition is formed as shown in FIG. Although it is possible, as shown in FIG.
In addition, irregular magnetic domains 34 having an irregular shape having a size twice or more the magnetic crystal grain size are formed in the recording magnetic domains 32. The irregular magnetic domains 34 are called reverse magnetic domains formed in a direction opposite to the direction of magnetization mainly due to the influence of a demagnetizing field. These irregular magnetic domains 34 cause medium noise during recording / reproduction, and Obstruct density recording. FIG. 3C shows the recording magnetization state of the comparative medium B. In this case, the magnetic anisotropy constant of the magnetic film is set large, but the magnetic interaction between the magnetic particles is strong. For this reason, the generation of irregular magnetic domains is extremely small, but the fluctuation structure of the magnetization transition is extremely large as shown in the figure, which causes an increase in medium noise and an increase in recording density. FIG. 3D shows the recording magnetization state of the comparative medium C. In this case, the fluctuation of the magnetization transition and the diameter of the irregular magnetic domain are large. FIG. 3E shows the recording magnetization state of the comparative medium E. In this case, since the perpendicular magnetic anisotropy constant Ku of the medium is as large as 2 × 10 7 erg / cc, a clear recording magnetic domain having no irregular magnetic domains is formed inside the DC erase region 31 and the recording magnetic domain 32. The strong magnetic interaction between them causes the magnetization transition 33 to fluctuate greatly. FIG. 3F shows the recording magnetization state of the comparative medium D.
In this case, although the fluctuation structure of the magnetization transition is small and a clear recording magnetic domain similar to the medium of the present invention is formed, the recording magnetic domain 3
2 and irregular magnetic domains 34 are formed in the DC erase region 31.

【0024】[0024]

【発明の効果】以上詳細に説明したごとく、本発明のご
とく基板上に垂直磁気異方性の異なる少なくとも2層以
上の磁性膜を形成し、前記磁性膜において基板面から遠
い側の第2の磁性膜の垂直磁気異方性を基板面に近い側
の第1の磁性膜の垂直磁気異方性に比べて大きくし、基
板面に近い側の第1の磁性膜の磁気的孤立性を向上させ
る、いわゆる各々の磁性膜に役割分担を付与することに
より、媒体ノイズの原因となる記録磁区の磁化遷移の揺
らぎ構造が小さく、かつ不規則磁区構造の無い、再生信
号の高S/N特性を有する超高面記録密度の磁気記録に好
適な磁気記録媒体および磁気記録装置を提供できる。
As explained in detail above, at least two magnetic films having different perpendicular magnetic anisotropy are formed on the substrate as in the present invention, and the second magnetic film on the side remote from the substrate surface in the magnetic film is formed. The perpendicular magnetic anisotropy of the magnetic film is made larger than the perpendicular magnetic anisotropy of the first magnetic film near the substrate surface, and the magnetic isolation of the first magnetic film near the substrate surface is improved. By assigning roles to each of the magnetic films, the fluctuation structure of the magnetization transition of the recording magnetic domain, which causes medium noise, is small, and there is no irregular magnetic domain structure. It is possible to provide a magnetic recording medium and a magnetic recording device suitable for magnetic recording with an ultra-high areal recording density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁気記録再生装置の説明図。FIG. 1 is an explanatory diagram of a magnetic recording and reproducing device.

【図2】本発明の磁気記録媒体の説明図。FIG. 2 is an explanatory diagram of a magnetic recording medium of the present invention.

【図3】本発明の磁気記録媒体および比較用媒体の記録
磁化状態の比較図。
FIG. 3 is a comparison diagram of recording magnetization states of a magnetic recording medium of the present invention and a comparative medium.

【符号の説明】[Explanation of symbols]

1…磁気ディスク、2…磁気ヘッド、3…サスペンジョ
ン、4…アクチュエータ、5…ボイスコイルモータ、6
…記録再生回路、7…位置決め回路、8…インターフェ
ース制御回路、11…板、12…下地層、13…第1磁
性膜、14…非磁性中間層、15…第2磁性層、16…
保護膜、17…下部磁性膜、18…上部磁性膜、19…
非磁性体、20…磁性体、31…直流消去領域、32…
記録磁区、33…磁化遷移、34…不規則磁区。
DESCRIPTION OF SYMBOLS 1 ... Magnetic disk, 2 ... Magnetic head, 3 ... Suspension, 4 ... Actuator, 5 ... Voice coil motor, 6
... Recording / reproducing circuit, 7 ... Positioning circuit, 8 ... Interface control circuit, 11 ... Plate, 12 ... Underlayer, 13 ... First magnetic film, 14 ... Nonmagnetic intermediate layer, 15 ... Second magnetic layer, 16 ...
Protective film, 17: lower magnetic film, 18: upper magnetic film, 19 ...
Non-magnetic material, 20: Magnetic material, 31: DC erasing area, 32:
Recording magnetic domain, 33: magnetization transition, 34: irregular magnetic domain.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 研也 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 二本 正昭 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kenya Ito 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. Inside the Hitachi Central Research Laboratory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成した磁性膜の磁化容易軸が基
板面に垂直方向に配向した磁気記録媒体であって、該磁
性膜が少なくとも2層以上の磁性膜で構成されており、
該磁性膜の膜面垂直方向の磁気異方性定数が異なる磁性
膜で構成されており、基板面に近い側の磁性膜の垂直磁
気異方性定数Kuaに比べて基板から遠い側の磁性膜の垂
直磁気異方性定数Kubが等しいか大きいことを特徴とす
る垂直磁気記録媒体。
1. A magnetic recording medium in which an axis of easy magnetization of a magnetic film formed on a substrate is oriented in a direction perpendicular to the surface of the substrate, wherein the magnetic film is composed of at least two magnetic films,
The magnetic film is composed of magnetic films having different magnetic anisotropy constants in the direction perpendicular to the film surface, and the magnetic film farther from the substrate than the perpendicular magnetic anisotropy constant Kua of the magnetic film closer to the substrate surface. Wherein the perpendicular magnetic anisotropy constant Kub of the perpendicular magnetic recording medium is equal to or greater than that of the perpendicular magnetic recording medium.
【請求項2】上記基板上に磁性膜の構造制御用の下地層
を形成し、この上に少なくとも2層以上の膜面垂直方向
の垂直磁気異方性定数が異なる磁性膜を形成してなるこ
とを特徴とする請求項1記載の垂直磁気記録媒体。
2. An underlayer for controlling the structure of a magnetic film is formed on the substrate, on which at least two or more magnetic films having different perpendicular magnetic anisotropy constants in the direction perpendicular to the film surface are formed. The perpendicular magnetic recording medium according to claim 1, wherein:
【請求項3】上記基板上に磁性膜の構造制御用の下地層
を形成し、この上に少なくとも2層以上の膜面垂直方向
の垂直磁気異方性定数が異なる磁性膜であって、基板面
に近い側の磁性膜と基板から遠い側の磁性膜の間に非磁
性層を形成してなることを特徴とする請求項1または2
記載の垂直磁気記録媒体。
3. An underlayer for controlling the structure of a magnetic film formed on the substrate, on which at least two or more magnetic films having different perpendicular magnetic anisotropy constants in the direction perpendicular to the film surface. 3. A non-magnetic layer is formed between a magnetic film closer to the surface and a magnetic film farther from the substrate.
The perpendicular magnetic recording medium according to claim 1.
【請求項4】上記基板上に形成した下地層及び磁性膜が
エピタキシャル的に成長した膜であることを特徴とする
請求項1から3までのいずれかに記載の垂直磁気記録媒
体。
4. The perpendicular magnetic recording medium according to claim 1, wherein the underlayer and the magnetic film formed on the substrate are films grown epitaxially.
【請求項5】上記磁性膜が膜面垂直方向の磁気異方性定
数が異なる少なくとも2層以上の磁性膜で構成されてお
り、該磁性膜において基板から遠い側の磁性膜の垂直磁
気異方性定数Kubが5x106erg/ccより大きいことを特
徴とする請求項1から4までのいずれかに記載の垂直磁
気記録媒体。
5. The magnetic film according to claim 1, wherein said magnetic film comprises at least two magnetic films having different magnetic anisotropy constants in a direction perpendicular to the film surface, and wherein said magnetic film has a perpendicular magnetic anisotropy of a magnetic film farther from the substrate. 5. The perpendicular magnetic recording medium according to claim 1, wherein the sex constant Kub is larger than 5 × 10 6 erg / cc.
【請求項6】上記該磁性膜の基板面に近い側の磁性膜の
膜厚(t1) が、基板から遠い側の磁性膜の膜厚(t2)に比
べて大きい( t1≧ t2)ことを特徴とする請求項1から
5までのいずれかに記載の垂直磁気記録媒体。
6. The magnetic film according to claim 1, wherein the thickness (t1) of the magnetic film closer to the substrate surface is larger than the thickness (t2) of the magnetic film farther from the substrate (t1 ≧ t2). The perpendicular magnetic recording medium according to any one of claims 1 to 5, wherein:
【請求項7】上記該磁性膜は、Coを主成分とし、これに
Cr,Fe,Mo,V,Ta,Pt,Si,B,Ir,W,Hf,Nb,R
u,Niおよび希土類元素の中から選ばれる少なくとも1
種類以上の元素または含んでなることを特徴とする請求
項1から6までのいずれかに記載の垂直磁気記録媒体。
7. The magnetic film contains Co as a main component and contains Cr, Fe, Mo, V, Ta, Pt, Si, B, Ir, W, Hf, Nb, and R.
at least one selected from u, Ni and rare earth elements
The perpendicular magnetic recording medium according to any one of claims 1 to 6, wherein the perpendicular magnetic recording medium comprises at least one or more kinds of elements.
【請求項8】請求項1から7までに記載された垂直磁気
記録媒体を用いたことを特徴とする磁気記録装置。
8. A magnetic recording apparatus using the perpendicular magnetic recording medium according to claim 1.
【請求項9】請求項1から7までに記載された垂直磁気
記録媒体を用い、磁気ヘッドとしてリング型磁気ヘッド
を用いたことを特徴とする磁気記録装置。
9. A magnetic recording apparatus using the perpendicular magnetic recording medium according to claim 1 and using a ring type magnetic head as a magnetic head.
JP9265445A 1997-05-29 1997-09-30 Perpendicular magnetic recording medium and magnetic recording device using the same Pending JPH11102510A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP9265445A JPH11102510A (en) 1997-09-30 1997-09-30 Perpendicular magnetic recording medium and magnetic recording device using the same
US09/379,462 US6403203B2 (en) 1997-05-29 1999-08-24 Magnetic recording medium and magnetic recording apparatus using the same
US09/594,570 US6447936B1 (en) 1997-05-29 2000-06-15 Magnetic recording medium and magnetic recording apparatus using the same
US09/947,411 US6534164B2 (en) 1997-05-29 2001-09-07 Magnetic recording medium and magnetic recording apparatus using the same
US10/022,435 US6592976B2 (en) 1997-05-29 2001-12-20 Magnetic recording medium and magnetic recording apparatus using the same
US10/126,780 US6607849B2 (en) 1997-05-29 2002-04-22 Magnetic recording medium and magnetic recording apparatus using the same
US10/202,875 US6716516B2 (en) 1997-05-29 2002-07-26 Magnetic recording medium and magnetic recording apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9265445A JPH11102510A (en) 1997-09-30 1997-09-30 Perpendicular magnetic recording medium and magnetic recording device using the same

Publications (1)

Publication Number Publication Date
JPH11102510A true JPH11102510A (en) 1999-04-13

Family

ID=17417262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9265445A Pending JPH11102510A (en) 1997-05-29 1997-09-30 Perpendicular magnetic recording medium and magnetic recording device using the same

Country Status (1)

Country Link
JP (1) JPH11102510A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426157B1 (en) 1998-08-28 2002-07-30 Nec Corporation Perpendicular magnetic recording medium
KR100374793B1 (en) * 2001-01-03 2003-03-04 삼성전자주식회사 Perpendicular magnetic recording media
US6528149B2 (en) 2000-05-29 2003-03-04 Hitachi, Ltd. Perpendicular-magnetic recording media and magnetic recording apparatus
US6687197B1 (en) 1999-09-20 2004-02-03 Fujitsu Limited High density information recording medium and slider having rare earth metals
JP2004111040A (en) * 2002-09-19 2004-04-08 Samsung Electronics Co Ltd Perpendicular magnetic recording medium
KR100446628B1 (en) * 2002-04-01 2004-09-04 삼성전자주식회사 Thermally stable perpendicular magnetic recording media
SG118167A1 (en) * 2001-12-07 2006-01-27 Fuji Electric Co Ltd Perpendicular magnetic recording medium and a method for manufacturing the same
JP2006286106A (en) * 2005-03-31 2006-10-19 Fujitsu Ltd Vertical magnetic recording medium and magnetic storage apparatus
US7402348B2 (en) 2002-10-17 2008-07-22 Fujitsu Limited Perpendicular magnetic recording medium
JP2009070555A (en) * 2008-11-04 2009-04-02 Showa Denko Kk Magnetic recording medium
JP2009087446A (en) * 2007-09-28 2009-04-23 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device
JP2009199633A (en) * 2008-02-19 2009-09-03 Shin Etsu Chem Co Ltd Silicon substrate for magnetic recording, and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528454A (en) * 1991-07-24 1993-02-05 Sony Corp Perpendicular magnetic recording medium
JPH05266474A (en) * 1992-03-18 1993-10-15 Hitachi Ltd Method and device for film formation, method and device for producing thin-film magnetic recording medium and magnetic storage device
JPH07176027A (en) * 1993-12-17 1995-07-14 Hitachi Ltd Magnetic recording medium and magnetic recording and reproducing device
JPH08249642A (en) * 1995-03-13 1996-09-27 Kobe Steel Ltd Magnetic reording medium and target for forming magnetic film
JPH0991660A (en) * 1995-09-25 1997-04-04 Hitachi Ltd Magnetic recording medium and magnetic recorder applying the same
JP2006289196A (en) * 2005-04-07 2006-10-26 Murata Sangyo Kk Wire drawing dry lubricant recycling machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528454A (en) * 1991-07-24 1993-02-05 Sony Corp Perpendicular magnetic recording medium
JPH05266474A (en) * 1992-03-18 1993-10-15 Hitachi Ltd Method and device for film formation, method and device for producing thin-film magnetic recording medium and magnetic storage device
JPH07176027A (en) * 1993-12-17 1995-07-14 Hitachi Ltd Magnetic recording medium and magnetic recording and reproducing device
JPH08249642A (en) * 1995-03-13 1996-09-27 Kobe Steel Ltd Magnetic reording medium and target for forming magnetic film
JPH0991660A (en) * 1995-09-25 1997-04-04 Hitachi Ltd Magnetic recording medium and magnetic recorder applying the same
JP2006289196A (en) * 2005-04-07 2006-10-26 Murata Sangyo Kk Wire drawing dry lubricant recycling machine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426157B1 (en) 1998-08-28 2002-07-30 Nec Corporation Perpendicular magnetic recording medium
US7090934B2 (en) 1998-08-28 2006-08-15 Hoya Corporation Perpendicular magnetic recording medium
US6898158B2 (en) 1999-09-20 2005-05-24 Fujitsu Limited Information recording medium and information recording and reproducing slider
US6687197B1 (en) 1999-09-20 2004-02-03 Fujitsu Limited High density information recording medium and slider having rare earth metals
US6852398B2 (en) 2000-05-29 2005-02-08 Hitachi, Ltd. Perpendicular-magnetic recording media and magnetic recording apparatus
US6528149B2 (en) 2000-05-29 2003-03-04 Hitachi, Ltd. Perpendicular-magnetic recording media and magnetic recording apparatus
US6641901B2 (en) 2000-05-29 2003-11-04 Hitachi, Ltd. Perpendicular-magnetic recording media and magnetic recording apparatus
KR100374793B1 (en) * 2001-01-03 2003-03-04 삼성전자주식회사 Perpendicular magnetic recording media
SG118167A1 (en) * 2001-12-07 2006-01-27 Fuji Electric Co Ltd Perpendicular magnetic recording medium and a method for manufacturing the same
KR100446628B1 (en) * 2002-04-01 2004-09-04 삼성전자주식회사 Thermally stable perpendicular magnetic recording media
JP2004111040A (en) * 2002-09-19 2004-04-08 Samsung Electronics Co Ltd Perpendicular magnetic recording medium
KR100699822B1 (en) * 2002-09-19 2007-03-27 삼성전자주식회사 Media for perpendicular magnetic recording
US7402348B2 (en) 2002-10-17 2008-07-22 Fujitsu Limited Perpendicular magnetic recording medium
JP2006286106A (en) * 2005-03-31 2006-10-19 Fujitsu Ltd Vertical magnetic recording medium and magnetic storage apparatus
JP2009087446A (en) * 2007-09-28 2009-04-23 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device
JP2009199633A (en) * 2008-02-19 2009-09-03 Shin Etsu Chem Co Ltd Silicon substrate for magnetic recording, and method for manufacturing the same
JP4551459B2 (en) * 2008-02-19 2010-09-29 信越化学工業株式会社 Silicon substrate for magnetic recording and method for manufacturing magnetic recording medium
JP2009070555A (en) * 2008-11-04 2009-04-02 Showa Denko Kk Magnetic recording medium
JP4494503B2 (en) * 2008-11-04 2010-06-30 昭和電工株式会社 Magnetic recording medium

Similar Documents

Publication Publication Date Title
JP3652976B2 (en) Perpendicular magnetic recording medium and magnetic storage device using the same
US6183893B1 (en) Perpendicular magnetic recording medium and magnetic storage apparatus using the same
JP5762448B2 (en) Magnetic recording medium
Oikawa et al. High performance CoPtCrO single layered perpendicular media with no recording demagnetization
US20050227120A1 (en) Magnetic recording medium and magnetic recording apparatus
JP2007052900A (en) Perpendicular magnetic recording disk having recording layer formed on exchange break layer including selected metal oxide and reduced in thickness
JP2008146816A (en) Vertical magnetic recording medium equipped with multilayer recording structure including intergranular exchange enhancement layer
JP2008084413A (en) Magnetic recording medium, manufacturing method of magnetic recording medium and magnetic recording device
JP3612087B2 (en) Magnetic recording medium
JP4534711B2 (en) Perpendicular magnetic recording medium
JPH11102510A (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JP2000113441A (en) Vertical magnetic recording medium
JP3011918B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
JPH07134820A (en) Magnetic recording medium and magnetic recorder using the medium
JP3217012B2 (en) Magnetic recording media
JP3921052B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3652999B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2967070B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device
JP3647379B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2000315311A (en) Vertical magnetic recording medium and magnetic storage device
JP3136133B2 (en) Magnetic recording media
JP2993927B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3653039B2 (en) Magnetic recording / reproducing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060613

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070119