JP2967070B2 - Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device - Google Patents

Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device

Info

Publication number
JP2967070B2
JP2967070B2 JP34917497A JP34917497A JP2967070B2 JP 2967070 B2 JP2967070 B2 JP 2967070B2 JP 34917497 A JP34917497 A JP 34917497A JP 34917497 A JP34917497 A JP 34917497A JP 2967070 B2 JP2967070 B2 JP 2967070B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetization
film
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34917497A
Other languages
Japanese (ja)
Other versions
JPH11185236A (en
Inventor
幸雄 本多
義幸 平山
信幸 稲葉
研也 伊藤
正昭 二本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34917497A priority Critical patent/JP2967070B2/en
Publication of JPH11185236A publication Critical patent/JPH11185236A/en
Application granted granted Critical
Publication of JP2967070B2 publication Critical patent/JP2967070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、再生ノイズが小さ
く、記録磁化の安定性に優れた高密度磁気記録に好適な
垂直磁気記録媒体および磁気記録装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium and a magnetic recording apparatus suitable for high-density magnetic recording with small reproduction noise and excellent recording magnetization stability.

【0002】[0002]

【従来の技術】現在、実用的に用いられている磁気記録
方式は、磁気記録媒体面に平行に、かつ磁極のN極とN
極、S極とS極を互いに突き合わせる方向に磁化して磁
気記録を行う面内磁気記録方式である。面内磁気記録に
おいて線記録密度を向上するには、記録時の反磁界の影
響を減少するために記録媒体である磁性膜の残留磁化B
rと磁性膜厚tの積を小さくし、保磁力を増大する必要
がある。また磁化遷移から発生する媒体ノイズを減少す
るために、磁性膜の磁化容易軸を基板面に平行に配向さ
せると共に、結晶粒径の制御が必要である。磁性薄膜の
結晶配向性や粒径を制御するために、基板と磁性膜の間
に構造制御用の下地層を形成する。
2. Description of the Related Art Currently, practically used magnetic recording systems include an N-pole and an N-pole, which are parallel to the surface of a magnetic recording medium and are magnetic poles.
This is an in-plane magnetic recording system in which magnetic recording is performed by magnetizing the poles, the S pole, and the S pole in a direction in which they face each other. In order to improve the linear recording density in the in-plane magnetic recording, the residual magnetization B
It is necessary to reduce the product of r and the magnetic film thickness t to increase the coercive force. In addition, in order to reduce medium noise generated from magnetization transition, it is necessary to orient the easy axis of the magnetic film parallel to the substrate surface and control the crystal grain size. In order to control the crystal orientation and grain size of the magnetic thin film, an underlayer for structure control is formed between the substrate and the magnetic film.

【0003】面内磁気記録方式の磁性膜としては、Co
を主成分とし、これにCr,Ta,Pt,Rh,Pd,
Ti,Ni,Nb,Hfなどを添加したCo合金薄膜が
用いられる。磁性薄膜を構成するCo合金は、主として
六方稠密格子構造(以下、hcp構造という)の材料を
用いる。Co合金薄膜はこの結晶のc軸、<00.1>
方向に磁化容易軸を持ち、この磁化容易軸を面内方向に
配向させる。磁性薄膜の結晶配向性や粒径を制御するた
めに、基板と磁性膜の間に構造制御用の下地層を形成す
る。下地層としては、Crを主成分とし、これにTi,
Mo,V,W,Pt,Pdなどを添加した材料を用い
る。磁性薄膜は真空蒸着法やスパッタリング法により形
成する。
As a magnetic film of the longitudinal magnetic recording system, Co is used.
As the main components, and Cr, Ta, Pt, Rh, Pd,
A Co alloy thin film to which Ti, Ni, Nb, Hf or the like is added is used. As the Co alloy constituting the magnetic thin film, a material having a hexagonal close-packed lattice structure (hereinafter, referred to as an hcp structure) is mainly used. Co alloy thin film is c-axis of this crystal, <00.1>
Direction, and the easy axis is oriented in the in-plane direction. In order to control the crystal orientation and grain size of the magnetic thin film, an underlayer for structure control is formed between the substrate and the magnetic film. The underlayer is mainly composed of Cr, and Ti,
A material to which Mo, V, W, Pt, Pd, or the like is added is used. The magnetic thin film is formed by a vacuum evaporation method or a sputtering method.

【0004】前記したように、面内磁気記録において媒
体ノイズを小さくし線記録密度を向上するには、磁性膜
の残留磁化Brと磁性膜厚tの積を小さくする必要があ
り、このために磁性膜の膜厚を20nm以下まで薄くし
結晶粒の微細化が検討されている。しかし、このような
磁性結晶粒を微細化した媒体では、熱揺らぎにより記録
磁化が減少する極めて重大な問題があり、高密度記録の
障害となっている。
As described above, in order to reduce medium noise and improve linear recording density in longitudinal magnetic recording, it is necessary to reduce the product of the residual magnetization Br of the magnetic film and the magnetic film thickness t. It has been studied to reduce the thickness of the magnetic film to 20 nm or less and to refine crystal grains. However, in such a medium in which the magnetic crystal grains are made fine, there is a very serious problem that the recording magnetization decreases due to thermal fluctuation, which is an obstacle to high-density recording.

【0005】一方、垂直磁気記録方式は、記録媒体面に
垂直に、かつ隣り合う記録ビットが互いに反平行になる
ように磁区を形成する記録する方式であり、記録ビット
の境界での反磁界が小さくなり高密度記録ほど磁化が安
定に保たれやすい利点があり、高密度磁気記録の有力な
手段の一つである。面内記録による高密度記録のために
は、前記したように磁性膜の厚さを20nm以下にする
必要があり、この場合、熱的な揺らぎにより記録磁化が
消失する問題がある。これに対して垂直記録では、面内
記録に比べて磁性膜厚を厚くでき、記録磁化を安定に保
持できる利点がある。垂直記録により線記録密度を向上
するためには、記録ビット内部および磁化遷移から発生
する媒体ノイズを減少し、磁性膜の磁化容易軸を基板面
に垂直に配向させると共に、磁化容易軸の配向分散を小
さくし、結晶粒径の制御が必要である。
On the other hand, the perpendicular magnetic recording system is a system in which magnetic domains are formed so that adjacent recording bits are perpendicular to the recording medium surface and are antiparallel to each other. There is an advantage that the magnetization becomes smaller and the magnetization is more stably maintained as the density becomes higher. This is one of the powerful means of the high density magnetic recording. For high-density recording by in-plane recording, as described above, the thickness of the magnetic film needs to be 20 nm or less, and in this case, there is a problem that the recording magnetization is lost due to thermal fluctuation. On the other hand, perpendicular recording has the advantage that the magnetic film thickness can be made thicker than in-plane recording, and the recording magnetization can be stably maintained. In order to improve the linear recording density by perpendicular recording, it is necessary to reduce the medium noise generated from inside the recording bit and from the magnetization transition, orient the easy axis of the magnetic film perpendicular to the substrate surface, and disperse the orientation of the easy axis. And the crystal grain size needs to be controlled.

【0006】垂直磁気記録方式の磁性膜としては、Co
を主成分とし、これにCr,Ta,Pt,Rh,Pd,
Ti,Ni,Nb,Hfなどを添加したCo合金薄膜が
用いられる。磁性薄膜を構成するCo合金は、主として
hcp構造の材料を用いる。Co合金薄膜は、この結晶
のc軸、<00.1>方向に磁化容易軸を持ち、この磁
化容易軸を垂直方向に配向させる。磁性薄膜は真空蒸着
法やスパッタリング法により形成する。磁気記録したと
きの線記録密度や再生出力を向上し、再生ノイズを減少
させて磁気記録特性を向上するために、上記のCo合金
薄膜のc軸の垂直配向性を向上すると共に、結晶粒径の
制御が必要であり、このために基板と磁性膜の間に構造
制御用の下地層を形成するなどの改善策が従来から行わ
れている。
As the magnetic film of the perpendicular magnetic recording system, Co
As the main components, and Cr, Ta, Pt, Rh, Pd,
A Co alloy thin film to which Ti, Ni, Nb, Hf or the like is added is used. As the Co alloy constituting the magnetic thin film, a material having an hcp structure is mainly used. The Co alloy thin film has an easy axis of magnetization in the c-axis <00.1> direction of the crystal, and orients the easy axis of magnetization in the vertical direction. The magnetic thin film is formed by a vacuum evaporation method or a sputtering method. In order to improve the linear recording density and reproducing output when magnetic recording is performed, to reduce reproducing noise and to improve magnetic recording characteristics, the Co alloy thin film is improved in c-axis vertical orientation and crystal grain size. Therefore, improvement measures such as forming an underlayer for structure control between the substrate and the magnetic film have been conventionally taken.

【0007】しかしながら、数Gb/in2以上、特に
10Gb/in2以上の超高密度磁気記録を実現するに
は、線記録密度の向上の他に再生信号に含まれるノイ
ズ、特に媒体の微細構造に起因する媒体ノイズの低減が
重要である。このためには磁性薄膜の結晶配向に加えて
より高度な薄膜構造の制御が必要である。媒体ノイズの
低減のためには従来様々の改良が試みられている。例え
ば、(1)磁性粒子間の磁気的相互作用を小さくするた
めにCoCr系合金中の非磁性Crを結晶粒界や粒内に
偏析させる方法、(2)スパッタリングガス圧力を制御
することにより磁性粒子を形態的に孤立させる方法など
である。
However, several Gb / in 2 or more, particularly to achieve a 10Gb / in 2 or more ultra-high density magnetic recording, noise contained in addition to the reproduction signal to improve the linear recording density, particularly medium of the microstructure It is important to reduce the medium noise caused by the above. For this purpose, it is necessary to control the thin film structure at a higher level in addition to the crystal orientation of the magnetic thin film. Conventionally, various improvements have been attempted to reduce medium noise. For example, (1) a method of segregating non-magnetic Cr in a CoCr-based alloy at a crystal grain boundary or in a grain in order to reduce a magnetic interaction between magnetic particles, and (2) a method of controlling a sputtering gas pressure to control a magnetic property. For example, a method of isolating particles morphologically.

【0008】[0008]

【発明が解決しようとする課題】前述のような媒体構造
の改良により媒体ノイズの低減が促進されたが、垂直磁
気記録における媒体ノイズの起源であるところの、磁化
方向と逆向きに形成される逆磁区およびこれに伴う不規
則磁区を低減する効果は未だ十分には得られていない。
本発明の目的は、上述した従来技術の欠点を解消し、基
板上に形成する垂直磁化膜の垂直磁気異方性や結晶配向
を制御することによって、特に磁気異方性の分散を小さ
くし、磁気記録したときの微細な磁区構造を制御するこ
とにより、優れた低ノイズ特性と記録磁化の安定性を有
し、超高密度磁気記録に好適な垂直磁気記録媒体および
磁気記録装置を提供することにある。
Although the improvement of the medium structure as described above has promoted the reduction of the medium noise, the medium is formed in the direction opposite to the magnetization direction, which is the origin of the medium noise in perpendicular magnetic recording. The effect of reducing the reverse magnetic domain and the accompanying irregular magnetic domain has not yet been sufficiently obtained.
An object of the present invention is to solve the above-mentioned disadvantages of the prior art, and to reduce the dispersion of magnetic anisotropy, in particular, by controlling the perpendicular magnetic anisotropy and crystal orientation of a perpendicular magnetization film formed on a substrate, To provide a perpendicular magnetic recording medium and a magnetic recording apparatus having excellent low noise characteristics and stability of recording magnetization by controlling a fine magnetic domain structure when magnetic recording is performed, and suitable for ultra-high density magnetic recording. It is in.

【0009】[0009]

【課題を解決するための手段】本発明においては、基板
上に磁気異方性の大きな結晶粒からなる磁性膜を形成
し、前記磁性結晶粒の磁化容易軸を基板面に垂直方向に
高配向させると共に、磁化容易軸の分散を小さくした媒
体構造を付与することにより前記目的を達成する。すな
わち、本発明による垂直磁気記録媒体は、基板上に形成
した磁性膜の磁化容易軸が基板面に略垂直方向に配向
し、磁性膜の磁化容易方向の磁化−磁界曲線において、
飽和磁化Msと反磁界補正を加えない残留磁化MrがM
r/Ms≧0.8の関係を有する垂直磁気記録媒体であ
って、前記磁性膜は、Ku1,Ku2,Ku3を一軸異方
性定数、θを自発磁化と磁性膜の容易軸とのなす角とす
るとき、磁性膜の結晶磁気異方性エネルギーEが次式
〔数1〕で近似され、また、磁性膜の磁化がほぼ飽和し
た条件で測定した単位体積当たりの磁気トルクLが次式
〔数2〕で記述される一軸磁気異方性を有する薄膜であ
り、Ku1,Ku2はKu2/(Ku1+Ku2)≦0.3
なる関係を満たすことを特徴とする。
According to the present invention, a magnetic film composed of crystal grains having a large magnetic anisotropy is formed on a substrate, and the easy axis of the magnetic crystal grains is highly oriented perpendicular to the substrate surface. In addition, the above object is achieved by providing a medium structure in which the dispersion of the easy axis is reduced. That is, in the perpendicular magnetic recording medium according to the present invention, the axis of easy magnetization of the magnetic film formed on the substrate is oriented in a direction substantially perpendicular to the substrate surface, and the magnetization-magnetic field curve in the direction of easy magnetization of the magnetic film,
The saturation magnetization Ms and the residual magnetization Mr without demagnetization correction are M
A perpendicular magnetic recording medium having a relationship of r / Ms ≧ 0.8, wherein the magnetic film represents Ku 1 , Ku 2 , and Ku 3 as uniaxial anisotropy constants, and θ represents spontaneous magnetization and an easy axis of the magnetic film. , The crystal magnetic anisotropy energy E of the magnetic film is approximated by the following equation (Equation 1), and the magnetic torque L per unit volume measured under the condition that the magnetization of the magnetic film is almost saturated is obtained. It is a thin film having uniaxial magnetic anisotropy described by the following equation (Equation 2), where Ku 1 and Ku 2 are Ku 2 / (Ku 1 + Ku 2 ) ≦ 0.3
Satisfies the following relationship:

【0010】[0010]

【数1】E≒Ku1sin2θ+Ku2sin4θ+Ku3
sin6θ
E ≒ Ku 1 sin 2 θ + Ku 2 sin 4 θ + Ku 3
sin 6 θ

【数2】L≒−(Ku1+Ku2−2πMs2)sin2θ
+(Ku2sin4θ)/2 前記垂直磁気記録媒体は、基板上に少なくとも1層の構
造制御用の下地層を形成し、その下地層の上に磁性膜を
形成するのが好ましい。このとき、下地層および磁性膜
はエピタキシャル的に成長した膜であるのが好ましい。
L2− (Ku 1 + Ku 2 −2πMs 2 ) sin 2θ
+ (Ku 2 sin4θ) / 2 In the perpendicular magnetic recording medium, it is preferable that at least one underlayer for structure control is formed on a substrate, and a magnetic film is formed on the underlayer. At this time, the underlayer and the magnetic film are preferably films grown epitaxially.

【0011】磁性膜は、Coを主成分とし、これにC
r,Fe,Mo,V,Ta,Pt,Si,B,Ir,
W,Hf,Nb,Ru,Niおよび希土類元素の中から
選ばれる少なくとも1種類の元素からなる合金又は化合
物を含んでなる材料からなり、六方稠密構造を有する。
磁性膜の垂直磁気異方性定数Ku(Ku=Ku1+K
2)と飽和磁化Msの間には、Ku>2πMs2の関係
が成り立つことが好ましい。
The magnetic film contains Co as a main component,
r, Fe, Mo, V, Ta, Pt, Si, B, Ir,
It is made of a material containing an alloy or a compound composed of at least one element selected from W, Hf, Nb, Ru, Ni and rare earth elements, and has a hexagonal close-packed structure.
The perpendicular magnetic anisotropy constant Ku of the magnetic film (Ku = Ku 1 + K
It is preferable that the relationship Ku> 2πMs 2 holds between u 2 ) and the saturation magnetization Ms.

【0012】前記一軸異方性定数Ku1およびKu2は、
磁性膜に対する印加磁界Hを変化して測定された磁気ト
ルク曲線をフーリエ解析し、そのフーリエ解析より求め
られたKu1,Ku2と印加磁界の逆数(1/H)の関係
において、1/H=0に外挿して得られた値とすること
ができる。また、本発明による磁気記録装置は、前述の
垂直磁気記録媒体と、垂直磁気記録媒体を保持するため
の保持具と、垂直磁気記録媒体に対して情報を記録再生
するための磁気ヘッドと、磁気ヘッドと垂直磁気記録媒
体との相対位置を移動するための移動手段と、これらを
制御するための制御手段とを含む。
The uniaxial anisotropy constants Ku 1 and Ku 2 are as follows:
A magnetic torque curve measured by changing the applied magnetic field H with respect to the magnetic film is subjected to Fourier analysis, and the relationship between Ku 1 , Ku 2 obtained by the Fourier analysis and the reciprocal (1 / H) of the applied magnetic field is 1 / H. It can be a value obtained by extrapolating to = 0. Further, the magnetic recording apparatus according to the present invention includes the above-described perpendicular magnetic recording medium, a holder for holding the perpendicular magnetic recording medium, a magnetic head for recording and reproducing information on the perpendicular magnetic recording medium, It includes moving means for moving the relative position between the head and the perpendicular magnetic recording medium, and control means for controlling these.

【0013】また、本発明による垂直磁気記録媒体の製
造方法は、基板上に下地層をエピタキシャル的に成長さ
せる工程と、下地層の上に、Coを主成分とし、これに
Cr,Fe,Mo,V,Ta,Pt,Si,B,Ir,
W,Hf,Nb,Ru,Niおよび希土類元素の中から
選ばれる少なくとも1種類の元素を含んだ材料からな
り、磁化容易軸が基板面に略垂直方向に配向した六方稠
密構造を有する磁性膜であって、該磁性膜は、磁化容易
方向の磁化−磁界曲線において、飽和磁化Msと反磁界
補正を加えない残留磁化MrがMr/Ms≧0.8の関
係を有し、該磁性膜の磁化がほぼ飽和した条件で測定し
た単位体積当たりの磁気トルクLがL≒−(Ku1+K
2−2πMs2)sin2θ+(Ku2sin4θ)/
2(Ku1,Ku2:前記〔数1〕で定義される一軸異方
性定数、θ:自発磁化と磁性膜の容易軸とのなす角)で
記述される一軸磁気異方性を有し、前記一軸異方性定数
Ku1,Ku2、垂直磁気異方性定数Ku(Ku=Ku1
+Ku2)および飽和磁化Msが、Ku2/(Ku1+K
2)≦0.3、および、Ku>2πMs2を同時に満足
する磁性膜をエピタキシャル的に成長させる工程とを含
むものである。
Further, a method of manufacturing a perpendicular magnetic recording medium according to the present invention comprises a step of epitaxially growing a base layer on a substrate, and a step of forming a main component of Co on the base layer, which contains Cr, Fe, and Mo. , V, Ta, Pt, Si, B, Ir,
A magnetic film made of a material containing at least one element selected from the group consisting of W, Hf, Nb, Ru, Ni and a rare earth element, and having a hexagonal close-packed structure in which the axis of easy magnetization is oriented substantially perpendicular to the substrate surface. In the magnetic film, in the magnetization-magnetic field curve in the easy magnetization direction, the saturation magnetization Ms and the residual magnetization Mr without demagnetization correction have a relationship of Mr / Ms ≧ 0.8, and the magnetization of the magnetic film Is approximately saturated, the magnetic torque L per unit volume is L ≒ − (Ku 1 + K
u 2 −2πMs 2 ) sin2θ + (Ku 2 sin4θ) /
2 (Ku 1 , Ku 2 : uniaxial anisotropy constant defined by the above [Equation 1]; θ: angle between spontaneous magnetization and easy axis of the magnetic film) , The uniaxial anisotropy constants Ku 1 and Ku 2 , the perpendicular magnetic anisotropy constant Ku (Ku = Ku 1
+ Ku 2 ) and the saturation magnetization Ms are Ku 2 / (Ku 1 + K
u 2 ) ≦ 0.3, and a step of epitaxially growing a magnetic film that satisfies Ku> 2πMs 2 at the same time.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は、本発明による磁気記録装
置の一例の説明図である。磁気記録装置は、磁気ディス
ク1、記録再生用の磁気ヘッド2、磁気ヘッドを支持す
るサスペンジョン3、アクチュエータ4、ボイスコイル
モータ5、記録再生回路6、位置決め回路7、インター
フェース制御回路8などで構成される。磁気ディスク1
は、ガラス基板、Si基板、NiP被覆アルミニウム基
板、カーボン基板など円盤状の基板上に磁性膜の結晶配
向性などの構造制御用の下地層、その上に形成された磁
性膜、および保護膜などで構成され、保護膜上には潤滑
膜を被覆した磁気記録媒体である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram of an example of a magnetic recording device according to the present invention. The magnetic recording device includes a magnetic disk 1, a magnetic head 2 for recording and reproduction, a suspension 3 supporting the magnetic head, an actuator 4, a voice coil motor 5, a recording and reproduction circuit 6, a positioning circuit 7, an interface control circuit 8, and the like. You. Magnetic disk 1
Is an underlayer for controlling the structure such as crystal orientation of a magnetic film on a disk-shaped substrate such as a glass substrate, a Si substrate, a NiP-coated aluminum substrate, a carbon substrate, a magnetic film formed thereon, and a protective film. And a magnetic recording medium having a protective film covered with a lubricating film.

【0015】磁性膜は、Coを主成分としこれにCr,
Fe,Mo,V,Ta,Pt,B,Ir,W,Hf,N
b,Ru,Ni、および希土類元素の中から選ばれた少
なくとも1種類以上の元素を含む材料からなる六方稠密
構造を基本構造とし、磁性膜の磁化容易軸を基板面に垂
直方向に配向させる。磁性膜の磁化容易軸を基板面に垂
直に高配向し、かつ垂直磁気異方性の分散の小さい垂直
記録媒体を得るために、磁性膜の構造制御用下地層を基
板と磁性膜の間に設ける。構造制御用の下地層として
は、非磁性もしくは常磁性のCoCr合金やTi,Ti
Cr合金あるいはこれらにPt,Ru,Ta,Mo,P
d,V,Nb,Zrなどを添加したhcp構造の多結晶
膜、微結晶膜もしくは非晶質状下地層膜やSi,Geな
どの非晶質状下地層を用いる。
The magnetic film contains Co as a main component and Cr,
Fe, Mo, V, Ta, Pt, B, Ir, W, Hf, N
A hexagonal close-packed structure made of a material containing at least one element selected from b, Ru, Ni, and a rare earth element is used as a basic structure, and the easy axis of the magnetic film is oriented in a direction perpendicular to the substrate surface. In order to obtain a perpendicular recording medium in which the easy axis of magnetization of the magnetic film is oriented vertically to the substrate surface and the dispersion of perpendicular magnetic anisotropy is small, an underlayer for controlling the structure of the magnetic film is provided between the substrate and the magnetic film. Provide. Non-magnetic or paramagnetic CoCr alloy, Ti, Ti
Cr alloy or Pt, Ru, Ta, Mo, P
An hcp polycrystalline film, a microcrystalline film, an amorphous underlayer, or an amorphous underlayer such as Si or Ge to which d, V, Nb, Zr or the like is added is used.

【0016】磁気ヘッド2は、スライダー、この上に設
けられた磁気記録用リング型ヘッドの磁極および記録信
号再生用の磁気抵抗効果型、巨大磁気抵抗効果型、もし
くはスピンバルブ型素子あるいは磁気トンネル型素子で
構成される。磁気記録時のトラック端部の記録磁区の乱
れを低下するために、記録用ヘッドのトレーリング側、
リーディング側磁極のトラック両端部は揃っていること
が望ましい。再生用ヘッドのトラック幅は、前記の記録
用ヘッド磁極のトラック幅より狭いことが、記録トラッ
ク両端部から生じる再生ノイズを低減するのに好適であ
る。磁気ヘッド2は、サスペンジョン3によって支持さ
れ、かつ磁気ヘッド2が磁気ディスク1の内周側から外
周側に向かって移動したときに生ずるヨー角を補正する
機能が設けてある。
The magnetic head 2 includes a slider, a magnetic pole of a magnetic recording ring-type head provided thereon, and a magnetoresistive, giant magnetoresistive, or spin-valve element or a magnetic tunnel type for reproducing recorded signals. It is composed of elements. In order to reduce the disturbance of the recording magnetic domain at the end of the track during magnetic recording, the trailing side of the recording head,
It is desirable that both ends of the track of the leading magnetic pole are aligned. It is preferable that the track width of the reproducing head is smaller than the track width of the recording head magnetic pole in order to reduce reproduction noise generated from both ends of the recording track. The magnetic head 2 is supported by the suspension 3 and has a function of correcting a yaw angle generated when the magnetic head 2 moves from the inner circumference to the outer circumference of the magnetic disk 1.

【0017】図2は、垂直磁気記録媒体の構造を模式的
に示す断面図である。図2(a)は2層の下地層を用い
るものであり、基板11の上に、第1下地層12、第2
下地層13、磁性膜14、保護膜15を順次積層した構
造を有する。また、図2(b)は1層の下地層を用いる
ものであり、基板11の上に、下地層12、磁性膜1
4、保護膜15を積層した構造を有する。
FIG. 2 is a sectional view schematically showing the structure of a perpendicular magnetic recording medium. FIG. 2A uses two underlayers. A first underlayer 12 and a second underlayer 12 are formed on a substrate 11.
It has a structure in which an underlayer 13, a magnetic film 14, and a protective film 15 are sequentially laminated. FIG. 2B shows a case in which one underlayer is used. An underlayer 12 and a magnetic film 1 are formed on a substrate 11.
4. It has a structure in which a protective film 15 is laminated.

【0018】基板11としては、Si基板、ガラス基
板、NiP被覆Al基板、カーボン基板、あるいは高分
子基板などを用いることができるが、ここでは表面に熱
酸化Si膜を形成した円盤状のSiディスクを用いた例
により説明する。ここに述べる例では、超高真空DCマ
グネトロンスパッタリング装置により媒体を作製した。
洗浄した基板11をスパッタリング装置に設置し、続い
て基板11を約230℃に加熱して、磁性膜の結晶粒径
や磁気異方性の制御行うための下地層を形成した。下地
層は、この上に形成する磁性膜の種類により任意に選ぶ
ことができ、また下地層は、同一材料もしくは異種の材
料からなる層を少なくとも1層以上積層して用いること
ができる。磁性膜としては、六方稠密構造、体心立方格
子構造、面心六方格子構造、あるいは斜方晶構造の材料
を用いることができる。例えば、磁性膜としてCoを主
成分とするhcp(六方稠密構造)構造の材料を用いる
場合、下地層は最も一般的にはTi,Ta,Ru,H
f,Co,などのhcp構造の材料を主成分とし、これ
にCr,V,Wなどを添加した材料からなる多結晶膜や
微結晶膜または非晶質状膜、あるいはSi,Geを始め
とする非晶質状膜を選択することが可能である。この下
地層上に引き続き同一真空中で記録膜となる磁性膜1
4、保護膜15を順次形成した。
As the substrate 11, a Si substrate, a glass substrate, a NiP-coated Al substrate, a carbon substrate, a polymer substrate, or the like can be used. Here, a disk-shaped Si disk having a thermally oxidized Si film formed on its surface is used. This will be described with an example using. In the example described here, the medium was produced by an ultra-high vacuum DC magnetron sputtering apparatus.
The cleaned substrate 11 was set in a sputtering apparatus, and subsequently, the substrate 11 was heated to about 230 ° C. to form an underlayer for controlling the crystal grain size and magnetic anisotropy of the magnetic film. The underlayer can be arbitrarily selected depending on the type of the magnetic film formed thereon, and the underlayer can be formed by laminating at least one layer made of the same material or different materials. As the magnetic film, a material having a hexagonal close-packed structure, a body-centered cubic lattice structure, a face-centered hexagonal lattice structure, or an orthorhombic structure can be used. For example, when using a material having an hcp (hexagonal close-packed structure) structure containing Co as a main component as the magnetic film, the underlayer is most commonly made of Ti, Ta, Ru, H
Polycrystalline film, microcrystalline film, amorphous film, Si, Ge, etc., which are mainly composed of a material having an hcp structure such as f, Co, and the like, to which Cr, V, W, etc. are added. It is possible to select an amorphous film to be formed. On this underlayer, a magnetic film 1 to be a recording film in the same vacuum.
4. The protective film 15 was formed sequentially.

【0019】本発明の一実施例の媒体Aは、図2(a)
に略示する構造を有し、基板11上に膜厚30nmの非
晶質状Ge膜からなる第1下地層12を形成し、この上
に膜厚20nmのhcp構造のCo−35at%Cr非
磁性合金からなる第2下地層13を形成し、続いて膜厚
30nmのCo−19at%Cr−10at%Pt合金
磁性膜14、および膜厚5nmのカーボン保護膜15を
形成した。媒体Aは、Arガス圧2mTorr、DCマ
グネトロンスパッタリング法により作製した。
The medium A according to one embodiment of the present invention is shown in FIG.
A first underlayer 12 made of a 30-nm-thick amorphous Ge film is formed on a substrate 11 and a 20-nm-thick hcp structure Co-35 at% Cr non- A second underlayer 13 made of a magnetic alloy was formed, and subsequently, a Co-19 at% Cr-10 at% Pt alloy magnetic film 14 having a thickness of 30 nm and a carbon protective film 15 having a thickness of 5 nm were formed. The medium A was produced by a DC magnetron sputtering method under an Ar gas pressure of 2 mTorr.

【0020】第1下地層12として用いたGe膜は、X
線回折によるマクロ的構造は非晶質であったが、薄膜表
面の反射電子回折によれば非晶質的な回折線の中に一部
結晶的な構造が観察され、非晶質状構造の膜表面の一部
に規則的な配列を有した膜と判定された。第2下地層表
面および磁性膜表面を原子間力顕微鏡(AFM)で観察
した結果、表面の起伏の振幅および起伏の周期はいずれ
も10nm以下の平坦な薄膜であった。
The Ge film used as the first underlayer 12 is made of X
Although the macroscopic structure by the line diffraction was amorphous, according to the backscattered electron diffraction of the thin film surface, a partly crystalline structure was observed in the amorphous diffraction line, and the amorphous structure was observed. It was determined that the film had a regular arrangement on a part of the film surface. As a result of observing the surface of the second underlayer and the surface of the magnetic film with an atomic force microscope (AFM), both the amplitude of the surface undulations and the period of the undulations were flat thin films of 10 nm or less.

【0021】本発明の他の実施例の媒体Bは、図2
(a)に略示する構造を有し、下地層12,13は媒体
Aと同じ材料構成とし、磁性膜14としてCo−15a
t%Cr−4at%Ta合金を用いた。本発明の他の実
施例の媒体Cは、図2(a)に略示する断面構造を有
し、基板11上に膜厚30nmのhcp構造のTi−1
0at%Cr合金膜からなる多結晶性の第1下地層12
を形成し、この上に膜厚20nmのhcp構造のCo−
35at%Cr非磁性合金からなる第2下地層13を形
成し、続いて膜厚30nmのCo−19at%Cr−1
0at%Pt合金磁性膜14、および膜厚5nmのカー
ボン保護膜15を形成した。薄膜はいずれもArガス圧
2mTorrで、DCマグネトロンスパッタリング法に
より作製した。第2下地層表面および磁性膜表面を原子
間力顕微鏡(AFM)で観察した結果、表面の起伏の振
幅および起伏の周期はいずれも10nm以下の平坦な薄
膜であった。
The medium B according to another embodiment of the present invention is shown in FIG.
3A, the underlayers 12 and 13 are made of the same material as the medium A, and the magnetic film 14 is made of Co-15a.
A t% Cr-4at% Ta alloy was used. A medium C according to another embodiment of the present invention has a cross-sectional structure schematically shown in FIG.
Polycrystalline first underlayer 12 made of 0 at% Cr alloy film
Is formed thereon, and a 20 nm-thick hcp structure Co-
A second underlayer 13 made of a 35 at% Cr nonmagnetic alloy is formed, followed by a 30 nm thick Co-19 at% Cr-1.
A 0 at% Pt alloy magnetic film 14 and a carbon protective film 15 having a thickness of 5 nm were formed. Each of the thin films was formed by a DC magnetron sputtering method under an Ar gas pressure of 2 mTorr. As a result of observing the surface of the second underlayer and the surface of the magnetic film with an atomic force microscope (AFM), both the amplitude of the surface undulations and the period of the undulations were flat thin films of 10 nm or less.

【0022】本発明の他の実施例の媒体Dは、図2
(a)に略示する断面構造を有し、下地層12、13は
媒体Cと同じ材料構成とし、磁性膜14としてCo−1
5at%Cr−4at%Ta合金を用いた。上記媒体
A,B,CおよびDにおける磁性膜は、hcp構造を有
し、その成長方位は<002>方位が基板面に垂直に配
向し、いずれも下地層界面からエピタキシャル的に成長
した薄膜であることがX線回折法および電子顕微鏡観察
により確認された。
A medium D according to another embodiment of the present invention is shown in FIG.
(A) has the cross-sectional structure schematically shown, the underlayers 12 and 13 are made of the same material as the medium C, and the magnetic film 14 is made of Co-1
A 5 at% Cr-4 at% Ta alloy was used. The magnetic films in the media A, B, C and D have an hcp structure, and the growth direction is a <002> direction perpendicular to the substrate surface, and all are epitaxially grown thin films from the interface of the underlayer. It was confirmed by X-ray diffraction and electron microscope observation.

【0023】磁性膜への非磁性CrやTaなどの添加に
より磁性結晶粒の粒界や粒内に非磁性層や弱磁性層を局
所的に偏析させることができ、磁性粒子の磁気的孤立性
を向上する効果が電子顕微鏡を用いた組成分析などで確
認された。また、Ptの添加により磁性膜の磁気異方性
を向上できる。前記各実施例では媒体表面の保護膜15
として、いずれも膜厚5nmカーボン膜を用いたが、こ
れ以外にB,Siカーバイド、窒化Si、ダイヤモンド
状カーボンなどを用いてもよい。
By adding non-magnetic Cr or Ta to the magnetic film, the non-magnetic layer or the weak magnetic layer can be locally segregated at the grain boundaries or within the magnetic crystal grains, and the magnetic isolation of the magnetic grains can be improved. Has been confirmed by composition analysis using an electron microscope. Further, the magnetic anisotropy of the magnetic film can be improved by adding Pt. In each of the above embodiments, the protective film 15 on the medium surface is used.
In each case, a carbon film having a thickness of 5 nm was used, but B, Si carbide, Si nitride, diamond-like carbon, or the like may be used.

【0024】次に、以下のようにして比較用の媒体を準
備した。比較用の媒体Eは、図2(a)に略示する断面
構造を有し、基板11上に膜厚30nmのhcp構造の
Ti−10at%Cr合金膜からなる多結晶性の第1下
地層12を形成し、この上に膜厚20nmのhcp構造
のCo−35at%Cr合金からなる非磁性合金からな
る第2下地層13を形成した。この下地層は、スパッタ
リング用のArガス圧を15mTorrと高いガス圧と
し、DCマグネトロンスパッタリング法により作製し
た。下地層の上に、続いて膜厚30nmのCo−19a
t%Cr−10at%Pt合金磁性膜14、および膜厚
5nmのカーボン保護膜15を形成した。磁性膜14
は、Arガス圧2mTorrのDCマグネトロンスパッ
タリング法により作製した。媒体Eにおける第2下地層
表面および磁性膜表面を原子間力顕微鏡(AFM)で観
察した結果、表面の起伏の振幅および起伏の周期はいず
れも10〜50nmの範囲であった。
Next, a medium for comparison was prepared as follows. The medium E for comparison has a cross-sectional structure schematically shown in FIG. 2A, and has a polycrystalline first underlayer made of a 30 nm thick hcp structure Ti-10 at% Cr alloy film on a substrate 11. A second underlayer 13 made of a nonmagnetic alloy made of a Co-35 at% Cr alloy having a thickness of 20 nm and having a hcp structure was formed thereon. This underlayer was formed by DC magnetron sputtering with an Ar gas pressure for sputtering at a high gas pressure of 15 mTorr. On the underlayer, subsequently, Co-19a having a thickness of 30 nm is formed.
A t% Cr-10at% Pt alloy magnetic film 14 and a carbon protective film 15 having a thickness of 5 nm were formed. Magnetic film 14
Was manufactured by a DC magnetron sputtering method with an Ar gas pressure of 2 mTorr. As a result of observing the surface of the second underlayer and the surface of the magnetic film of the medium E with an atomic force microscope (AFM), the amplitude of the surface undulation and the period of the undulation were all in the range of 10 to 50 nm.

【0025】比較用の媒体Fは、図2(b)に略示する
断面構造を有し、基板11上に膜厚30nmのhcp構
造のTi−10at%Cr合金膜からなる多結晶性の第
1下地層12を形成し、この上に膜厚30nmのCo−
19at%Cr−10at%Pt合金磁性膜14、およ
び膜厚5nmのカーボン保護膜15を形成した。下地層
12および磁性膜14は、いずれもArガス圧2mTo
rrのDCマグネトロンスパッタリング法により作製し
た。媒体Fにおける下地層表面および磁性膜表面を原子
間力顕微鏡(AFM)で観察した結果、表面の起伏の振
幅および起伏の周期は、下地層表面では10nm以下、
磁性膜表面では10〜25nmであった。
The medium F for comparison has a cross-sectional structure schematically shown in FIG. 2 (b), and is formed on a substrate 11 of a polycrystalline Ti-10 at% Cr alloy film of a 30 nm thick hcp structure. 1 underlayer 12 is formed, and a 30 nm-thick Co-
A 19 at% Cr-10 at% Pt alloy magnetic film 14 and a carbon protective film 15 having a thickness of 5 nm were formed. Both the underlayer 12 and the magnetic film 14 have an Ar gas pressure of 2 mTo.
It was produced by rr DC magnetron sputtering. As a result of observing the surface of the underlayer and the surface of the magnetic film in the medium F with an atomic force microscope (AFM), the amplitude of the surface undulation and the period of the undulation were 10 nm or less on the surface of the underlayer.
The thickness was 10 to 25 nm on the surface of the magnetic film.

【0026】比較用媒体EおよびFの磁性膜14は、い
ずれもhcp構造を有し、その成長方位は<002>方
位が基板面にほぼ垂直に配向し、いずれも下地層表面か
らエピタキシャル的に成長した薄膜であることがX線回
折法および電子顕微鏡観察により確認された。上記各媒
体の磁気特性を振動試料型磁力計(VSM)で測定し
た。磁性膜の垂直磁気異方性Kuは、各々の試料につき
磁気トルク曲線を測定し、この単位体積当たりの磁気ト
ルク曲線をフーリエ解析して、結晶磁気異方性エネルギ
ーEに対する前記〔数1〕および単位体積当たりの磁気
トルクLに対する前記〔数2〕の関係から、磁性膜の膜
面垂直方向の一軸磁気異方性定数Ku1,Ku2を求め
た。
Each of the magnetic films 14 of the comparative media E and F has an hcp structure, and the <002> direction is oriented almost perpendicular to the substrate surface. The grown thin film was confirmed by X-ray diffraction and electron microscope observation. The magnetic properties of each of the above media were measured with a vibrating sample magnetometer (VSM). The perpendicular magnetic anisotropy Ku of the magnetic film is obtained by measuring a magnetic torque curve for each sample, performing a Fourier analysis on the magnetic torque curve per unit volume, and calculating the above [Equation 1] and The uniaxial magnetic anisotropy constants Ku 1 and Ku 2 in the direction perpendicular to the film surface of the magnetic film were determined from the relationship of the above [Equation 2] with respect to the magnetic torque L per unit volume.

【0027】また、Ku1,Ku2の値を更に正確に求め
るために、磁気トルク曲線の測定に際して磁性膜に印加
する外部磁界Hの大きさを15〜5kOeの範囲で変化
して測定し、各々の印加磁界Hの元で測定された一軸磁
気異方性定数Ku1,Ku2の値と印加磁界の逆数(1/
H)の関係を求めた。すなわち、Ku1,Ku2の値対1
/Hの関係を示すプロットにおいて、1/H=0に外挿
して得られた値を、各々の磁性膜のKu1,Ku2の値と
定義した。
In order to more accurately determine the values of Ku 1 and Ku 2 , the magnitude of the external magnetic field H applied to the magnetic film in the measurement of the magnetic torque curve is measured in a range of 15 to 5 kOe. The values of the uniaxial magnetic anisotropy constants Ku 1 and Ku 2 measured under each applied magnetic field H and the reciprocal of the applied magnetic field (1/1)
H) was determined. That is, the value of Ku 1 , Ku 2 versus 1
In the plot showing the relationship of / H, the value obtained by extrapolating to 1 / H = 0 was defined as the value of Ku 1 and Ku 2 of each magnetic film.

【0028】下記の表1に、上記本発明の実施例の媒体
および比較用の媒体の特性を比較して示す。表1におい
て、Δθ50は結晶軸の配向性を評価する指標の一つであ
り、ここではCoCr合金結晶の<002>回折X線ピ
ークのロッキング曲線を測定し、その半値幅で示した。
また、磁気記録した試料および残留磁化状態の磁化状態
を磁気力顕微鏡(MFM:Magnetic Force Microscop
e)観察し、媒体のノイズの原因となる不規則磁区の構
造の大きさを評価した。不規則磁区の径は、磁気力顕微
鏡により媒体表面の磁化状態を観察し、表面に形成され
た不規則構造の磁区と同じ面積を有する円の直径で示し
た。磁化状態の観察は、磁気力顕微鏡の他にスピン偏極
走査顕微鏡、ビッター観察法、ローレンツ型電子顕微鏡
などを用いて行ってもよい。
Table 1 below shows the characteristics of the medium of the present invention and the medium for comparison. In Table 1, Δθ 50 is one of the indices for evaluating the orientation of the crystal axis. Here, the rocking curve of the <002> diffraction X-ray peak of the CoCr alloy crystal was measured and indicated by its half-value width.
In addition, the magnetic recording sample (MFM: Magnetic Force Microscop)
e) Observation was performed to evaluate the size of the structure of the irregular magnetic domain that causes noise in the medium. The diameter of the irregular magnetic domain was determined by observing the magnetization state of the medium surface with a magnetic force microscope, and indicated by the diameter of a circle having the same area as the magnetic domain of the irregular structure formed on the surface. The observation of the magnetization state may be performed using a spin-polarized scanning microscope, a bitter observation method, a Lorentz-type electron microscope, or the like, in addition to the magnetic force microscope.

【0029】磁気記録はリング型磁気ヘッド(トラック
幅2μm、ギャップ長0.2μm)を使用し、再生は磁
気抵抗効果型ヘッド(MRヘッド)を使用し、記録再生
時の磁気スペーシング(媒体磁性膜の表面と磁気ヘッド
の磁極間の距離)30nmとして、媒体の記録再生特性
を測定した。媒体ノイズN/S0は、線記録密度250
kFCIで測定したノイズを低線記録密度(5kFC
I)における再生信号出力で規格化した値で表示した。
For magnetic recording, a ring-type magnetic head (track width 2 μm, gap length 0.2 μm) is used, and for reproduction, a magnetoresistive head (MR head) is used. The recording / reproducing characteristics of the medium were measured with the distance between the surface of the film and the magnetic pole of the magnetic head being 30 nm). The medium noise N / S 0 is a linear recording density of 250
The noise measured by kFCI was reduced to low linear recording density (5 kFC
The value is standardized by the reproduced signal output in I).

【0030】[0030]

【表1】 [Table 1]

【0031】表1から明らかな様に、磁性膜の膜面垂直
方向の角型比Mr/Msが大きい(特に0.8以上)こ
とに加えて、磁性膜の膜面垂直方向の一軸異方性定数の
比Ku2/(Ku1+Ku2)を小さくすることにより、
磁性膜の磁気異方性の分散を減少できる効果があり、そ
の結果、媒体ノイズの原因となる不規則磁区の径と分布
幅を小さくでき、媒体ノイズ低減に好適であることがわ
かる。
As is clear from Table 1, the squareness ratio Mr / Ms of the magnetic film in the direction perpendicular to the film surface is large (especially 0.8 or more), and the uniaxial anisotropy in the direction perpendicular to the film surface of the magnetic film. By reducing the sex constant ratio Ku 2 / (Ku 1 + Ku 2 ),
This has the effect of reducing the dispersion of the magnetic anisotropy of the magnetic film. As a result, the diameter and distribution width of the irregular magnetic domains that cause medium noise can be reduced, which is suitable for reducing medium noise.

【0032】また、飽和磁化Msと反磁界補正を加えて
いない残留磁化Mrの比Mr/Msを0.8以上にする
ことにより、磁気記録した磁化を長時間安定に保持する
ことが可能となり、特に垂直磁気記録で反磁界効果が高
く最も過酷な条件、残留磁化状態(または直流消去状
態)でも、20%以下の小さな減衰率に押さえることが
可能であった。
Further, by setting the ratio Mr / Ms of the saturation magnetization Ms and the residual magnetization Mr without demagnetization correction to be 0.8 or more, the magnetically recorded magnetization can be stably held for a long time. Particularly in perpendicular magnetic recording, even under the most severe conditions where the demagnetizing effect is high and the remanent magnetization state (or DC erasure state), it was possible to suppress the attenuation to a small attenuation rate of 20% or less.

【0033】図3は、表1に示した媒体A〜Fの特性の
中で、一軸異方性定数の比Ku2/(Ku1+Ku2)に
対する媒体ノイズと不規則磁区の径の関係を示したもの
である。この図から明らかなように、Ku2/(Ku1
Ku2)を小さくすることにより、特にKu2/(Ku1
+Ku2)≦0.3の条件を満たす媒体では、不規則磁
区の径と分布幅を小さくでき、媒体ノイズを低減する効
果が大きいことがわかる。Ku2/(Ku1+Ku2)≦
0.25の条件を満たす場合には10Gb/in2以上
の超高密度磁気記録が可能である。
FIG. 3 shows the relationship between the medium noise and the diameter of the irregular magnetic domain with respect to the ratio of the uniaxial anisotropy constant Ku 2 / (Ku 1 + Ku 2 ) among the characteristics of the media A to F shown in Table 1. It is shown. As is clear from this figure, Ku 2 / (Ku 1 +
By making Ku 2 ) smaller, in particular, Ku 2 / (Ku 1)
In the medium satisfying the condition of + Ku 2 ) ≦ 0.3, it can be seen that the diameter and distribution width of the irregular magnetic domain can be reduced, and the effect of reducing the medium noise is large. Ku 2 / (Ku 1 + Ku 2 ) ≦
When the condition of 0.25 is satisfied, ultra high density magnetic recording of 10 Gb / in 2 or more is possible.

【0034】図4は、表1に示した媒体A〜Fの記録磁
化状態を磁気力顕微鏡で観察し、比較した結果を示す。
垂直磁気記録は媒体全面を直流消去した後に、リング型
の磁気ヘッドにより行った。図は、直流消去領域31に
記録磁区32を記録した状態を示している。図におい
て、明暗のコントラストは、磁化の平均の向きが同じで
あることを示している。図に示した磁化遷移33の揺ら
ぎが小さいほど、記録磁区32内部に形成される不規則
磁区34の径と分布幅および密度が小さいほど、媒体ノ
イズを小さくできる。この不規則磁区34は、主として
反磁界の影響により磁化の向きと逆方向に形成される逆
磁区と呼ばれるものであり、これら不規則磁区34は、
記録再生時の媒体ノイズの原因となり、また高密度記録
の障害になる。
FIG. 4 shows the results of comparing the recorded magnetization states of the media A to F shown in Table 1 with a magnetic force microscope.
Perpendicular magnetic recording was performed using a ring-type magnetic head after DC erasing the entire surface of the medium. The figure shows a state where the recording magnetic domains 32 are recorded in the DC erasure area 31. In the figure, the contrast between light and dark indicates that the average direction of magnetization is the same. The smaller the fluctuation of the magnetization transition 33 shown in the figure, the smaller the diameter, the distribution width, and the density of the irregular magnetic domain 34 formed inside the recording magnetic domain 32, the smaller the medium noise. The irregular magnetic domains 34 are called reverse magnetic domains formed in the direction opposite to the direction of magnetization mainly due to the influence of the demagnetizing field.
This causes medium noise during recording and reproduction, and also hinders high-density recording.

【0035】図4(a)は、表1と図3に示した様に、
一軸異方性定数の比Ku2/(Ku1+Ku2)が最も小
さい媒体AおよびCに見られる典型的な磁化状態を示
す。図から明らかなように、鮮明な記録磁区32が形成
されており、また記録ビットの境界にできる磁化遷移3
3の揺らぎも小さく、揺らぎの振幅は約30nmと微細
であり、不規則磁区34の径と分布も小さい。図4
(b)は、媒体BとDの磁化状態を示す。この場合、鮮
明な記録磁区32が形成されているが、媒体A,Cに比
べて不規則磁区34の径とその分布がやや大きい。これ
は媒体B,DにおけるMr/Ms比とKu2/(Ku1
Ku2)の値が媒体A,Cに比べて劣るためである。
FIG. 4A shows, as shown in Table 1 and FIG.
The graph shows typical magnetization states found in the media A and C in which the ratio of the uniaxial anisotropy constant Ku 2 / (Ku 1 + Ku 2 ) is the smallest. As is clear from the figure, a clear recording magnetic domain 32 is formed, and a magnetization transition 3 formed at the boundary of the recording bit.
3 also has a small fluctuation, the amplitude of the fluctuation is as fine as about 30 nm, and the diameter and distribution of the irregular magnetic domains 34 are small. FIG.
(B) shows the magnetization states of the media B and D. In this case, clear recording magnetic domains 32 are formed, but the diameter and distribution of the irregular magnetic domains 34 are slightly larger than those of the media A and C. This is due to the ratio of Mr / Ms in the media B and D and Ku 2 / (Ku 1 +
This is because the value of Ku 2 ) is inferior to those of the media A and C.

【0036】図4(c)は、媒体Eの磁化状態を示す。
この場合、磁化遷移33の揺らぎが大きく、また記録磁
区内部に大きな不規則磁区が無数に形成されている。こ
れは下地層表面の起伏が大きく、この上に形成した磁性
膜の磁気異方性の分散、Ku2/(Ku1+Ku2)が大
きくなったためである。図4(d)は、媒体Fの磁化状
態を示す。この場合、媒体Eに比べて磁化遷移33の揺
らぎや不規則磁区の径は小さいが、無数の不規則磁区が
観察された。これは薄い単層の下地層の上に直接磁性膜
を形成したため、磁性膜の結晶配向や粒径の制御が十分
ではなく、その結果磁性膜の磁気異方性の分散が大きく
なったためである。
FIG. 4C shows the magnetization state of the medium E.
In this case, the fluctuation of the magnetization transition 33 is large, and a large number of large irregular magnetic domains are formed inside the recording magnetic domain. This is because the unevenness of the surface of the underlayer is large, and the magnetic anisotropy of the magnetic film formed thereon, that is, Ku 2 / (Ku 1 + Ku 2 ), is large. FIG. 4D shows the magnetization state of the medium F. In this case, although the fluctuation of the magnetization transition 33 and the diameter of the irregular magnetic domain were smaller than those of the medium E, countless irregular magnetic domains were observed. This is because the magnetic film was formed directly on the thin single-layer underlayer, and the crystal orientation and grain size of the magnetic film were not sufficiently controlled, resulting in a large dispersion of the magnetic anisotropy of the magnetic film. .

【0037】[0037]

【発明の効果】本発明によると、媒体ノイズの原因とな
る記録磁区の磁化遷移の揺らぎ構造が小さく、かつ磁性
膜に作用する反磁界による不規則磁区の形成を大幅に低
減でき、その結果、媒体ノイズの低減と記録磁化の安定
性を確保することができ、高密度の磁気記録に好適な垂
直磁気記録媒体およびこれを用いた磁気記録装置を実現
することができる。
According to the present invention, the fluctuation structure of the magnetization transition of the recording magnetic domain which causes the medium noise is small, and the formation of the irregular magnetic domain due to the demagnetizing field acting on the magnetic film can be greatly reduced. It is possible to reduce the medium noise and ensure the stability of the recording magnetization, and to realize a perpendicular magnetic recording medium suitable for high-density magnetic recording and a magnetic recording apparatus using the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁気記録装置の説明図。FIG. 1 is an explanatory diagram of a magnetic recording device.

【図2】垂直磁気記録媒体の断面模式図であり、(a)
は本発明による磁気記録媒体A,B,C,Dおよび比較
用の媒体Eの断面模式図、(b)は比較用媒体Fの断面
模式図。
FIGS. 2A and 2B are schematic cross-sectional views of a perpendicular magnetic recording medium, wherein FIG.
FIG. 1 is a schematic cross-sectional view of magnetic recording media A, B, C, D according to the present invention and a comparative medium E, and FIG.

【図3】本発明による磁気記録媒体と比較用媒体のノイ
ズおよび不規則磁区の比較図。
FIG. 3 is a comparison diagram of noise and irregular magnetic domains of a magnetic recording medium according to the present invention and a comparative medium.

【図4】本発明による磁気記録媒体と比較用媒体の記録
磁化状態の比較図であり、(a)は本発明による磁気記
録媒体Aおよび媒体Cの記録磁化状態の説明図、(b)
は本発明による磁気記録媒体Bおよび媒体Dの記録磁化
状態の説明図、(c)は比較用媒体Eの記録磁化状態の
説明図、(d)は比較用媒体Fの記録磁化状態の説明
図。
4A and 4B are comparison diagrams of recording magnetization states of a magnetic recording medium according to the present invention and a comparative medium, wherein FIG. 4A is an explanatory diagram of recording magnetization states of a magnetic recording medium A and a medium C according to the present invention, and FIG.
FIG. 3 is an explanatory view of the recording magnetization state of the magnetic recording media B and D according to the present invention, FIG. 3C is an explanatory view of the recording magnetization state of the comparative medium E, and FIG. .

【符号の説明】[Explanation of symbols]

1…磁気ディスク、2…磁気ヘッド、3…サスペンジョ
ン、4…アクチュエータ、5…ボイスコイルモータ、6
…記録再生回路、7…位置決め回路、8…インターフェ
ース制御回路、11…基板、12…第1下地層、13…
第2下地層、14…磁性膜、15…保護膜、31…直流
消去領域、32…記録磁区、33…磁化遷移、34…不
規則磁区
DESCRIPTION OF SYMBOLS 1 ... Magnetic disk, 2 ... Magnetic head, 3 ... Suspension, 4 ... Actuator, 5 ... Voice coil motor, 6
... Recording / reproducing circuit, 7 ... Positioning circuit, 8 ... Interface control circuit, 11 ... Substrate, 12 ... First underlayer, 13 ...
Second underlayer, 14: magnetic film, 15: protective film, 31: DC erase area, 32: recording magnetic domain, 33: magnetization transition, 34: irregular magnetic domain

フロントページの続き (72)発明者 伊藤 研也 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (72)発明者 二本 正昭 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (56)参考文献 特開 平7−176027(JP,A) (58)調査した分野(Int.Cl.6,DB名) G11B 5/66 G11B 5/85 Continuing from the front page (72) Inventor Kenya Ito 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo Hitachi Central Research Laboratory, Inc. (56) References JP-A-7-176027 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G11B 5/66 G11B 5/85

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に形成した磁性膜の磁化容易軸が
基板面に略垂直方向に配向し、前記磁性膜の磁化容易方
向の磁化−磁界曲線において、飽和磁化Msと反磁界補
正を加えない残留磁化MrがMr/Ms≧0.8の関係
を有する垂直磁気記録媒体であって、前記磁性膜は、該
磁性膜の結晶磁気異方性エネルギーEがE≒Ku1si
2θ+Ku2sin4θ+Ku3sin6θ(Ku1,Ku
2,Ku3:一軸異方性定数、θ:自発磁化と磁性膜の容
易軸とのなす角)で近似され、該磁性膜の磁化がほぼ飽
和した条件で測定した単位体積当たりの磁気トルクLが
L≒−(Ku1+Ku2−2πMs2)sin2θ+(K
2sin4θ)/2で記述される一軸磁気異方性を有
する薄膜であり、前記Ku1,Ku2はKu2/(Ku1
Ku2)≦0.3なる関係を満たすことを特徴とする垂
直磁気記録媒体。
1. An easy axis of magnetization of a magnetic film formed on a substrate is oriented in a direction substantially perpendicular to the surface of the substrate, and a magnetization-magnetic field curve of the magnetic film in the easy direction of magnetization is subjected to saturation magnetization Ms and demagnetizing field correction. The perpendicular magnetic recording medium wherein the residual magnetization Mr has a relationship of Mr / Ms ≧ 0.8, wherein the magnetic film has a crystal magnetic anisotropy energy E of E ≒ Ku 1 si.
n 2 θ + Ku 2 sin 4 θ + Ku 3 sin 6 θ (Ku 1 , Ku
2 , Ku 3 : uniaxial anisotropy constant, θ: angle between spontaneous magnetization and the easy axis of the magnetic film), and the magnetic torque per unit volume measured under the condition that the magnetization of the magnetic film is almost saturated. Is L ≒ − (Ku 1 + Ku 2 −2πMs 2 ) sin 2θ + (K
u 2 sin 4θ) / 2, which is a thin film having uniaxial magnetic anisotropy, wherein Ku 1 and Ku 2 are Ku 2 / (Ku 1 +
A perpendicular magnetic recording medium satisfying the relationship: Ku 2 ) ≦ 0.3.
【請求項2】 請求項1に記載の垂直磁気記録媒体にお
いて、前記基板上に少なくとも1層の構造制御用の下地
層を形成し、前記下地層の上に磁性膜を形成してなるこ
とを特徴とする垂直磁気記録媒体。
2. The perpendicular magnetic recording medium according to claim 1, wherein at least one underlayer for structure control is formed on the substrate, and a magnetic film is formed on the underlayer. Characteristic perpendicular magnetic recording medium.
【請求項3】 請求項2に記載の垂直磁気記録媒体にお
いて、前記基板上に形成した前記下地層および前記磁性
膜がエピタキシャル的に成長した膜であることを特徴と
する垂直磁気記録媒体。
3. The perpendicular magnetic recording medium according to claim 2, wherein the underlayer and the magnetic film formed on the substrate are films grown epitaxially.
【請求項4】 請求項1〜3のいずれか1項記載の垂直
磁気記録媒体において、前記磁性膜は、Coを主成分と
し、これにCr,Fe,Mo,V,Ta,Pt,Si,
B,Ir,W,Hf,Nb,Ru,Niおよび希土類元
素の中から選ばれる少なくとも1種類の元素を含んでな
る材料からなり、六方稠密構造を有することを特徴とす
る垂直磁気記録媒体。
4. The perpendicular magnetic recording medium according to claim 1, wherein the magnetic film contains Co as a main component, and further contains Cr, Fe, Mo, V, Ta, Pt, Si,
A perpendicular magnetic recording medium comprising a material containing at least one element selected from the group consisting of B, Ir, W, Hf, Nb, Ru, Ni and a rare earth element, and having a hexagonal close-packed structure.
【請求項5】 請求項1〜4項に記載の垂直磁気記録媒
体において、前記磁性膜の垂直磁気異方性定数Ku(K
u=Ku1+Ku2)と飽和磁化Msの間にKu>2πM
2の関係が成り立つことを特徴とする垂直磁気記録媒
体。
5. The perpendicular magnetic recording medium according to claim 1, wherein the perpendicular magnetic anisotropy constant Ku (K
Ku = 2πM between u = Ku 1 + Ku 2 ) and the saturation magnetization Ms.
A perpendicular magnetic recording medium, wherein the relationship of s 2 is satisfied.
【請求項6】 請求項1〜5のいずれか1項記載の垂直
磁気記録媒体において、前記一軸異方性定数Ku1およ
びKu2は、前記磁性膜に対する印加磁界Hを変化して
測定された磁気トルク曲線をフーリエ解析し、前記のフ
ーリエ解析より求められたKu1,Ku2と印加磁界の逆
数(1/H)の関係において、1/H=0に外挿して得
られた値であることを特徴とする垂直磁気記録媒体。
6. The perpendicular magnetic recording medium according to claim 1, wherein the uniaxial anisotropy constants Ku 1 and Ku 2 are measured by changing a magnetic field H applied to the magnetic film. This is a value obtained by performing a Fourier analysis on the magnetic torque curve and extrapolating 1 / H = 0 to the relationship between Ku 1 and Ku 2 obtained by the Fourier analysis and the reciprocal (1 / H) of the applied magnetic field. A perpendicular magnetic recording medium characterized by the above-mentioned.
【請求項7】 請求項1〜6のいずれか1項記載の垂直
磁気記録媒体と、前記垂直磁気記録媒体を保持するため
の保持具と、前記垂直磁気記録媒体に対して情報を記録
再生するための磁気ヘッドと、前記磁気ヘッドと前記垂
直磁気記録媒体との相対位置を移動するための移動手段
と、これらを制御するための制御手段とを含むことを特
徴とする磁気記録装置。
7. The perpendicular magnetic recording medium according to claim 1, a holder for holding the perpendicular magnetic recording medium, and recording / reproducing information on / from the perpendicular magnetic recording medium. A magnetic recording apparatus comprising: a magnetic head for moving the magnetic head, a moving unit for moving a relative position between the magnetic head and the perpendicular magnetic recording medium, and a control unit for controlling these.
【請求項8】 基板上に下地層をエピタキシャル的に成
長させる工程と、前記下地層の上に、Coを主成分と
し、これにCr,Fe,Mo,V,Ta,Pt,Si,
B,Ir,W,Hf,Nb,Ru,Niおよび希土類元
素の中から選ばれる少なくとも1種類の元素を含んだ材
料からなり、磁化容易軸が前記基板面に略垂直方向に配
向した六方稠密構造を有する磁性膜であって、該磁性膜
は、磁化容易方向の磁化−磁界曲線において、飽和磁化
Msと反磁界補正を加えない残留磁化MrがMr/Ms
≧0.8の関係を有し、該磁性膜の結晶磁気異方性エネ
ルギーEがE≒Ku1sin2θ+Ku2sin4θ+Ku
3sin6θ(Ku1,Ku2,Ku3:一軸異方性定数、
θ:自発磁化と磁性膜の容易軸とのなす角)で近似さ
れ、該磁性膜の磁化がほぼ飽和した条件で測定した単位
体積当たりの磁気トルクLがL≒−(Ku1+Ku2−2
πMs2)sin2θ+(Ku2sin4θ)/2で記述
される一軸磁気異方性を有し、前記一軸異方性定数Ku
1,Ku2、垂直磁気異方性定数Ku(Ku=Ku1+K
2)および飽和磁化Msが、Ku2/(Ku1+Ku2
≦0.3、および、Ku>2πMs2を同時に満足する
磁性膜をエピタキシャル的に成長させる工程とを含むこ
とを特徴とする垂直磁気記録媒体の製造方法。
8. A step of epitaxially growing a base layer on a substrate; and forming a main component of Co on the base layer by adding Cr, Fe, Mo, V, Ta, Pt, Si,
A hexagonal close-packed structure made of a material containing at least one element selected from the group consisting of B, Ir, W, Hf, Nb, Ru, Ni, and a rare earth element, wherein an easy axis of magnetization is oriented substantially perpendicular to the substrate surface. The magnetic film has a saturation magnetization Ms and a residual magnetization Mr without demagnetization correction of Mr / Ms in a magnetization-magnetic field curve in an easy magnetization direction.
≧ 0.8, and the crystal magnetic anisotropy energy E of the magnetic film is E ≒ Ku 1 sin 2 θ + Ku 2 sin 4 θ + Ku
3 sin 6 θ (Ku 1 , Ku 2 , Ku 3 : uniaxial anisotropy constant,
θ: the angle between the spontaneous magnetization and the easy axis of the magnetic film), and the magnetic torque L per unit volume measured under the condition that the magnetization of the magnetic film is almost saturated is L ≒ − (Ku 1 + Ku 2 −2).
πMs 2 ) sin2θ + (Ku 2 sin4θ) / 2, and has the uniaxial anisotropy constant Ku.
1 , Ku 2 , the perpendicular magnetic anisotropy constant Ku (Ku = Ku 1 + K
u 2 ) and the saturation magnetization Ms are Ku 2 / (Ku 1 + Ku 2 )
Epitaxial growth of a magnetic film that satisfies ≦ 0.3 and Ku> 2πMs 2 at the same time.
JP34917497A 1997-12-18 1997-12-18 Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device Expired - Fee Related JP2967070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34917497A JP2967070B2 (en) 1997-12-18 1997-12-18 Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34917497A JP2967070B2 (en) 1997-12-18 1997-12-18 Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device

Publications (2)

Publication Number Publication Date
JPH11185236A JPH11185236A (en) 1999-07-09
JP2967070B2 true JP2967070B2 (en) 1999-10-25

Family

ID=18401978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34917497A Expired - Fee Related JP2967070B2 (en) 1997-12-18 1997-12-18 Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device

Country Status (1)

Country Link
JP (1) JP2967070B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507153B2 (en) * 2001-08-28 2010-07-21 昭和電工株式会社 Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP4600388B2 (en) * 2006-11-28 2010-12-15 Tdk株式会社 Magnetic recording medium, recording / reproducing apparatus, and stamper
WO2008149813A1 (en) * 2007-05-31 2008-12-11 Hoya Corporation Process for producing vertical magnetic recording medium

Also Published As

Publication number Publication date
JPH11185236A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
JP5397926B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
US8277961B2 (en) Magnetic recording medium
US8133601B2 (en) Magnetic recording medium and magnetic recording and reproducing apparatus
JPWO2002039433A1 (en) Magnetic recording medium and magnetic recording device
JP3612087B2 (en) Magnetic recording medium
JP3919047B2 (en) Perpendicular magnetic recording medium
US20020018920A1 (en) Magnetic recording medium and magnetic recording apparatus
JP3011918B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP4552668B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPH11102510A (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JP2967070B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
JP2000327491A (en) Inorganic compound thin film, magnetic recording medium and magnetic recorder
JP3217012B2 (en) Magnetic recording media
JP3921052B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2993927B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2010027110A (en) Perpendicular magnetic recording medium and magnetic recording/reproduction apparatus
JP2002074639A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2000315311A (en) Vertical magnetic recording medium and magnetic storage device
JP3445537B2 (en) Perpendicular magnetic recording medium and magnetic storage device
US20110116189A1 (en) Magnetic recording medium and magnetic recording/reproducing device
JP3138255B2 (en) Magnetic recording medium and magnetic storage device
JP3653039B2 (en) Magnetic recording / reproducing device
US7115329B1 (en) Magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees