JP2993927B2 - Perpendicular magnetic recording medium and magnetic storage device - Google Patents

Perpendicular magnetic recording medium and magnetic storage device

Info

Publication number
JP2993927B2
JP2993927B2 JP10049505A JP4950598A JP2993927B2 JP 2993927 B2 JP2993927 B2 JP 2993927B2 JP 10049505 A JP10049505 A JP 10049505A JP 4950598 A JP4950598 A JP 4950598A JP 2993927 B2 JP2993927 B2 JP 2993927B2
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
recording
film
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10049505A
Other languages
Japanese (ja)
Other versions
JPH11250435A (en
Inventor
幸雄 本多
義幸 平山
研也 伊藤
正昭 二本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10049505A priority Critical patent/JP2993927B2/en
Publication of JPH11250435A publication Critical patent/JPH11250435A/en
Application granted granted Critical
Publication of JP2993927B2 publication Critical patent/JP2993927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、再生ノイズが小さ
く、記録磁化の安定性に優れた、高密度磁気記録に好適
な垂直磁気記録媒体及び磁気記憶装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium and a magnetic storage device which are suitable for high-density magnetic recording and have low reproduction noise and excellent stability of recording magnetization.

【0002】[0002]

【従来の技術】現在、実用的に用いられている磁気記録
方式は、磁気記録媒体面に平行に、かつ磁極のN極とN
極、S極とS極を互いに突き合わせる方向に磁化して磁
気記録を行う面内磁気記録方式である。面内磁気記録に
おいて線記録密度を向上するには、記録時の反磁界の影
響を減少するために記録媒体である磁性膜の残留磁化
(Br)と磁性膜厚(t)の積を小さくし、保磁力を増
大する必要がある。また磁化遷移から発生する媒体ノイ
ズを減少するために、磁性膜の磁化容易軸を基板面に平
行に配向させると共に、結晶粒径の制御が必要である。
磁性薄膜の結晶配向性や粒径を制御するために、基板と
磁性膜の間に構造制御用の下地層を形成する。
2. Description of the Related Art Currently, practically used magnetic recording systems include an N-pole and an N-pole, which are parallel to the surface of a magnetic recording medium and are magnetic poles.
This is an in-plane magnetic recording system in which magnetic recording is performed by magnetizing the poles, the S pole, and the S pole in a direction in which they face each other. In order to improve the linear recording density in in-plane magnetic recording, the product of the residual magnetization (Br) and the magnetic film thickness (t) of the magnetic film as a recording medium is reduced to reduce the effect of the demagnetizing field during recording. , It is necessary to increase the coercive force. In addition, in order to reduce medium noise generated from magnetization transition, it is necessary to orient the easy axis of the magnetic film parallel to the substrate surface and control the crystal grain size.
In order to control the crystal orientation and grain size of the magnetic thin film, an underlayer for structure control is formed between the substrate and the magnetic film.

【0003】面内磁気記録方式の磁性膜としては、Co
を主成分とし、これにCr,Ta,Pt,Rh,Pd,
Ti,Ni,Nb,Hfなどを添加したCo合金薄膜が
用いられる。磁性薄膜を構成するCo合金は、主として
六方稠密格子構造(以下、hcp構造という)の材料を
用いる。この結晶のc軸は<00.1>方向に磁化容易
軸を持ち、この磁化容易軸を面内方向に配向させる。磁
性薄膜の結晶配向性や粒径を制御するために、基板と磁
性膜の間に構造制御用の下地層を形成する。下地層とし
ては、Crを主成分とし、これにTi,Mo,V,W,
Pt,Pdなどを添加した材料を用いる。磁性薄膜は真
空蒸着法やスパッタリング法により形成する。
As a magnetic film of the longitudinal magnetic recording system, Co is used.
As the main components, and Cr, Ta, Pt, Rh, Pd,
A Co alloy thin film to which Ti, Ni, Nb, Hf or the like is added is used. As the Co alloy constituting the magnetic thin film, a material having a hexagonal close-packed lattice structure (hereinafter, referred to as an hcp structure) is mainly used. The c axis of the crystal has an easy axis in the <00.1> direction, and the easy axis is oriented in the in-plane direction. In order to control the crystal orientation and grain size of the magnetic thin film, an underlayer for structure control is formed between the substrate and the magnetic film. The underlying layer is mainly composed of Cr, and Ti, Mo, V, W,
A material to which Pt, Pd, or the like is added is used. The magnetic thin film is formed by a vacuum evaporation method or a sputtering method.

【0004】前記したように、面内磁気記録において媒
体ノイズを小さくし、線記録密度を向上するには、磁性
膜の残留磁化(Br)と磁性膜厚(t)の積を小さくす
る必要があり、このために磁性膜の膜厚を20nm以下
まで薄くし、結晶粒を微細化することが検討されてい
る。しかし、このような磁性結晶粒を微細化した媒体で
は、熱揺らぎにより記録磁化が減少する極めて重大な問
題があり、高密度記録の障害となっている。
As described above, in order to reduce medium noise and improve linear recording density in longitudinal magnetic recording, it is necessary to reduce the product of the residual magnetization (Br) of the magnetic film and the magnetic film thickness (t). For this purpose, it has been studied to reduce the thickness of the magnetic film to 20 nm or less and to refine crystal grains. However, in such a medium in which the magnetic crystal grains are made fine, there is a very serious problem that the recording magnetization decreases due to thermal fluctuation, which is an obstacle to high-density recording.

【0005】一方、垂直磁気記録方式は、記録媒体面に
垂直に、かつ隣り合う記録ビットが互いに反平行に磁区
を形成して記録する方式であり、記録ビットの境界での
反磁界が小さくなり、高密度記録になるほど磁化が安定
に保たれ易い利点があり、高密度磁気記録の有力な手段
の一つである。
On the other hand, the perpendicular magnetic recording system is a system in which adjacent recording bits form a magnetic domain in a direction perpendicular to the surface of the recording medium and are antiparallel to each other for recording. There is an advantage that the higher the recording density, the more easily the magnetization can be stably maintained, and this is one of the powerful means of high density magnetic recording.

【0006】面内記録による高密度記録のためには、前
記したように磁性膜の厚さを20nm以下にする必要が
あり、この場合、熱的な揺らぎにより記録磁化が消失す
る問題がある。これに対して垂直記録では、面内記録に
比べて磁性膜厚を厚くでき、記録磁化を安定に保持でき
る利点がある。垂直記録により線記録密度を向上するた
めには、記録ビット内部及び磁化遷移に形成される不規
則構造の磁区から発生する媒体ノイズを減少することが
必要である。このためには、磁性膜の磁化容易軸を基板
面に垂直に配向させると共に、磁化容易軸の配向分散を
小さくし、結晶粒径の制御が必要である。
For high-density recording by in-plane recording, the thickness of the magnetic film needs to be 20 nm or less as described above. In this case, there is a problem that the recording magnetization is lost due to thermal fluctuation. On the other hand, perpendicular recording has the advantage that the magnetic film thickness can be made thicker than in-plane recording, and the recording magnetization can be stably maintained. In order to improve the linear recording density by perpendicular recording, it is necessary to reduce the medium noise generated from the magnetic domain having an irregular structure formed inside the recording bit and at the magnetization transition. For this purpose, it is necessary to align the axis of easy magnetization of the magnetic film perpendicular to the substrate surface, reduce the orientation dispersion of the axis of easy magnetization, and control the crystal grain size.

【0007】垂直磁気記録方式の磁性膜としては、Co
を主成分とし、これにCr,Ta,Pt,Rh,Pd,
Ti,Ni,Nb,Hfなどを添加したCo合金薄膜が
用いられる。磁性薄膜を構成するCo合金は、主として
hcp構造の材料を用いる。Co合金薄膜は、この結晶
のc軸、<00.1>方向に磁化容易軸を持ち、この磁
化容易軸を垂直方向に配向させる。磁性薄膜は真空蒸着
法やスパッタリング法により形成する。磁気記録したと
きの線記録密度や再生出力を向上し、再生ノイズを減少
させて磁気記録特性を向上するためには、上記のCo合
金薄膜のc軸の垂直配向性を向上すると共に、結晶粒径
の制御が必要であり、このために基板と磁性膜の間に構
造制御用の下地層を形成するなどの改善策が従来から行
われている。
As the magnetic film of the perpendicular magnetic recording system, Co is used.
As the main components, and Cr, Ta, Pt, Rh, Pd,
A Co alloy thin film to which Ti, Ni, Nb, Hf or the like is added is used. As the Co alloy constituting the magnetic thin film, a material having an hcp structure is mainly used. The Co alloy thin film has an easy axis of magnetization in the c-axis <00.1> direction of the crystal, and orients the easy axis of magnetization in the vertical direction. The magnetic thin film is formed by a vacuum evaporation method or a sputtering method. In order to improve the linear recording density and reproducing output when performing magnetic recording, and to reduce reproducing noise to improve the magnetic recording characteristics, it is necessary to improve the c-axis perpendicular orientation of the Co alloy thin film and to improve the crystal grain size. It is necessary to control the diameter, and for this purpose, improvement measures such as forming an underlayer for structure control between the substrate and the magnetic film have been conventionally taken.

【0008】[0008]

【発明が解決しようとする課題】垂直磁気記録方式で数
Gb/in2以上、特に10Gb/in2以上の超高密度
磁気記録を実現するには、線記録密度の向上の他に再生
信号に含まれるノイズ、特に媒体の微細構造に起因する
媒体ノイズの低減が重要である。このためには、磁性薄
膜の結晶配向に加えて、より高度な薄膜構造の制御が必
要である。媒体ノイズの低減のために、例えば、Journa
l of The Magnetic Society of Japan Vol.21, Supplem
ent, No.S2(1997) "Proceeding of The Fourth Perpend
icular Magnetic Recording Conference '97" に記述さ
れたように、従来様々の改良が試みられている。例え
ば、(1)磁性粒子間の磁気的相互作用を小さくするた
めにCoCr系合金中の非磁性Crを結晶粒界や粒内に
偏析させる方法、(2)スパッタリングガス圧力を制御
することにより磁性粒子を形態的に孤立させる方法など
である。このような媒体構造の改良により媒体ノイズの
低減が促進されたが、垂直磁気記録における媒体ノイズ
の起源であるところの、磁化方向と逆向きに形成される
逆磁区、あるいは磁化方向に対して傾斜した磁区及びこ
れに伴う不規則磁区を低減する効果は十分に得られてい
ない。本発明の目的は、上述した従来技術の欠点を解消
し、優れた低ノイズ特性と記録磁化の安定性を有し、超
高密度磁気記録に好適な垂直磁気記録媒体及び磁気記憶
装置を提供することにある。
[SUMMARY OF THE INVENTION In the perpendicular magnetic recording system few Gb / in 2 or more, particularly to achieve a 10Gb / in 2 or more ultra-high density magnetic recording, in addition to the reproduction signal to improve the linear recording density It is important to reduce included noise, particularly medium noise caused by the fine structure of the medium. For this purpose, in addition to the crystal orientation of the magnetic thin film, more advanced control of the thin film structure is required. To reduce media noise, for example, Journa
l of The Magnetic Society of Japan Vol.21, Supplem
ent, No.S2 (1997) "Proceeding of The Fourth Perpend
Various improvements have been attempted in the past, as described in the icular Magnetic Recording Conference '97. For example, (1) Non-magnetic Cr in a CoCr-based alloy in order to reduce magnetic interaction between magnetic particles (2) a method of isolating magnetic particles morphologically by controlling the sputtering gas pressure, etc. Improvement of the medium structure promotes reduction of medium noise. However, the effect of reducing the reverse magnetic domain formed in the direction opposite to the magnetization direction, or the magnetic domain inclined with respect to the magnetization direction and the irregular magnetic domain associated therewith, which is the origin of medium noise in perpendicular magnetic recording, is as follows. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned disadvantages of the prior art, to have excellent low noise characteristics and stable recording magnetization, and to make perpendicular magnetic recording suitable for ultra-high density magnetic recording. To provide a medium and a magnetic storage device.

【0009】[0009]

【課題を解決するための手段】不規則磁区と再生信号と
の関係について説明する。図6は、垂直磁気記録した媒
体の磁化状態を示す断面模式図、及びそれを磁気抵抗効
果型ヘッド(MRヘッド)で再生した再生信号波形の模
式図である。図6(a)は理想的な垂直磁気記録が行わ
れた場合、図6(b)は記録媒体に不規則磁区が形成さ
れた場合を表す。
The relationship between the irregular magnetic domain and the reproduced signal will be described. FIG. 6 is a schematic cross-sectional view showing the magnetization state of a medium on which perpendicular magnetic recording has been performed, and a schematic diagram of a reproduction signal waveform obtained by reproducing the medium with a magnetoresistive head (MR head). FIG. 6A shows a case where ideal perpendicular magnetic recording is performed, and FIG. 6B shows a case where irregular magnetic domains are formed on the recording medium.

【0010】図6(a)に示すように理想的な垂直磁気
記録が行われたとき、記録磁区の境界部(磁化遷移領
域)32では、隣り合う磁区が互いに反磁界を打ち消す
ように作用するため、大きな磁化33が形成される。一
方、磁区の内部では反磁界の影響により磁化33は小さ
くなる。垂直磁気記録では、高密度になるほど隣接記録
ビットが接近し、隣接記録ビット間で反磁界を打ち消す
ように作用するため、磁化が安定になる。このように理
想的な垂直磁気記録が行われた場合には同一記録磁区内
部の磁化33は同じ向きに形成されており、従って再生
信号波形31にもノイズのない信号を得ることができ
る。しかし現実的には、図6(b)の再生信号波形31
に示したように媒体から発生するノイズのために再生信
号が乱れている。垂直磁気記録における媒体ノイズの原
因は、記録磁区の境界(磁化遷移)32の揺らぎによる
ものと、記録磁区内部に形成される不規則磁区によるも
のがある。磁化遷移の揺らぎも不規則磁区の形成が関係
している。媒体ノイズの原因となる不規則磁区には、図
6(b)に示したように、媒体に作用する反磁界の影響
により平均の磁化の向きに対して逆向きの磁化をもつ逆
磁区37の形成によるものと、磁化の向きは同じである
がミクロな磁化の向きが傾斜した磁化38を有する領域
の形成によるものがある。このいずれもが媒体表面で検
出される再生信号の振幅変動の原因となり、これが総称
してノイズと言われている。
As shown in FIG. 6A, when ideal perpendicular magnetic recording is performed, adjacent magnetic domains act at the boundary portion (magnetization transition region) 32 of the recording magnetic domains so as to cancel each other's demagnetizing fields. Therefore, a large magnetization 33 is formed. On the other hand, inside the magnetic domain, the magnetization 33 becomes small due to the influence of the demagnetizing field. In perpendicular magnetic recording, the higher the density, the closer the adjacent recording bits are, and the more the recording bit acts to cancel the demagnetizing field, so that the magnetization is stabilized. As described above, when ideal perpendicular magnetic recording is performed, the magnetizations 33 in the same recording magnetic domain are formed in the same direction, so that a signal having no noise in the reproduction signal waveform 31 can be obtained. However, in reality, the reproduced signal waveform 31 shown in FIG.
As shown in (1), the reproduced signal is disturbed by noise generated from the medium. The causes of medium noise in perpendicular magnetic recording are caused by fluctuations of boundaries (magnetization transitions) 32 of recording magnetic domains and by irregular magnetic domains formed inside the recording magnetic domains. The fluctuation of the magnetization transition is also related to the formation of irregular magnetic domains. As shown in FIG. 6 (b), the irregular magnetic domains that cause the medium noise include the reverse magnetic domains 37 having the magnetization opposite to the average magnetization direction due to the effect of the demagnetizing field acting on the medium. There is a case where the magnetization direction is the same as that due to the formation of a region having the magnetization 38 in which the direction of the magnetization is the same but the direction of the microscopic magnetization is inclined. Either of these causes a fluctuation in the amplitude of the reproduced signal detected on the medium surface, and these are collectively called noise.

【0011】本発明においては、基板上に形成する垂直
磁化膜の垂直磁気異方性や結晶配向を制御することによ
って、基板上に磁気異方性の大きな結晶粒からなる磁性
膜を形成し、磁性結晶粒の磁化容易軸を基板面に垂直方
向に高配向させると共に特に磁気異方性の分散を小さく
し、磁気記録したとき媒体表面に形成される不規則構造
の磁区の低減、もしくは磁区構造の微細化を図ることに
より前記目的を達成する。
In the present invention, by controlling the perpendicular magnetic anisotropy and the crystal orientation of the perpendicular magnetization film formed on the substrate, a magnetic film composed of crystal grains having a large magnetic anisotropy is formed on the substrate. The easy axis of the magnetic crystal grains is highly oriented in the direction perpendicular to the substrate surface, and the dispersion of magnetic anisotropy is particularly reduced to reduce the magnetic domains of the irregular structure formed on the medium surface when magnetic recording is performed, or the magnetic domain structure The above object is achieved by miniaturization of.

【0012】すなわち、本発明による垂直磁気記録媒体
は、基板上に形成した磁性薄膜の磁化容易軸が基板面に
略垂直方向に配向した垂直磁気記録媒体において、垂直
磁気記録状態もしくは膜面にほぼ垂直方向に一方向に磁
化された残留磁化状態において不規則磁区の平均の面積
が7.1×10-4μm2以下であることを特徴とする。
That is, in the perpendicular magnetic recording medium according to the present invention, in a perpendicular magnetic recording medium in which the axis of easy magnetization of a magnetic thin film formed on a substrate is oriented in a direction substantially perpendicular to the substrate surface, the perpendicular magnetic recording state or almost perpendicular to the film surface. The average area of the irregular magnetic domains is 7.1 × 10 −4 μm 2 or less in a remanent magnetization state magnetized in one direction in the vertical direction.

【0013】なお、本明細書において、不規則磁区と
は、所定の磁化領域における磁化の向きに対して逆向
き、もしくは所定の磁化の向きに対して傾斜した向きの
磁化を有する領域をいう。例えば、磁性探針と磁性試料
間の磁気力勾配を検出する磁気力顕微鏡を用いる場合、
前記不規則磁区は明暗のコントラストとして観察され
る。逆磁区などの領域では、大きな磁気力勾配を発生し
強いコントラストとして観察され、一方、磁化の向きが
反平行で、かつ磁化の向きが少なくとも5度以上傾斜し
た領域では前者より弱いコントラストとして観察され
る。また、磁化の向きが同じで、かつ磁化の向きが少な
くとも5度以上傾斜した領域では、磁気力勾配像のコン
トラストが強くなる。磁気力顕微鏡観察に際して、探針
試料間の平均距離を50〜20nmとし、観察された不
規則磁区の強度プロファイルの50%に閾値を設定し、
この時の大きさで不規則磁区のサイズを定義した。ま
た、スピン偏極走査電子顕微鏡を用いる場合、上向きあ
るいは下向きのスピンの向きで明暗のコントラスト像が
得られ、傾斜した磁区領域は中間的なコントラスト(灰
色)として観察される。この場合、スピンの検出角度を
変えることにより2〜90度の範囲で磁化の傾きを検出
できる。
In the present specification, the irregular magnetic domain refers to a region having a direction opposite to the direction of magnetization in a predetermined magnetization region or a direction inclined with respect to the predetermined direction of magnetization. For example, when using a magnetic force microscope that detects a magnetic force gradient between a magnetic probe and a magnetic sample,
The irregular magnetic domains are observed as light-dark contrast. In a region such as a reverse magnetic domain, a large magnetic force gradient is generated and observed as a strong contrast. On the other hand, in a region where the direction of magnetization is antiparallel and the direction of the magnetization is inclined at least 5 degrees or more, the contrast is observed as weaker than the former. You. In a region where the magnetization direction is the same and the magnetization direction is inclined at least 5 degrees or more, the contrast of the magnetic force gradient image becomes strong. At the time of observation with a magnetic force microscope, the average distance between the probe samples was set to 50 to 20 nm, and a threshold was set to 50% of the observed intensity profile of the irregular magnetic domain.
The size at this time defined the size of the irregular magnetic domain. When a spin-polarized scanning electron microscope is used, a bright and dark contrast image is obtained in the upward or downward spin direction, and the inclined magnetic domain region is observed as an intermediate contrast (gray). In this case, the inclination of the magnetization can be detected in the range of 2 to 90 degrees by changing the detection angle of the spin.

【0014】また、不規則磁区の平均の面積とは、不規
則磁区の面積を小さな方から大きな方に向かって順次積
算し、全不規則磁区の面積の積算値に対する割合で示し
た積算強度比が50%の面積をいう。前記平均の面積か
ら±45%の範囲に含まれる不規則磁区の面積は7.8
×10-5〜2.8×10-3μm2であることが好まし
い。
The average area of the irregular magnetic domain means the area of the irregular magnetic domain which is sequentially integrated from the smaller one to the larger one, and the integrated intensity ratio expressed as a ratio to the integrated value of the area of all the random magnetic domains. Means 50% area. The area of the irregular magnetic domain included in a range of ± 45% from the average area is 7.8.
It is preferably from × 10 −5 to 2.8 × 10 −3 μm 2 .

【0015】また、不規則磁区をその不規則磁区と同じ
面積を有する円に換算して得られる磁区の平均直径が3
0nm以下であり、前記磁区の直径の分布範囲が10〜
60nmであることが好ましい。また、膜面にほぼ垂直
方向に磁化された残留磁化状態もしくは磁気ヘッドによ
り直流消磁された状態で単位表面積に形成される不規則
磁区の面積割合が10%以下であることが好ましい。
The average diameter of the magnetic domain obtained by converting the irregular magnetic domain into a circle having the same area as the irregular magnetic domain is 3
0 nm or less, and the distribution range of the diameter of the magnetic domain is 10 to
Preferably it is 60 nm. Further, it is preferable that the area ratio of the irregular magnetic domain formed in the unit surface area in a remanent magnetization state magnetized in a direction substantially perpendicular to the film surface or in a state of DC demagnetization by the magnetic head is 10% or less.

【0016】本発明による磁気記憶装置は、垂直磁気記
録媒体と、垂直磁気記録媒体を保持するための保持具
と、垂直磁気記録媒体に対して情報を記録再生するため
の磁気ヘッドと、磁気ヘッドと垂直磁気録媒体の相対位
置を移動するための移動手段とを備える磁気記憶装置に
おいて、垂直磁気記録媒体として本発明による前述の垂
直磁気記録媒体を用いたことを特徴とする。
A magnetic storage device according to the present invention comprises a perpendicular magnetic recording medium, a holder for holding the perpendicular magnetic recording medium, a magnetic head for recording and reproducing information on the perpendicular magnetic recording medium, and a magnetic head. And a moving means for moving the relative position of the perpendicular magnetic recording medium, wherein the perpendicular magnetic recording medium according to the present invention is used as the perpendicular magnetic recording medium.

【0017】垂直磁気記録媒体の磁化状態の評価、すな
わち垂直磁気記録媒体に形成された不規則磁区の構造の
評価は、以下の手段のいずれによっても行うことができ
る。 磁気力顕微鏡によって垂直磁気記録媒体表面の漏洩磁
界の強度もしくは漏洩磁界の勾配を検出する方法〔例え
ば、Ruger, et al., "Magnetic force microscopy : Ge
neral principle and application to longitudinal re
cording media" J. Appl. Phys., 68(3), pp.1169-1183
(1990)参照〕
The evaluation of the magnetization state of the perpendicular magnetic recording medium, that is, the evaluation of the structure of the irregular magnetic domains formed in the perpendicular magnetic recording medium can be performed by any of the following means. A method of detecting the intensity of the stray magnetic field or the stray magnetic field gradient on the surface of the perpendicular magnetic recording medium by a magnetic force microscope [for example, Ruger, et al., "Magnetic force microscopy: Ge
neral principle and application to longitudinal re
cording media "J. Appl. Phys., 68 (3), pp.1169-1183
(See (1990))

【0018】スピンSEM(spin-polarized scannin
g electron microscope)によって垂直磁気記録媒体表
面のスピンの向きを検出する方法:〔例えば、H. Matsu
yama,et al., "High Spatial-Resolution Domain-Obser
vation of Longitudinal ThinFilm Media by Spin-Pola
rized Scanning Electron Microscopy" IEEE Trans.Mag
n., Vol.30, pp.1327-1330 (1994)参照〕
Spin SEM (spin-polarized scannin)
g electron microscope) to detect the direction of spin on the surface of the perpendicular magnetic recording medium: [for example, H. Matsu
yama, et al., "High Spatial-Resolution Domain-Obser
vation of Longitudinal ThinFilm Media by Spin-Pola
rized Scanning Electron Microscopy "IEEE Trans.Mag
n., Vol. 30, pp. 1327-1330 (1994))

【0019】垂直磁気記録媒体表面に磁性微粒子を付
着せしめて観察する方法(ビッター法):〔例えば、T.
Sakurai, et al., "Magnetic recording pattern of o
bliquely evaporated Co-O thin films observed by us
ing ultrafine Co particles"J. Appl. Phys., 76, pp.
3177-3180 (1994)参照〕 偏光顕微鏡によって偏光角の大きさを検出する方法:
〔例えば、近角聡信「強磁性体の物理(下)」裳華房、
第156−158頁参照〕
A method in which magnetic fine particles are adhered to the surface of a perpendicular magnetic recording medium and observed (bitter method):
Sakurai, et al., "Magnetic recording pattern of o
bliquely evaporated Co-O thin films observed by us
ing ultrafine Co particles "J. Appl. Phys., 76, pp.
3177-3180 (1994)] A method for detecting the magnitude of the polarization angle using a polarization microscope:
[For example, Satoshi Chikano "Physics of ferromagnetic material (bottom)" Shokabo,
See pages 156-158]

【0020】本発明によると、基板上に形成した磁性膜
の初期成長層を制御し磁化容易軸を基板面に垂直方向に
配向させ、磁性結晶粒の微細化と均一化を図ることによ
り、媒体ノイズの原因となる記録磁区の磁化遷移の揺ら
ぎ構造が小さく、かつ磁性膜に作用する反磁界による不
規則磁区の微細化を促進でき、その結果、媒体ノイズの
低減と記録磁化の安定性を確保することができ、高密度
の磁気記録に好適な垂直磁気記録媒体及びこれを用いた
磁気記憶装置を実現可能である。
According to the present invention, by controlling the initial growth layer of the magnetic film formed on the substrate and orienting the easy axis of magnetization in the direction perpendicular to the substrate surface, the magnetic crystal grains can be made finer and more uniform, thereby achieving the medium. The fluctuation structure of the magnetization transition of the recording magnetic domain that causes noise is small, and the miniaturization of the irregular magnetic domain due to the demagnetizing field acting on the magnetic film can be promoted. As a result, the medium noise is reduced and the recording magnetization stability is secured. Therefore, a perpendicular magnetic recording medium suitable for high-density magnetic recording and a magnetic storage device using the same can be realized.

【0021】[0021]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は、本発明による磁気記憶装
置の一例の主要部を示す模式図である。この磁気記憶装
置は、磁気ディスク1、記録再生用の磁気ヘッド2、磁
気ヘッドを支持するサスペンジョン3、アクチュエータ
4、ボイスコイルモータ5、記録再生回路6、位置決め
回路7、インターフェース制御回路8などからなる周知
の構成の装置である。磁気ヘッド2の磁気ディスク1に
対する相対位置は、アクチュエータ4とボイスコイルモ
ータ5により制御する。記録再生回路6は、磁気ヘッド
2に対して記録信号の制御と再生信号の検出、増幅など
の作用をする。位置決め回路7は、磁気ヘッドによる記
録再生するトラック位置を制御するための回路、インタ
ーフェース回路8は前記再生回路、位置決め回路などと
計算機本体とを結合するための回路である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a main part of an example of a magnetic storage device according to the present invention. This magnetic storage device includes a magnetic disk 1, a magnetic head 2 for recording and reproduction, a suspension 3 supporting the magnetic head, an actuator 4, a voice coil motor 5, a recording and reproduction circuit 6, a positioning circuit 7, an interface control circuit 8, and the like. This is a device having a known configuration. The relative position of the magnetic head 2 with respect to the magnetic disk 1 is controlled by an actuator 4 and a voice coil motor 5. The recording / reproducing circuit 6 controls the magnetic head 2 to control a recording signal and detect and amplify a reproduction signal. The positioning circuit 7 is a circuit for controlling the track position for recording and reproducing by the magnetic head, and the interface circuit 8 is a circuit for connecting the reproducing circuit, the positioning circuit and the like to the computer main body.

【0022】磁気ディスク1は、ガラス基板、Si基
板、NiP被覆アルミニウム基板、カーボン基板などの
円盤状の基板上に磁性膜の結晶配向性などの構造制御用
の下地層を形成し、その上に磁性膜及び保護膜を形成
し、保護膜上に潤滑膜を被覆してなる磁気記録媒体であ
る。磁性膜は、Coを主成分とし、これにCr,Fe,
Mo,V,Ta,Pt,B,Ir,W,Hf,Nb,R
u,Ni及び希土類元素の中から選ばれた少なくとも1
種類の元素を含む材料からなる六方稠密構造を基本構造
とし、磁性膜の磁化容易軸を基板面に垂直方向に配向さ
せる。磁性膜の磁化容易軸を基板面に垂直に高配向し、
かつ垂直磁気異方性の分散の小さい垂直記録媒体を得る
ために、磁性膜の構造制御用下地層を基板と磁性膜の間
に設ける。構造制御用の下地層としては、非磁性もしく
は常磁性のCoCr合金やTi,TiCr合金あるいは
これらにPt,Ru,Ta,Mo,Pd,V,Nb,Z
rなどを添加したhcp構造の多結晶膜、微結晶膜もし
くは非晶質状下地層膜やSi,Geなどの非晶質状下地
層を用いる。
The magnetic disk 1 has an underlayer for structure control such as crystal orientation of a magnetic film formed on a disk-shaped substrate such as a glass substrate, a Si substrate, an NiP-coated aluminum substrate, and a carbon substrate. This is a magnetic recording medium in which a magnetic film and a protective film are formed, and a lubricating film is coated on the protective film. The magnetic film contains Co as a main component and contains Cr, Fe,
Mo, V, Ta, Pt, B, Ir, W, Hf, Nb, R
at least one selected from u, Ni and rare earth elements
A hexagonal close-packed structure made of a material containing various kinds of elements is used as a basic structure, and the axis of easy magnetization of the magnetic film is oriented in a direction perpendicular to the substrate surface. The easy axis of magnetization of the magnetic film is highly oriented perpendicular to the substrate surface,
In addition, in order to obtain a perpendicular recording medium having small dispersion of perpendicular magnetic anisotropy, an underlayer for controlling the structure of the magnetic film is provided between the substrate and the magnetic film. As the underlayer for controlling the structure, a nonmagnetic or paramagnetic CoCr alloy, Ti, TiCr alloy, or Pt, Ru, Ta, Mo, Pd, V, Nb, Z
An hcp structure polycrystalline film, microcrystalline film, amorphous underlayer film, or amorphous underlayer such as Si or Ge to which r is added is used.

【0023】磁気ヘッド2は、スライダー上に設けられ
た磁気記録用リング型ヘッドの磁極及び記録信号再生用
の磁気抵抗効果型、巨大磁気抵抗効果型もしくはスピン
バルブ型素子あるいは磁気トンネル型素子で構成され
る。記録信号再生用の磁気ヘッドのギャップ長は、高分
解能の再生信号を得るために0.25μm以下、望まし
くは0.1〜0.2μmとする。磁気記録時のトラック
端部の記録磁区の乱れを低下するために、記録用ヘッド
のトレーリング側、リーディング側磁極のトラック両端
部は揃っていることが望ましく、また急峻な記録磁界の
発生のために記録ヘッドのギャップ長は0.25μm以
下、望ましくは0.1〜0.2μmとする。再生用ヘッ
ドのトラック幅を記録用ヘッド磁極のトラック幅より狭
くすると、記録トラック両端部から生じる再生ノイズの
低減に有効である。磁気ヘッド2はサスペンジョン3に
よって支持され、かつ磁気ヘッドが磁気ディスクの内周
側から外周側に向かって移動したときに生ずるヨー角を
補正する機能が設けてある。
The magnetic head 2 comprises a magnetic pole of a magnetic recording ring type head provided on a slider and a magnetoresistive, giant magnetoresistive, spin valve or magnetic tunnel type element for reproducing a recorded signal. Is done. The gap length of the magnetic head for reproducing the recording signal is 0.25 μm or less, preferably 0.1 to 0.2 μm in order to obtain a high-resolution reproduction signal. In order to reduce the disturbance of the recording magnetic domain at the end of the track at the time of magnetic recording, it is desirable that both ends of the track on the trailing and leading poles of the recording head are aligned, and to generate a steep recording magnetic field. The gap length of the recording head is 0.25 μm or less, preferably 0.1 to 0.2 μm. Making the track width of the reproducing head narrower than the track width of the magnetic pole of the recording head is effective in reducing reproduction noise generated from both ends of the recording track. The magnetic head 2 is supported by the suspension 3 and has a function of correcting a yaw angle generated when the magnetic head moves from the inner circumference to the outer circumference of the magnetic disk.

【0024】図2に示した略断面図により、本発明によ
る垂直磁気記録媒体について更に詳細に説明する。図2
(a)は2層の下地層を有する垂直磁気記録媒体の略断
面図、図2(b)は1層の下地層を有する比較用の垂直
磁気記録媒体の略断面図である。基板としては、Si基
板、ガラス基板、NiP被服Al基板、カーボン基板、
あるいは高分子基板などを用いることができるが、ここ
では、基板11として表面に熱酸化Si膜を形成した円
盤状のSiディスクを用いた例により説明する。本実施
の形態では、超高真空DCマグネトロンスパッタリング
装置により媒体を作製した。洗浄した基板11をスパッ
タリング装置に設置し、続いて基板11を約230℃に
加熱して、磁性膜の結晶粒径や磁気異方性の制御を行う
ための下地層12(13)を形成した。下地層は、この
上に形成する磁性膜14の種類により任意に選ぶことが
でき、また下地層は、同一材料もしくは異種の材料から
なる層を1層以上積層して形成することができる。
The perpendicular magnetic recording medium according to the present invention will be described in more detail with reference to the schematic sectional view shown in FIG. FIG.
2A is a schematic sectional view of a perpendicular magnetic recording medium having two underlayers, and FIG. 2B is a schematic sectional view of a comparative perpendicular magnetic recording medium having one underlayer. As the substrate, Si substrate, glass substrate, NiP coated Al substrate, carbon substrate,
Alternatively, a polymer substrate or the like can be used. Here, an example in which a disk-shaped Si disk having a thermally oxidized Si film formed on the surface as the substrate 11 will be described. In the present embodiment, a medium was manufactured using an ultra-high vacuum DC magnetron sputtering device. The cleaned substrate 11 was set in a sputtering apparatus, and subsequently, the substrate 11 was heated to about 230 ° C. to form an underlayer 12 (13) for controlling the crystal grain size and magnetic anisotropy of the magnetic film. . The underlayer can be arbitrarily selected according to the type of the magnetic film 14 formed thereon, and the underlayer can be formed by laminating one or more layers made of the same material or different materials.

【0025】磁性膜14としては、hcp構造、体心立
方格子構造、面心六方格子構造、あるいは斜方晶構造の
材料を用いることができる。例えば、磁性膜としてCo
を主成分とするhcp構造の材料を用いる場合、下地層
12(13)は最も一般的にはTi,Co,などのhc
p構造の材料を主成分とし、これにCr,V,W,T
a,Ru,Hfなどを添加した材料からなる多結晶膜や
微結晶膜または非晶質状膜、あるいはSi,Ge,T
a,Hfを始めとする非晶質状膜を選択することがで
き、非磁性材料が望ましい。この下地層上に引き続き同
一真空中で記録膜となる磁性膜14、保護膜15を順次
形成した。
As the magnetic film 14, a material having an hcp structure, a body-centered cubic lattice structure, a face-centered hexagonal lattice structure, or an orthorhombic structure can be used. For example, as a magnetic film, Co
When a material having an hcp structure whose main component is Hc is used, the underlayer 12 (13) is most commonly formed of hcp such as Ti, Co, or the like.
Cr-, V-, W-, T-
a, Ru, Hf, etc., a polycrystalline film, microcrystalline film, amorphous film, Si, Ge, T
a, an amorphous film such as Hf can be selected, and a non-magnetic material is preferable. On this underlayer, a magnetic film 14 and a protective film 15 to be a recording film were successively formed in the same vacuum.

【0026】以下のようにして、図2(a)に略示した
ように2層の下地層を有する垂直磁気記録媒体A,B,
C,D,E,Fを作製した。媒体A,B,C,D,E,
Fにおける薄膜はいずれもArガス圧2mTorr、超
高真空DCマグネトロンスパッタリング法により作製し
た。いずれの媒体も、第1下地層12の膜厚は30n
m、第2下地層13の膜厚は20nm、磁性膜14の膜
厚は30nm、保護膜15の膜厚は5nmとした。
As described below, the perpendicular magnetic recording media A, B, and B having two underlayers as schematically shown in FIG.
C, D, E, and F were produced. Media A, B, C, D, E,
All the thin films in F were produced by an ultrahigh vacuum DC magnetron sputtering method at an Ar gas pressure of 2 mTorr. In any medium, the thickness of the first underlayer 12 is 30 n.
m, the thickness of the second underlayer 13 was 20 nm, the thickness of the magnetic film 14 was 30 nm, and the thickness of the protective film 15 was 5 nm.

【0027】第1下地層12は、その上に形成する第2
下地層の核生成を制御し、薄膜のエピタキシャル成長を
促進する効果があり、ここではTi−10at%Cr合
金膜を用いた例により説明する。第2下地層13は、そ
の上に形成する磁性膜14のエピタキシャル成長を促進
する効果があり、Ti,Coなどの材料を主成分とし、
これにCr,V,W,Ta,Ru,Hfなどを添加した
材料からなる非磁性あるいは常磁性合金からなる薄膜を
用いる。磁性膜14は、Coを主成分とし、これにC
r,Fe,Mo,V,Ta,Pt,Si,B,Ir,
W,Hf,Nb,Ru,Ni及び希土類元素の中から選
ばれる少なくとも1種類の元素を含んだ材料を用いる。
保護膜15には、カーボン、ダイヤモンド状カーボン、
あるいはSi,Ta,Ti,Hfなどのカーバイド膜あ
るいは窒化膜を用いることができるが、ここではカーボ
ンを用いた例で説明する。また、ここでは磁性膜を基板
片面側に形成した例で説明するが、基板両面に形成して
もよいことは言うまでもない。
The first underlayer 12 is formed on the second underlayer 12.
It has the effect of controlling the nucleation of the underlayer and promoting the epitaxial growth of the thin film. Here, an example using a Ti-10 at% Cr alloy film will be described. The second underlayer 13 has an effect of promoting the epitaxial growth of the magnetic film 14 formed thereon, and is mainly composed of a material such as Ti or Co.
A thin film made of a non-magnetic or paramagnetic alloy made of a material to which Cr, V, W, Ta, Ru, Hf or the like is added is used. The magnetic film 14 contains Co as a main component,
r, Fe, Mo, V, Ta, Pt, Si, B, Ir,
A material containing at least one element selected from W, Hf, Nb, Ru, Ni and a rare earth element is used.
Carbon, diamond-like carbon,
Alternatively, a carbide film or a nitride film of Si, Ta, Ti, Hf or the like can be used. Here, an example using carbon will be described. Also, here, an example in which the magnetic film is formed on one side of the substrate will be described, but it goes without saying that the magnetic film may be formed on both sides of the substrate.

【0028】媒体Aは、第1下地層としてTi−10a
t%Cr合金膜を用い、第2下地層としてCo−35a
t%Cr−2at%Ta合金薄膜からなるhcp構造薄
膜を用いた。磁性膜14としては、Co−19at%C
r−10at%Pt合金を用いた。保護膜15にはカー
ボンを用いた。媒体Bは、第1下地層12、第2下地層
13及び保護膜15は媒体Aと同じ材料構成とし、磁性
膜14としてCo−17at%Cr−10at%Pt−
4at%Ta合金を用いた。
The medium A is made of Ti-10a as a first underlayer.
Co-35a as a second underlayer using a t% Cr alloy film
An hcp structure thin film made of a t% Cr-2at% Ta alloy thin film was used. As the magnetic film 14, Co-19 at% C
An r-10 at% Pt alloy was used. Carbon was used for the protective film 15. In the medium B, the first underlayer 12, the second underlayer 13, and the protective film 15 are made of the same material as the medium A, and the magnetic film 14 is Co-17at% Cr-10at% Pt-.
A 4 at% Ta alloy was used.

【0029】媒体Cは、第1下地層12、第2下地層1
3及び保護膜15は媒体Aと同じ材料構成とし、磁性膜
14としてCo−15at%Cr−4at%Ta合金を
用いた。媒体Dは、第1下地層12及び保護膜15は媒
体Aと同じ材料構成とした。第2下地層13としてCo
−35at%Cr合金からなる非磁性合金を用い、磁性
膜14としてCo−19at%Cr−10at%Pt合
金を用いた。
The medium C includes a first underlayer 12, a second underlayer 1,
3 and the protective film 15 were made of the same material as that of the medium A, and a Co-15 at% Cr-4 at% Ta alloy was used as the magnetic film 14. In the medium D, the first underlayer 12 and the protective film 15 have the same material configuration as the medium A. Co as the second underlayer 13
A non-magnetic alloy made of a -35 at% Cr alloy was used, and a Co-19 at% Cr-10 at% Pt alloy was used as the magnetic film 14.

【0030】媒体Eは、第1下地層12、第2下地層1
3及び保護膜15は媒体Dと同じ材料構成とし、磁性膜
14としてCo−17at%Cr−10at%Pt−4
at%Ta合金を用いた。媒体Fは、第1下地層12、
第2下地層13及び保護膜15は媒体Dと同じ材料構成
とし、磁性膜14としてCo−15at%Cr−4at
%Ta合金を用いた。
The medium E includes a first underlayer 12, a second underlayer 1,
3 and the protective film 15 are made of the same material as the medium D, and the magnetic film 14 is Co-17 at% Cr-10 at% Pt-4.
An at% Ta alloy was used. The medium F includes a first underlayer 12,
The second underlayer 13 and the protective film 15 are made of the same material as the medium D, and the magnetic film 14 is Co-15 at% Cr-4 at.
% Ta alloy was used.

【0031】媒体A,B,C,D,E,Fにおける下地
層表面及び磁性膜表面を原子間力顕微鏡(AFM)で観
察したと結果、表面の起伏の振幅及び起伏の周期はいず
れも10nm以下の平坦な薄膜であった。また、媒体
A,B,C,D,E,Fにおける磁性膜はhcp構造を
有し、その成長方位は<002>方位が基板面に垂直に
配向し、いずれも下地層界面からエピタキシャル的に成
長した薄膜であることがX線回折法及び電子顕微鏡観察
により確認された。
When the surface of the underlayer and the surface of the magnetic film in the media A, B, C, D, E and F were observed by an atomic force microscope (AFM), the amplitude of the surface undulation and the period of the undulation were all 10 nm. The following flat thin film was obtained. Further, the magnetic films in the media A, B, C, D, E, and F have an hcp structure, and the <002> direction of the magnetic film is oriented perpendicular to the substrate surface. The grown thin film was confirmed by an X-ray diffraction method and electron microscope observation.

【0032】磁性膜14への非磁性CrやTaなどの添
加により磁性結晶粒の粒界や粒内に非磁性層や弱磁性層
を局所的に偏析させることができ、磁性粒子の磁気的孤
立性を向上する効果が電子顕微鏡を用いた組成分析など
で確認されている。Ptの添加により磁性膜の磁気異方
性を向上できる。下地層を多層に積層した構造にするこ
とにより、この上に形成する磁性膜14の結晶成長を促
進する効果があり、結果的に磁性結晶粒径の均一化、磁
気異方性の向上、不規則磁区径の微細化などにより、媒
体ノイズを低減できる。また、媒体A,B,Cのごと
く、第2下地層13を3元以上に多元化することによ
り、媒体D,E,Fに比べて磁性結晶粒径を10〜20
%程度微細化することができ、その結果不規則磁区の大
きさも低減できる。
By adding nonmagnetic Cr or Ta to the magnetic film 14, a nonmagnetic layer or a weak magnetic layer can be locally segregated in the grain boundaries or in the magnetic crystal grains, and the magnetic particles are magnetically isolated. The effect of improving the properties has been confirmed by composition analysis using an electron microscope and the like. By adding Pt, the magnetic anisotropy of the magnetic film can be improved. The multi-layered structure of the underlayer has the effect of promoting the crystal growth of the magnetic film 14 formed thereon, and consequently makes the magnetic crystal grain size uniform, improves magnetic anisotropy, Medium noise can be reduced by reducing the regular magnetic domain diameter. Also, as in the case of the media A, B, and C, the second underlayer 13 is multiplexed into three or more elements, so that the magnetic crystal grain size is 10 to 20 as compared with the media D, E, and F.
%, So that the size of the irregular magnetic domain can be reduced.

【0033】次に、以下のようにして、図2(b)に示
すように1層の下地層を有する垂直磁気記録媒体G,
H,Iを作製した。媒体G,H,Iにおける薄膜はいず
れもArガス圧2mTorr、超高真空DCマグネトロ
ンスパッタリング法により作製した。いずれの媒体も、
下地層12の膜厚は30nm、磁性膜14の膜厚は30
nm、保護膜15の膜厚は5nmとした。保護膜15に
はカーボンを用いた。
Next, as shown in FIG. 2B, a perpendicular magnetic recording medium G having a single underlayer
H and I were produced. The thin films in the media G, H, and I were all prepared by an ultrahigh vacuum DC magnetron sputtering method at an Ar gas pressure of 2 mTorr. Both media,
The thickness of the underlayer 12 is 30 nm, and the thickness of the magnetic film 14 is 30.
nm, and the thickness of the protective film 15 was 5 nm. Carbon was used for the protective film 15.

【0034】媒体Gは、基板11上に膜厚30nmのh
cp構造のTi−10at%Cr合金膜からなる微結晶
性の第1下地層12を形成し、この第1下地層の上に直
接膜厚30nmの磁性膜14を形成し、その上に膜厚5
nmの保護膜15を形成した。磁性膜14にはCo−1
9at%Cr−10at%Pt合金を用いた。媒体H
は、基板11上に膜厚30nmのhcp構造のTi−1
0at%Cr合金膜からなる微結晶性の第1下地層12
を形成し、この上に膜厚30nmの磁性膜14及び膜厚
5nmの保護膜15を形成した。磁性膜14には、Co
−17at%Cr−10at%Pt−4at%Ta合金
を用いた。
The medium G is a 30 nm-thick h film on the substrate 11.
A microcrystalline first underlayer 12 made of a Ti-10 at% Cr alloy film having a cp structure is formed, a 30 nm-thick magnetic film 14 is formed directly on the first underlayer, and a film thickness is formed thereon. 5
An nm protective film 15 was formed. The magnetic film 14 has Co-1
A 9 at% Cr-10 at% Pt alloy was used. Medium H
Is a 30 nm thick hcp structure Ti-1 on a substrate 11.
Microcrystalline first underlayer 12 of 0 at% Cr alloy film
Was formed thereon, and a 30 nm-thick magnetic film 14 and a 5 nm-thick protective film 15 were formed thereon. The magnetic film 14 has Co
A -17 at% Cr-10 at% Pt-4 at% Ta alloy was used.

【0035】媒体Iは、基板11上に膜厚30nmのh
cp構造のTi−10at%Cr合金膜からなる微結晶
性の第1下地層12を形成し、この上に膜厚30nmの
磁性膜14、及び膜厚5nmの保護膜15を形成した。
磁性膜14には、Co−15at%Cr−4at%Ta
合金を用いた。媒体G,H,Iの磁性膜14は、いずれ
もhcp構造を有し、その成長方位は<002>方位が
基板面にほぼ垂直に配向し、いずれも下地層表面からほ
ぼエピタキシャル的に成長した薄膜であることがX線回
折法及び電子顕微鏡観察により確認された。しかし、下
層界面の初期成長層には、若干結晶配向の乱れた領域も
観察された。媒体G,H,Iの下地層表面及び磁性膜表
面を原子間力顕微鏡(AFM)で観察した結果、表面の
起伏の振幅及び起伏の周期はいずれも10〜50nmの
範囲であった。
The medium I has a thickness of 30 nm on the substrate 11.
A microcrystalline first underlayer 12 made of a Ti-10 at% Cr alloy film having a cp structure was formed, and a 30 nm-thick magnetic film 14 and a 5 nm-thick protective film 15 were formed thereon.
The magnetic film 14 has Co-15 at% Cr-4 at% Ta
An alloy was used. The magnetic films 14 of the media G, H, and I all have the hcp structure, and the <002> direction is oriented almost perpendicular to the substrate surface, and all of them grow almost epitaxially from the underlayer surface. The thin film was confirmed by X-ray diffraction and electron microscope observation. However, a region in which the crystal orientation was slightly disordered was also observed in the initial growth layer at the lower interface. As a result of observing the underlayer surface and the magnetic film surface of the media G, H, and I with an atomic force microscope (AFM), the amplitude of the surface undulation and the period of the undulation were all in the range of 10 to 50 nm.

【0036】上記媒体A〜Iの磁気特性を振動試料型磁
力計(VSM)で測定した。磁性膜の垂直磁気異方性K
uを求めるにあたり、各々の試料につき磁気トルク曲線
を測定し、この単位体積当たりの磁気トルク曲線をフー
リエ解析して、次の近似式〔数1〕〔数2〕により表さ
れる結晶磁気異方性エネルギーE、トルクLの関係から
磁性膜の膜面垂直方向の一軸磁気異方性定数Ku1、K
2を求めた。ここで、Ku1,Ku2,Ku3:一軸異方
性定数、θ:自発磁化と磁性膜の容易軸とのなす角、M
s:飽和磁化である。
The magnetic characteristics of the media A to I were measured by a vibrating sample magnetometer (VSM). Perpendicular magnetic anisotropy K of magnetic film
In determining u, a magnetic torque curve is measured for each sample, and the magnetic torque curve per unit volume is subjected to Fourier analysis to obtain a crystal magnetic anisotropy represented by the following approximate expression [Equation 1] [Equation 2]. The uniaxial magnetic anisotropy constants Ku 1 , K in the direction perpendicular to the film surface of the magnetic film
I was asked to u 2. Here, Ku 1 , Ku 2 , Ku 3 : uniaxial anisotropy constant, θ: angle between spontaneous magnetization and easy axis of the magnetic film, M
s: saturation magnetization.

【0037】[0037]

【数1】 E≒Ku1sin2θ+Ku2sin4θ+Ku3sin6θE ≒ Ku 1 sin 2 θ + Ku 2 sin 4 θ + Ku 3 sin 6 θ

【0038】[0038]

【数2】L=−(Ku1+Ku2−2πMs2)sin2θ
+(Ku2sin4θ)/2
L = − (Ku 1 + Ku 2 −2πMs 2 ) sin 2θ
+ (Ku 2 sin4θ) / 2

【0039】またKu1,Ku2の値を更に正確に求める
ために、磁気トルク曲線の測定に際して磁性膜に印加す
る外部磁界Hの大きさを15〜5kOeの範囲で変化さ
せて測定し、各々の印加磁界Hの元で測定された一軸磁
気異方性定数Ku1,Ku2の値と印加磁界の逆数(1/
H)の関係を求めた。すなわち、Ku1,Ku2の値対1
/Hの関係を示すプロットにおいて、1/H=0に外挿
して得られた値を、各々の磁性膜のKu1,Ku2の値と
定義した。また、膜面垂直方向の磁気異方性Kuは、K
u=Ku1+Ku2で定義し、近似した。
In order to more accurately determine the values of Ku 1 and Ku 2 , the magnitude of the external magnetic field H applied to the magnetic film in the measurement of the magnetic torque curve was measured by changing the magnitude in the range of 15 to 5 kOe. The values of the uniaxial magnetic anisotropy constants Ku 1 and Ku 2 measured under the applied magnetic field H and the reciprocal of the applied magnetic field (1/1)
H) was determined. That is, the value of Ku 1 , Ku 2 versus 1
In the plot showing the relationship of / H, the value obtained by extrapolating to 1 / H = 0 was defined as the value of Ku 1 and Ku 2 of each magnetic film. The magnetic anisotropy Ku in the direction perpendicular to the film surface is K
Defined as u = Ku 1 + Ku 2 and approximated.

【0040】表1に、上記垂直磁気記録媒体A〜Iの特
性を比較して示す。表1において、Δθ50は磁性膜の結
晶配向を示す指標であり、<002>X線回折のロッキ
ング曲線の半値幅である。また、Msは飽和磁化、Mr
は残留磁化、Hcは膜面垂直方向の保磁力である。
Table 1 shows the characteristics of the perpendicular magnetic recording media A to I in comparison. In Table 1, Δθ 50 is an index indicating the crystal orientation of the magnetic film, and is the half width of the rocking curve of <002> X-ray diffraction. Ms is the saturation magnetization, Mr
Is the residual magnetization, and Hc is the coercive force in the direction perpendicular to the film surface.

【0041】[0041]

【表1】 [Table 1]

【0042】磁気記録にはリング型磁気ヘッド(トラッ
ク幅2μm、ギャップ長0.2μm)を使用し、再生に
は磁気抵抗効果型ヘッド(MRヘッド、ギャップ長0.
2μm)を使用し、記録再生時の磁気スペーシング(媒
体磁性膜の表面と磁気ヘッドの磁極間の距離)30nm
として、媒体の記録再生特性を測定した。表1におい
て、媒体ノイズN/S0は、線記録密度250kFCI
で測定したノイズを低線記録密度(5kFCI)におけ
る再生信号出力で規格化した値で表示した。
A ring type magnetic head (track width 2 μm, gap length 0.2 μm) is used for magnetic recording, and a magnetoresistive head (MR head, gap length 0.1 μm) is used for reproduction.
Magnetic spacing (distance between the surface of the medium magnetic film and the magnetic pole of the magnetic head) at the time of recording / reproducing 30 nm
The recording and reproduction characteristics of the medium were measured. In Table 1, the medium noise N / S 0 is a linear recording density of 250 kFCI.
The noise measured in (1) was displayed as a value normalized by the reproduced signal output at a low linear recording density (5 kFCI).

【0043】磁気記録した試料及び残留磁化状態の磁化
状態を観察し、媒体ノイズ発生の原因となる不規則磁区
の構造、及び大きさを評価した。ここでは磁気力顕微鏡
(MFM:Magnetic Force Microscope)観察により評
価したが、この他の観察手段、例えば垂直磁気記録媒体
表面のスピンの向きを検出する手段、もしくは偏光角の
大きさを検出する手段、あるいは垂直磁気記録媒体表面
の漏洩磁界の強度もしくは漏洩磁界の勾配を検出する手
段、垂直磁気記録媒体表面に磁性微粒子を付着せしめて
評価する手段などを用いても評価することができる。
The magnetized state of the magnetically recorded sample and the remanent magnetization state were observed, and the structure and size of the irregular magnetic domain that caused medium noise were evaluated. Here, evaluation was performed by magnetic force microscope (MFM) observation, but other observation means, such as a means for detecting the direction of spin on the surface of the perpendicular magnetic recording medium, or a means for detecting the magnitude of the polarization angle, Alternatively, the evaluation can be performed by using a means for detecting the intensity of the leakage magnetic field or the gradient of the leakage magnetic field on the surface of the perpendicular magnetic recording medium, a means for attaching magnetic fine particles to the surface of the perpendicular magnetic recording medium and evaluating the same.

【0044】表1において、不規則磁区の面積及び直径
は図3、図4から求めた値である。図3は、媒体Aと媒
体Gの磁化状態を比較して示したもので、図3(a)は
媒体Aの磁化状態を示す磁気力顕微鏡像、図3(b)は
媒体Gの磁化状態を示す磁気力顕微鏡像である。図中、
白い領域21は着磁方向の磁化を有する領域、一方、黒
い領域22は前記の着磁方向と逆向きの磁化もしくは前
記の磁化方向に対して傾斜した磁化を有する磁化領域を
有する不規則磁区を表している。これら不規則磁区の大
きさが小さい程、また単位面積当たりの不規則磁区の割
合が小さい程、磁気ヘッドによる再生ノイズを低減する
ことができる。図3のごとく、上記の各々の媒体の磁化
状態を観察し、媒体に形成された個々の不規則磁区の大
きさ(面積)を測定した。さらに前記の不規則磁区と同
じ面積を有する円に近似することにより、不規則磁区の
直径を評価した。
In Table 1, the area and diameter of the irregular magnetic domain are values obtained from FIGS. FIG. 3 shows a comparison between the magnetization states of the medium A and the medium G. FIG. 3A is a magnetic force microscope image showing the magnetization state of the medium A, and FIG. 5 is a magnetic force microscope image showing the above. In the figure,
The white region 21 is a region having magnetization in the magnetization direction, while the black region 22 is an irregular magnetic domain having a magnetization region having a magnetization opposite to the magnetization direction or having a magnetization inclined with respect to the magnetization direction. Represents. The smaller the size of these irregular magnetic domains and the smaller the ratio of the irregular magnetic domains per unit area, the more the reproduction noise by the magnetic head can be reduced. As shown in FIG. 3, the magnetization state of each of the above media was observed, and the size (area) of each of the irregular magnetic domains formed in the media was measured. Further, the diameter of the irregular magnetic domain was evaluated by approximating a circle having the same area as the above-mentioned irregular magnetic domain.

【0045】図4は、磁化状態を図3のごとく観察して
得られた各媒体A〜Iの不規則磁区の大きさ(面積、直
径)と不規則磁区の積算強度比の関係を示す。図4にお
いて、積算強度比は小さな不規則磁区から大きな不規則
磁区に向かって不規則磁区の面積を順次積算し、全不規
則磁区の大きさ(面積、または直径)の積算値に対する
割合で示した。積算強度比50%が各々の媒体における
不規則磁区の平均値である。
FIG. 4 shows the relationship between the size (area, diameter) of the irregular magnetic domains and the integrated intensity ratio of the irregular magnetic domains of each of the media A to I obtained by observing the magnetization state as shown in FIG. In FIG. 4, the integrated intensity ratio is obtained by sequentially integrating the areas of the irregular magnetic domains from a small irregular magnetic domain to a large irregular magnetic domain, and is represented by a ratio of the size (area or diameter) of all the irregular magnetic domains to the integrated value. Was. The integrated intensity ratio of 50% is the average value of the irregular magnetic domains in each medium.

【0046】表1には、図4の結果をもとに測定した不
規則磁区の平均面積と平均直径も示した。表1、図3、
図4の比較から明らかなように、不規則磁区の平均面
積、あるいは不規則磁区の平均直径が小さい程、媒体ノ
イズを低減できることが明らかである。特に、不規則磁
区の平均面積を7.1×10-4(μm2)以下、もしく
は不規則磁区の平均直径を30nm以下にすることによ
り、10Gb/in2以上の超高密度磁気記録を実現す
るのに要求される0.01(μVrms/μVpp)以下
の低ノイズ媒体を得ることができる。
Table 1 also shows the average area and average diameter of the irregular magnetic domains measured based on the results of FIG. Table 1, FIG. 3,
As is clear from the comparison of FIG. 4, it is clear that the smaller the average area of the irregular magnetic domains or the average diameter of the irregular magnetic domains, the more the medium noise can be reduced. In particular, ultra-high density magnetic recording of 10 Gb / in 2 or more is realized by setting the average area of the irregular magnetic domains to 7.1 × 10 −4 (μm 2 ) or less or the average diameter of the irregular magnetic domains to 30 nm or less. 0.01 (μVrms / μV pp) following low-noise medium is required to be able to obtain.

【0047】通常、磁気ヘッドは媒体表面から20〜6
0nm離れた領域を走行して使用され、媒体表面から発
生した漏洩磁界を検出し、再生信号とする。この場合、
媒体表面の磁区が大きいほど媒体面からより遠くまで漏
洩磁界が分布するため磁気ヘッドでの検出効率が高くな
る。すなわち、小さな磁区は、大きな磁区に比べて磁気
ヘッドで再生する際のスペーシングロスが大きく、検出
されにくい。従って、媒体表面に形成される不規則磁区
を小さくすることにより、磁気ヘッドで信号検出すると
きの媒体ノイズを小さくできる。
Usually, the magnetic head is 20 to 6
It is used while traveling in a region separated by 0 nm, and detects a leakage magnetic field generated from the surface of the medium and uses it as a reproduction signal. in this case,
As the magnetic domain on the medium surface is larger, the leakage magnetic field is distributed farther from the medium surface, so that the detection efficiency of the magnetic head becomes higher. That is, a small magnetic domain has a larger spacing loss when reproducing with a magnetic head than a large magnetic domain, and is hard to detect. Therefore, by reducing the irregular magnetic domains formed on the medium surface, the medium noise when detecting signals with the magnetic head can be reduced.

【0048】媒体A〜Iの磁性結晶粒を透過電子顕微鏡
及び原子間力顕微鏡により観察し、磁性結晶の平均粒径
と不規則磁区の平均径を比較した。その結果、媒体A,
B,Cでは不規則磁区の平均径は磁性結晶の平均粒径の
1〜1.8倍、媒体D,E,Fでは1〜3倍、比較用媒
体G,H,Iでは、1.2〜10倍であった。また、M
r/Msの比を0.8以上とすることにより、磁気記録
した磁化を長時間安定に保持することが可能となり、特
に垂直磁気記録で反磁界効果が高く最も過酷な条件、残
留磁化状態(または直流消去状態)もしくは低記録密度
(例えば5kFCI)でも、記録直後(記録から1秒
後)を基準とした1年後の再生出力の減衰率を20%以
下の小さな値に押さえることが可能であった。
The magnetic crystal grains of the media A to I were observed with a transmission electron microscope and an atomic force microscope, and the average diameter of the magnetic crystals and the average diameter of the irregular magnetic domains were compared. As a result, medium A,
In B and C, the average diameter of the irregular magnetic domain is 1 to 1.8 times the average diameter of the magnetic crystal, in the mediums D, E and F, 1 to 3 times, and in the comparison media G, H and I, 1.2. It was 10 times. Also, M
By setting the ratio of r / Ms to 0.8 or more, it is possible to stably maintain the magnetization recorded magnetically for a long time. Or, even in a DC erased state) or at a low recording density (for example, 5 kFCI), it is possible to keep the reproduction output decay rate one year later based on immediately after recording (one second after recording) to a small value of 20% or less. there were.

【0049】図5は、図4の結果をもとに、媒体ノイズ
と不規則磁区の直径及び面積の関係を比較したものであ
る。この図には、図4において不規則磁区の積算強度比
が5〜95%の範囲に含まれる不規則磁区直径の分布と
不規則磁区面積の分布も併せて示した。この図から明ら
かなように、不規則磁区の大きさ(平均直径、平均面
積)を小さくすると、また不規則磁区の直径と面積の分
布幅を小さくすると、媒体ノイズを低減する効果が大き
いことがわかる。特に、不規則磁区の面積を7.8×1
-5〜2.8×10-3μm2、不規則磁区の直径を10
〜60nmの範囲にすることにより媒体ノイズ低減の効
果が向上する。不規則磁区の大きさの分布における下限
値は磁性粒子の粒径に依存する。そして、磁性粒子の粒
径があまり小さくなると熱揺らぎによって記録の安定性
が低下するため、不規則磁区の直径も10nmより小さ
くならないことが望ましい。
FIG. 5 compares the relationship between the medium noise and the diameter and area of the irregular magnetic domain based on the results of FIG. FIG. 4 also shows the distribution of the diameters of the irregular magnetic domains and the distribution of the area of the irregular magnetic domains in which the integrated intensity ratio of the irregular magnetic domains is in the range of 5 to 95% in FIG. As is clear from this figure, when the size (average diameter, average area) of the irregular magnetic domain is reduced, and when the distribution width of the diameter and area of the irregular magnetic domain is reduced, the effect of reducing the medium noise is large. Recognize. In particular, the area of the irregular magnetic domain is 7.8 × 1
0 -5 to 2.8 × 10 -3 μm 2 , the diameter of the irregular magnetic domain is 10
By setting the range to 60 nm, the effect of reducing the medium noise is improved. The lower limit in the size distribution of the irregular magnetic domains depends on the particle size of the magnetic particles. If the particle size of the magnetic particles is too small, the stability of recording is reduced due to thermal fluctuation. Therefore, it is preferable that the diameter of the irregular magnetic domain does not become smaller than 10 nm.

【0050】以上詳述したように、媒体表面における不
規則磁区の微細化を図ることにより、磁気記録したとき
の記録ビット内部、あるいは磁化遷移の揺らぎ振幅を小
さくでき、その結果、媒体ノイズを低減し、記録分解能
の高い超高密度磁気記録を実現することができる。
As described above in detail, by reducing the size of the irregular magnetic domains on the medium surface, the fluctuation amplitude of the inside of the recording bit or the magnetization transition during magnetic recording can be reduced, and as a result, the medium noise is reduced. However, ultra-high-density magnetic recording with high recording resolution can be realized.

【0051】[0051]

【発明の効果】本発明によると、媒体ノイズの原因とな
る記録磁区の磁化遷移の揺らぎ構造が小さく、かつ不規
則磁区を微細化した、再生信号の高S/N特性を有する
超高面記録密度の磁気記録に好適な垂直磁気記録媒体及
び磁気記憶装置を実現することができる。
According to the present invention, an ultra-high surface recording having a high S / N characteristic of a reproduction signal, in which the fluctuation structure of the magnetization transition of the recording magnetic domain causing the medium noise is small and the irregular magnetic domain is fined. A perpendicular magnetic recording medium and a magnetic storage device suitable for high-density magnetic recording can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による磁気記憶装置の一例の主要部を示
す模式図。
FIG. 1 is a schematic diagram showing a main part of an example of a magnetic storage device according to the present invention.

【図2】(a)は2層の下地層を有する垂直磁気記録媒
体の略断面図、(b)は1層の下地層を有する比較用の
垂直磁気記録媒体の略断面図。
2A is a schematic cross-sectional view of a perpendicular magnetic recording medium having two underlayers, and FIG. 2B is a schematic cross-sectional view of a comparative perpendicular magnetic recording medium having one underlayer.

【図3】(a)は媒体Aの磁化状態を示す磁気力顕微鏡
像、(b)は媒体Gの磁化状態を示す磁気力顕微鏡像。
3A is a magnetic force microscope image showing a magnetization state of a medium A, and FIG. 3B is a magnetic force microscope image showing a magnetization state of a medium G.

【図4】不規則磁区の大きさ(面積、直径)と不規則磁
区の積算強度比の関係を示す図。
FIG. 4 is a diagram showing the relationship between the size (area, diameter) of an irregular magnetic domain and the integrated intensity ratio of the irregular magnetic domain.

【図5】媒体ノイズと不規則磁区の直径及び面積の関係
の比較図。
FIG. 5 is a comparison diagram of the relationship between medium noise and the diameter and area of irregular magnetic domains.

【図6】垂直磁気記録した媒体の磁化状態を示す断面模
式図とそれを磁気抵抗効果型ヘッドで再生した再生信号
波形の模式図。
FIG. 6 is a schematic cross-sectional view showing a magnetization state of a medium on which perpendicular magnetic recording has been performed, and a schematic diagram of a reproduction signal waveform obtained by reproducing the same with a magnetoresistive head.

【符号の説明】[Explanation of symbols]

1…磁気ディスク、2…磁気ヘッド、3…サスペンジョ
ン、4…アクチュエータ、5…ボイスコイルモータ、6
…記録再生回路、7…位置決め回路、8…インターフェ
ース制御回路、11…基板、12…第1下地層、13…
第2下地層、14…磁性膜、15…保護膜、21…着磁
方向の磁化、22…不規則磁区。
DESCRIPTION OF SYMBOLS 1 ... Magnetic disk, 2 ... Magnetic head, 3 ... Suspension, 4 ... Actuator, 5 ... Voice coil motor, 6
... Recording / reproducing circuit, 7 ... Positioning circuit, 8 ... Interface control circuit, 11 ... Substrate, 12 ... First underlayer, 13 ...
Second underlayer, 14: magnetic film, 15: protective film, 21: magnetization in the magnetization direction, 22: irregular magnetic domain.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二本 正昭 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (56)参考文献 特開 平11−185236(JP,A) 特開 平11−232633(JP,A) 特開 平7−176027(JP,A) 特開 平10−255251(JP,A) (58)調査した分野(Int.Cl.6,DB名) G11B 5/66 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masaaki Nihon 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-11-185236 (JP, A) JP-A Heisei 11-232633 (JP, A) JP-A-7-176027 (JP, A) JP-A-10-255251 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G11B 5/66

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に形成した磁性薄膜の磁化容易軸
が基板面に略垂直方向に配向した垂直磁気記録媒体にお
いて、 垂直磁気記録状態もしくは膜面にほぼ垂直方向に一方向
に磁化された残留磁化状態において不規則磁区の平均の
面積が7.1×10-4μm2以下であることを特徴とす
る垂直磁気記録媒体。
In a perpendicular magnetic recording medium in which the axis of easy magnetization of a magnetic thin film formed on a substrate is oriented substantially perpendicular to the substrate surface, the magnetic thin film is magnetized in a perpendicular magnetic recording state or in one direction substantially perpendicular to the film surface. A perpendicular magnetic recording medium characterized by having an average area of irregular magnetic domains of 7.1 × 10 −4 μm 2 or less in a remanent magnetization state.
【請求項2】 請求項1に記載の垂直磁気記録媒体にお
いて、前記平均の面積から±45%の範囲に含まれる前
記不規則磁区の面積が7.8×10-5〜2.8×10-3
μm2であることを特徴とする垂直磁気記録媒体。
2. The perpendicular magnetic recording medium according to claim 1, wherein the area of the irregular magnetic domain included in a range of ± 45% from the average area is 7.8 × 10 −5 to 2.8 × 10. -3
μm 2 , a perpendicular magnetic recording medium.
【請求項3】 請求項1又は2に記載の垂直磁気記録媒
体において、前記不規則磁区を該不規則磁区と同じ面積
を有する円に換算して得られる磁区の平均直径が30n
m以下であり、前記磁区の直径の分布範囲が10〜60
nmであることを特徴とする垂直磁気記録媒体。
3. The perpendicular magnetic recording medium according to claim 1, wherein the average diameter of the magnetic domain obtained by converting the irregular magnetic domain into a circle having the same area as the irregular magnetic domain is 30n.
m or less, and the distribution range of the diameter of the magnetic domain is 10 to 60.
nm.
【請求項4】 請求項1、2又は3に記載の垂直磁気記
録媒体において、膜面にほぼ垂直方向に磁化された残留
磁化状態もしくは磁気ヘッドにより直流消磁された状態
で単位表面積に形成される前記不規則磁区の面積割合が
10%以下であることを特徴とする垂直磁気記録媒体。
4. The perpendicular magnetic recording medium according to claim 1, wherein the perpendicular magnetic recording medium is formed in a unit surface area in a remanent magnetization state magnetized in a direction substantially perpendicular to the film surface or in a DC demagnetized state by a magnetic head. A perpendicular magnetic recording medium, wherein the area ratio of the irregular magnetic domains is 10% or less.
【請求項5】 垂直磁気記録媒体と、前記垂直磁気記録
媒体を保持するための保持具と、前記垂直磁気記録媒体
に対して情報を記録再生するための磁気ヘッドと、前記
磁気ヘッドと前記垂直磁気録媒体の相対位置を移動する
ための移動手段とを備える磁気記憶装置において、前記
垂直磁気記録媒体として請求項1〜4のいずれか1項記
載の垂直磁気記録媒体を用いたことを特徴とする磁気記
憶装置。
5. A perpendicular magnetic recording medium, a holder for holding the perpendicular magnetic recording medium, a magnetic head for recording / reproducing information to / from the perpendicular magnetic recording medium, and the magnetic head and the perpendicular 5. A magnetic storage device comprising: a moving unit for moving a relative position of a magnetic recording medium, wherein the perpendicular magnetic recording medium according to claim 1 is used as the perpendicular magnetic recording medium. Magnetic storage device.
JP10049505A 1998-03-02 1998-03-02 Perpendicular magnetic recording medium and magnetic storage device Expired - Fee Related JP2993927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10049505A JP2993927B2 (en) 1998-03-02 1998-03-02 Perpendicular magnetic recording medium and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10049505A JP2993927B2 (en) 1998-03-02 1998-03-02 Perpendicular magnetic recording medium and magnetic storage device

Publications (2)

Publication Number Publication Date
JPH11250435A JPH11250435A (en) 1999-09-17
JP2993927B2 true JP2993927B2 (en) 1999-12-27

Family

ID=12833005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10049505A Expired - Fee Related JP2993927B2 (en) 1998-03-02 1998-03-02 Perpendicular magnetic recording medium and magnetic storage device

Country Status (1)

Country Link
JP (1) JP2993927B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60031373T2 (en) * 1999-09-01 2007-09-20 Showa Denko K.K. MAGNETIC RECORDING MEDIUM AND DEVICE FOR MAGNETIC RECORDING
KR100374792B1 (en) 2000-12-29 2003-03-04 삼성전자주식회사 Perpendicular magnetic recording disks

Also Published As

Publication number Publication date
JPH11250435A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
US7537845B2 (en) Perpendicular magnetic recording media
JP5397926B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP3612087B2 (en) Magnetic recording medium
EP1453038A1 (en) Magnetic recording media with write-assist layer
JP3011918B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP4154341B2 (en) Magnetic recording medium and magnetic storage device
JP3990128B2 (en) Magnetic recording device
US20040072027A1 (en) Intermediate layer for perpendicular magnetic recording media
JPH11102510A (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JP2993927B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
US20060177701A1 (en) Magnetic recording medium, method of producing the same, and magnetic storage apparatus
JP3217012B2 (en) Magnetic recording media
JP2967070B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device
JP3476741B2 (en) Magnetic recording medium and magnetic storage device
JP3921052B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2000315311A (en) Vertical magnetic recording medium and magnetic storage device
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2002074639A (en) Perpendicular magnetic recording medium and magnetic storage device
JP3445537B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3647379B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2003030812A (en) Magnetic recording medium and magnetic recorder
JPH11306532A (en) Magnetic recording medium and magnetic storage device using the same
JP2000163734A (en) Magnetic recording medium and magnetic recording reproducing device
JP3653039B2 (en) Magnetic recording / reproducing device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees