JPH08129738A - Magnetic recording medium and magnetic recording-reproducing device - Google Patents

Magnetic recording medium and magnetic recording-reproducing device

Info

Publication number
JPH08129738A
JPH08129738A JP26903694A JP26903694A JPH08129738A JP H08129738 A JPH08129738 A JP H08129738A JP 26903694 A JP26903694 A JP 26903694A JP 26903694 A JP26903694 A JP 26903694A JP H08129738 A JPH08129738 A JP H08129738A
Authority
JP
Japan
Prior art keywords
magnetic
film
recording medium
magnetic film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26903694A
Other languages
Japanese (ja)
Inventor
Yukio Honda
幸雄 本多
Nobuyuki Inaba
信幸 稲葉
Yoshiyuki Hirayama
義幸 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26903694A priority Critical patent/JPH08129738A/en
Publication of JPH08129738A publication Critical patent/JPH08129738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE: To obtain a magnetic recording medium having superior low noise characteristics at the time of magnetic recording and reproduction and fit for ultrahigh density recording. CONSTITUTION: When an underlayer 2, a magnetic film 3 and a protective layer 4 are laminated on a nonmagnetic substrate 1 to obtain a magnetic recording medium, an ion implanted region 5 is formed in at least one among the underlayer 2, the magnetic film 3 and the protective layer 4. The region 5 is formed in concentric circles or in a spiral shape or it is radially formed from the center toward the periphery. The magnetic film 3 may be formed as a multilayered film consisting of magnetic layers laminated with a nonmagnetic middle layer in-between and an ion implanted region may be formed in the entire surface of at least one layer of the multilayered film. The crystal orientation or magnetic anisotropy of the magnetic film or the interaction between magnetic particles can be controlled without forming a texture groove on the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度磁気記録に好適
な磁気記録媒体及びこれを用いた磁気記録装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium suitable for high density magnetic recording and a magnetic recording apparatus using the same.

【0002】[0002]

【従来の技術】現在、実用的に用いられている磁気記録
方式は、磁気記録媒体面に平行に、かつ磁極のN極とN
極、S極とS極を互いに突き合わせる方向に磁化して磁
気記録を行う面内磁気記録方式である。この方式で記録
密度を上げるには、記録時の反磁界の影響を減少するた
めに記録磁性膜の膜厚を薄くし、保磁力を約3kOe
(キロエルステッド)以上に増大する必要があるが、こ
れにより将来の数Gb/in2 オーダの高密度磁気記録
の有力な記録方式の一つと考えられている。
2. Description of the Related Art Currently, the magnetic recording method practically used is parallel to the surface of a magnetic recording medium and has N and N poles.
This is an in-plane magnetic recording method in which magnetic recording is performed by magnetizing the poles, the S poles, and the S poles in a direction to abut each other. In order to increase the recording density with this method, the thickness of the recording magnetic film is reduced to reduce the influence of the demagnetizing field during recording, and the coercive force is set to about 3 kOe.
(Kilo-Oersted), but it is considered to be one of the promising recording methods for high density magnetic recording of the order of several Gb / in 2 in the future.

【0003】また、垂直磁気記録方式は、記録媒体面に
垂直方向に、かつ隣合う記録ビットが互いに反平行にな
るように磁区を形成する記録方式であり、高密度記録に
際して磁区の境界での反磁界が小さいため、先鋭な記録
磁区が形成され、高密度磁気記録の有力な手段の一つで
ある。面内磁気記録や垂直磁気記録用媒体の磁性膜とし
ては、Co−Cr,Co−Ni,Co−V,Co−Mo
などのCo基合金薄膜が用いられ、中でもCo−Crを
主成分とする合金にTa,Pt,Mo,Ru,Re,F
e,Rh,Oなどを添加した合金が用いられている。こ
れらCo基合金は六方稠密構造(hcp構造)をもち、
この結晶のc軸、<001>方向に磁化容易軸がある。
Further, the perpendicular magnetic recording system is a recording system in which magnetic domains are formed in a direction perpendicular to the surface of a recording medium and so that adjacent recording bits are antiparallel to each other. Since the demagnetizing field is small, sharp recording magnetic domains are formed, which is one of the promising means for high density magnetic recording. Co-Cr, Co-Ni, Co-V, Co-Mo are used as magnetic films for in-plane magnetic recording and perpendicular magnetic recording media.
Co-based alloy thin films such as Ta, Pt, Mo, Ru, Re, F are used for alloys containing Co-Cr as a main component.
An alloy containing e, Rh, O, etc. is used. These Co-based alloys have a hexagonal close-packed structure (hcp structure),
The easy axis of magnetization is in the <001> direction of the c-axis of this crystal.

【0004】面内磁気記録媒体は、NiP被覆したAl
基板、ガラス基板、あるいはポリイミド、ポリエチレン
テレフタレートなどのプラスチックフィルムなどの非磁
性基板上に前述のCo合金薄膜を形成して用いられる。
面内記録では、前記Co合金磁性結晶のc軸を基板面内
に高配向する必要があり、この目的から前記基板上に体
心立方(bcc)格子構造のCr等の下地層を形成し、
この上に上記Co合金磁性薄膜を形成する方法が提案さ
れている。また磁性薄膜に磁気的な配向性を与えるため
に、基板上にテクスチャ溝を設け、この溝に沿った方向
と、これに直交する方向で異なる磁気異方性を付加する
方法も知られている。
The longitudinal magnetic recording medium is made of Al coated with NiP.
The Co alloy thin film is formed on a non-magnetic substrate such as a substrate, a glass substrate, or a plastic film such as polyimide or polyethylene terephthalate.
In the in-plane recording, it is necessary to highly orient the c-axis of the Co alloy magnetic crystal in the plane of the substrate. For this purpose, an underlayer such as Cr having a body-centered cubic (bcc) lattice structure is formed on the substrate,
A method of forming the above Co alloy magnetic thin film on this has been proposed. A method is also known in which a textured groove is provided on a substrate in order to impart magnetic orientation to a magnetic thin film, and different magnetic anisotropy is added in a direction along the groove and a direction orthogonal to the direction. .

【0005】垂直磁気記録媒体は、NiP被覆したAl
基板、ガラス基板、あるいはポリイミド、ポリエチレン
テレフタレートなどのプラスチックフィルムなどの非磁
性基板上に前述のCo合金薄膜を形成して用いられる。
垂直記録では、磁気記録したときの記録密度や再生出
力、再生ノイズ特性などの磁気記録特性を向上するため
に、前記Co合金磁性結晶のc軸を基板面に垂直に高配
向する必要がある。この目的から前記基板上にTiなど
のhcp構造の下地層、又はSi,Geなどの非晶質下
地層を形成し、この上に上記Co合金磁性薄膜を形成す
る方法が提案されている。また再生感度を上げるため
に、前記Co合金磁性薄膜の下部にパーマロイなどの軟
磁性材料薄膜を設ける方法が IEEE Trans. Magnetics,
MAG-15, 1456(1979)の“複合異方性膜による垂直磁気記
録(Perpendicular Magnetic Recording with Composit
e Anisotropy Film)”と題する論文に掲載されている。
The perpendicular magnetic recording medium is composed of Al coated with NiP.
The Co alloy thin film is formed on a non-magnetic substrate such as a substrate, a glass substrate, or a plastic film such as polyimide or polyethylene terephthalate.
In perpendicular recording, the c-axis of the Co alloy magnetic crystal needs to be highly oriented perpendicular to the substrate surface in order to improve magnetic recording characteristics such as recording density, reproduction output and reproduction noise characteristics when magnetically recording. For this purpose, a method has been proposed in which an underlayer having an hcp structure such as Ti or an amorphous underlayer such as Si or Ge is formed on the substrate and the Co alloy magnetic thin film is formed on the underlayer. In addition, a method of providing a soft magnetic material thin film such as permalloy under the Co alloy magnetic thin film in order to increase the reproduction sensitivity is IEEE Trans. Magnetics,
MAG-15, 1456 (1979) “Perpendicular Magnetic Recording with Composit
e Anisotropy Film) ”.

【0006】再生信号における媒体ノイズは記録磁区の
境界(磁化遷移領域)の構造や記録ビット内部の磁区構
造と密接な関係があり、これには磁性膜を構成する粒子
間の磁気的な相互作用の強さや磁気異方性の分散などが
関係している。媒体ノイズの低減のために従来試みられ
ている方法としては、(1)CoCr系合金中の非磁性
Crを結晶粒界に偏折させて磁性粒子間の磁気的相互作
用を小さくする方法、(2)スパッタリングガスの圧力
を制御して構造制御用の下地層や磁性膜を形態的に孤立
させる方法などがある。さらに、磁性膜の平面方向だけ
でなく、膜厚方向においても磁性粒子間の相互作用を小
さくする方法、例えばCoCr系合金磁性膜の間にCr
のような非磁性中間膜を設ける方法が提案されている。
The medium noise in the reproduced signal is closely related to the structure of the boundary (magnetization transition region) of the recording magnetic domain and the magnetic domain structure inside the recording bit, and this is due to the magnetic interaction between particles forming the magnetic film. Strength and dispersion of magnetic anisotropy are related. As a conventional method for reducing the medium noise, (1) a method in which the non-magnetic Cr in the CoCr-based alloy is biased to the grain boundaries to reduce the magnetic interaction between the magnetic particles, ( 2) There is a method of controlling the pressure of the sputtering gas to morphologically isolate the underlayer and the magnetic film for structure control. Further, a method of reducing the interaction between the magnetic grains not only in the plane direction of the magnetic film but also in the film thickness direction, for example, Cr between CoCr-based alloy magnetic films
A method of providing such a non-magnetic intermediate film has been proposed.

【0007】[0007]

【発明が解決しようとする課題】数Gb/in2 以上の
超高密度磁気記録装置では、媒体と磁気ヘッド間のスペ
ーシングは数十nm以下に接近する。このため、従来の
ごとくテクスチャ溝を設けた基板では表面の平滑性が悪
く、媒体と磁気ヘッド間のスペーシングを十分接近する
ことが困難になり、動作中に媒体と磁気ヘッドが衝突し
て破壊の原因となる。
In an ultra-high density magnetic recording device of several Gb / in 2 or more, the spacing between the medium and the magnetic head approaches tens of nm or less. As a result, the substrate with textured grooves as in the past has poor surface smoothness, making it difficult to bring the spacing between the medium and the magnetic head close enough, and the medium and magnetic head collide during operation and are destroyed. Cause of.

【0008】また、媒体ノイズ低減のために単に磁性膜
の間に非磁性中間膜を設けた場合、同じ厚さの単層磁性
膜に比べて保磁力が低下し、超高密度記録に必要とされ
る2kOe以上の高保磁力の実現が困難である。本発明
の第1の目的は、上述の従来技術の欠点を解消し、基板
にテクスチャ溝を形成することなく磁性膜に磁気的な異
方性を付与する方法を提供することにある。本発明の第
2の目的は、基板上に形成する磁性膜の結晶配向や磁気
異方性、あるいは磁性粒子間の相互作用を制御すること
によって、磁気記録再生したとき優れた低ノイズ特性を
有し超高密度記録に好適な磁気記録媒体を提供すること
にある。
Further, when a non-magnetic intermediate film is simply provided between the magnetic films to reduce the medium noise, the coercive force is lower than that of a single-layer magnetic film of the same thickness, which is necessary for super high density recording. It is difficult to realize a high coercive force of 2 kOe or more. A first object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a method for imparting magnetic anisotropy to a magnetic film without forming textured grooves in a substrate. A second object of the present invention is to provide excellent low noise characteristics during magnetic recording and reproduction by controlling the crystal orientation and magnetic anisotropy of the magnetic film formed on the substrate, or the interaction between magnetic particles. Another object of the present invention is to provide a magnetic recording medium suitable for ultra high density recording.

【0009】[0009]

【課題を解決するための手段】本発明においては、非磁
性基板上に磁性膜の構造制御用の下地層を形成し、この
上に1層以上の磁性膜、保護層を形成してなる磁気記録
媒体において、基板、下地層、及び磁性膜のうち少なく
とも1つの選択された領域にイオン打ち込み領域を設け
ることにより前記第1の目的を達成する。選択されたイ
オン打ち込み領域は同心円状、らせん状、又は円形基板
の中心から外周に向かって放射状に設定するのが好都合
である。
According to the present invention, a magnetic layer is formed by forming an underlayer for controlling the structure of a magnetic film on a non-magnetic substrate, and forming one or more magnetic films and a protective layer on the underlayer. In the recording medium, the first object is achieved by providing an ion-implanted region in at least one selected region of the substrate, the underlayer and the magnetic film. The selected ion-implanted regions are conveniently set concentrically, spirally, or radially from the center of the substrate to the periphery.

【0010】また、本発明においては、非磁性基板上に
下地層、非磁性層を介した複数の磁性膜及び保護層を積
層してなる磁気記録媒体において、最上層以外の少なく
とも1層の磁性膜の全面にイオン打込み領域を形成する
ことにより前記第2の目的を達成する。全面にイオン打
ち込み領域を形成した磁性膜以外の磁性膜の選択された
領域、たとえば同心円状、らせん状、あるいは中心から
外周部に向かう放射状にイオン打ち込み領域を形成して
もよい。
Further, according to the present invention, in a magnetic recording medium comprising a non-magnetic substrate, a base layer, a plurality of magnetic films with the non-magnetic layer interposed therebetween, and a protective layer, at least one magnetic layer other than the uppermost layer is magnetic. The second object is achieved by forming an ion-implanted region on the entire surface of the film. The ion-implanted region may be formed in a selected region of the magnetic film other than the magnetic film having the ion-implanted region formed on the entire surface, for example, concentrically, spirally, or radially from the center toward the outer peripheral portion.

【0011】イオン打ち込み領域に打ち込むイオンは、
Cr,Mo,V,Ta,Pt,Si,B,Ir,W,H
f,Nb,Ru,Ti,O,Ar,Kr,Xe元素の中
から選ばれる少なくとも1種類以上の元素とすることが
でき、イオン打ち込み領域の厚さは1原子層以上、下地
層又は磁性膜の厚さの範囲内で任意に設定できる。磁性
膜は、Coを主成分とし、これにCr,Fe,Mo,
V,Ta,Pt,Si,B,Ir,W,Hf,Nb,T
i,Ni,CoO及び希土類元素の中から選ばれる少な
くとも1種類の元素又は化合物を含む材料からなる六方
稠密構造を有する。前記磁性膜は構造制御用の下地層の
上にエピタキシャル的に成長した薄膜である。磁性膜を
多層に積層する場合、各磁性膜は同一組成とすることも
異なる組成とすることもできる。
Ions to be implanted in the ion implantation region are
Cr, Mo, V, Ta, Pt, Si, B, Ir, W, H
At least one element selected from the elements f, Nb, Ru, Ti, O, Ar, Kr, and Xe can be used, and the thickness of the ion implantation region is one atomic layer or more, the underlayer or the magnetic film. It can be set arbitrarily within the range of thickness. The magnetic film contains Co as a main component, and Cr, Fe, Mo,
V, Ta, Pt, Si, B, Ir, W, Hf, Nb, T
It has a hexagonal close-packed structure made of a material containing at least one element or compound selected from i, Ni, CoO and rare earth elements. The magnetic film is a thin film epitaxially grown on a base layer for structure control. When the magnetic films are laminated in multiple layers, the magnetic films may have the same composition or different compositions.

【0012】磁性膜の磁化容易軸は、基板面に対して平
行もしくは垂直とし、あるいは多層磁性膜の場合には第
1層と第2層以降の磁性膜の磁化容易軸が基板面に対し
ていずれも平行、もしくは平行な膜と垂直膜の組合せで
構成する。磁化容易軸の向きは磁性膜の下層に設ける下
地層又は非磁性層を選択することによって任意に制御で
きる。さらに前記多層磁性膜において、第1層と第2層
以降の磁性膜の間にイオン打ち込み領域を設けることに
より、第1層と第2層以降の磁性膜の磁化容易軸を独立
に制御することができる。
The easy axis of magnetization of the magnetic film is parallel or perpendicular to the substrate surface, or in the case of a multi-layer magnetic film, the easy axis of magnetization of the magnetic film of the first layer and the second and subsequent layers is relative to the substrate surface. All of them are composed of parallel films or a combination of parallel films and vertical films. The direction of the easy axis of magnetization can be arbitrarily controlled by selecting an underlayer or a nonmagnetic layer provided below the magnetic film. Further, in the multilayer magnetic film, by providing an ion-implanted region between the magnetic films of the first layer and the second layer and thereafter, the easy axes of magnetization of the magnetic films of the first layer and the second layer and thereafter can be independently controlled. You can

【0013】構造制御用の下地層及び非磁性層は、この
上に形成する磁性膜と結晶格子の整合性の良い材料を選
択する。例えばCr,V,W,Mo,Pt,Pd,S
i,Ge,Bから選ばれた少なくとも1種類を含む面心
立方構造、体心立方構造もしくは非晶質構造の材料、あ
るいはCo,Ti,Ru,Hf,Ta,Cr,V,W,
Mo,Pt,Pd,Si,Ge,Bから選ばれた少なく
とも1種類を含む六方稠密格子構造、又は非晶質構造の
材料を選択する。薄膜の形成には、真空蒸着法、高周波
スパッタリング法、イオンビームスパッタリング法ある
いは電子サイクロトロン共鳴スパッタリング法などの物
理蒸着法を用いることができる。
For the underlayer and the non-magnetic layer for controlling the structure, a material having a good lattice matching with the magnetic film formed thereon is selected. For example, Cr, V, W, Mo, Pt, Pd, S
a material having a face-centered cubic structure, a body-centered cubic structure, or an amorphous structure containing at least one selected from i, Ge, and B, or Co, Ti, Ru, Hf, Ta, Cr, V, W,
A material having a hexagonal close-packed lattice structure containing at least one selected from Mo, Pt, Pd, Si, Ge, and B or an amorphous structure is selected. A physical vapor deposition method such as a vacuum vapor deposition method, a high frequency sputtering method, an ion beam sputtering method or an electron cyclotron resonance sputtering method can be used for forming the thin film.

【0014】[0014]

【作用】六方稠密格子(hcp)構造のCo基合金はそ
のc軸方向に大きな結晶磁気異方性を有し、面内磁気記
録媒体はこのc軸を基板面内に配向させ、また垂直磁気
記録媒体はc軸を基板面に垂直配向させる。構造制御用
の下地層や非磁性層はこのc軸を高配向させるために用
いる。例えばCr合金などの体心立方格子(bcc)構
造の下地層は、この上に形成するCo基合金磁性膜結晶
の面内配向性や結晶粒径を制御する作用をし、またTi
合金などのhcp構造の下地層は、この上に形成するC
o基合金磁性膜結晶の垂直配向性や結晶粒径を制御する
作用をする。また、構造制御用の下地層や非磁性層は、
合金薄膜を用いることにより、単一の材料を用いた薄膜
の場合に比べて結晶粒径を小さくでき、従ってこの上に
形成する磁性膜の結晶粒径も小さくでき、記録密度や再
生ノイズなどの磁気記録特性を向上できる。
The Co-based alloy having a hexagonal close-packed lattice (hcp) structure has a large crystal magnetic anisotropy in the c-axis direction, and the in-plane magnetic recording medium has the c-axis oriented in the plane of the substrate and also has a perpendicular magnetic field. The recording medium has the c-axis oriented vertically to the substrate surface. The underlayer and the non-magnetic layer for structure control are used to highly orient the c-axis. For example, an underlayer having a body-centered cubic lattice (bcc) structure such as a Cr alloy functions to control the in-plane orientation and the crystal grain size of the Co-based alloy magnetic film crystal formed on the underlayer.
An underlayer having an hcp structure such as an alloy is formed on this C layer.
It acts to control the vertical orientation and crystal grain size of the o-based alloy magnetic film crystal. The underlayer and non-magnetic layer for structure control are
By using an alloy thin film, the crystal grain size can be made smaller than in the case of a thin film using a single material, and therefore the crystal grain size of the magnetic film formed on this can also be made smaller, and recording density, reproduction noise, etc. Magnetic recording characteristics can be improved.

【0015】イオン打ち込みは、打ち込まれた領域に局
所的なストレスを付与する作用をする。従って、基板や
下地層あるいは磁性膜のうちの選択された領域に、円周
方向又は放射状にイオン打ち込み領域を設けることによ
り、磁性膜に円周方向又は半径方向に磁気的な異方性を
与えることができる。磁性薄膜は下層に設けた下地層又
は非磁性層の上にエピタキシャル的に成長し、Co基合
金磁性膜のc軸は下層の下地層又は非磁性層の材料の性
質を反映して面内又は垂直方向に配向する。
The ion implantation serves to apply local stress to the implanted region. Therefore, by providing a circumferentially or radially ion-implanted region in a selected region of the substrate, underlayer or magnetic film, magnetic anisotropy is imparted to the magnetic film in the circumferential or radial direction. be able to. The magnetic thin film grows epitaxially on the underlying layer or non-magnetic layer provided in the lower layer, and the c-axis of the Co-based alloy magnetic film reflects the property of the material of the underlying underlying layer or non-magnetic layer to be in-plane or Orient vertically.

【0016】前記磁性膜は、非磁性層を介して多層に積
層して用いることができ、これにより磁性粒子間の相互
作用の強さを面内方向に加えて、膜厚方向にも制御する
機能を付与でき再生ノイズを低減することができる。さ
らに第1層目の磁性膜の上に非磁性層を介して第2層目
以降の磁性膜を形成するに際して、前記第1層目の磁性
膜の全面に前記イオン打ち込み領域を形成し、この上に
非磁性層を介して第2層目以降の磁性膜を形成すること
ができる。このイオン打ち込み領域の厚さは単原子層以
上、10nm以下が望ましく、イオン打ち込み領域の形
成によりこの上に積層する第2層目以降の磁性膜の結晶
の面内配向を第1層目の磁性膜の配向と変化して形成す
ることができる。これにより第1層目の磁性膜と第2層
目以降の磁性膜の静磁気的な結合を弱めることができ、
単に非磁性層を介して第1磁性膜から第2磁性膜以降を
エピタキシャル的に成長させた多層磁性膜媒体に比べて
再生ノイズを低減する効果はさらに大きくなる。
The magnetic film can be used by being laminated in multiple layers with a non-magnetic layer interposed therebetween, whereby the strength of interaction between magnetic particles is controlled in the in-plane direction as well as in the film thickness direction. A function can be added and reproduction noise can be reduced. Further, when the second and subsequent magnetic films are formed on the first magnetic film via the non-magnetic layer, the ion-implanted region is formed on the entire surface of the first magnetic film. The second and subsequent magnetic films can be formed over the non-magnetic layer. The thickness of the ion-implanted region is preferably a monoatomic layer or more and 10 nm or less, and the in-plane orientation of the crystals of the magnetic films of the second and subsequent layers stacked on the ion-implanted region is formed by the formation of the ion-implanted region. It can be formed by changing the orientation of the film. This can weaken the magnetostatic coupling between the magnetic film of the first layer and the magnetic films of the second and subsequent layers,
The effect of reducing the reproduction noise is further enhanced as compared with the multilayer magnetic film medium in which the first magnetic film and the second magnetic film and thereafter are epitaxially grown through the non-magnetic layer.

【0017】また、面内配向させた下層の磁性層の全面
にイオンを打ち込み、その上に結晶配向制御用の非磁性
層を介して磁性層を積層することにより、2層の磁性層
の結晶配向性を独立に制御することができる。この方法
によると、下層の磁性層が面内配向し、その上の磁性層
が垂直配向した、高再生出力化に適した多層磁性膜を容
易に作製することが可能となる。
Further, by implanting ions on the entire surface of the lower magnetic layer oriented in-plane, and laminating the magnetic layer on it through a non-magnetic layer for controlling crystal orientation, the crystals of the two magnetic layers are formed. The orientation can be controlled independently. According to this method, it is possible to easily manufacture a multilayer magnetic film in which the lower magnetic layer is in-plane oriented and the magnetic layer thereabove is vertically oriented and which is suitable for high reproduction output.

【0018】[0018]

【実施例】以下に本発明の実施例について、図面を参照
しながら詳細に説明する。図において同一符号を付した
部分は、同じ機能を有する部分を表す。 〔実施例1〕洗浄したガラス基板1をスパッタリング装
置に設置し、2×10-7Torrの真空度まで排気し
た。続いて基板を250℃に加熱して、磁性膜の構造制
御用として厚さ50nmの下地層2を形成した。ここで
はCrを下地層2として用いた例で説明するが、Crを
主成分としてこれにV,W,Mo,Pt,Pd,Si,
Ge,B,Ru,Hf,Ir,Re,Ti,Ta,Zr
などの元素を0〜20at%の範囲で添加して用いるこ
とも可能である。X線回折法で測定したところ、上記下
地層2は体心立方格子(bcc)構造を有し、その成長
方位は<110>もしくは<100>方位であった。こ
の下地層の上に磁性膜3を形成し、さらにその上に保護
層4として膜厚10nmのカーボン膜を形成した。
Embodiments of the present invention will be described in detail below with reference to the drawings. In the figure, the parts with the same reference numerals represent the parts having the same function. [Example 1] The washed glass substrate 1 was placed in a sputtering apparatus and evacuated to a vacuum degree of 2 x 10 -7 Torr. Subsequently, the substrate was heated to 250 ° C. to form an underlayer 2 having a thickness of 50 nm for controlling the structure of the magnetic film. Here, an example in which Cr is used as the underlayer 2 will be described. However, with Cr as the main component, V, W, Mo, Pt, Pd, Si,
Ge, B, Ru, Hf, Ir, Re, Ti, Ta, Zr
It is also possible to add and use such elements as 0 to 20 at%. When measured by an X-ray diffraction method, the underlayer 2 had a body-centered cubic lattice (bcc) structure, and its growth orientation was <110> or <100> orientation. A magnetic film 3 was formed on this underlayer, and a carbon film having a film thickness of 10 nm was further formed thereon as a protective layer 4.

【0019】本実施例では、イオン打ち込みの効果を調
べるために、次の4種類の媒体を作成した。1つは、図
1(a)に断面略図を示すように、基板1の表面に図2
のごとく同心円状にイオン打ち込み領域5を形成し、こ
の上に下地層2、磁性膜3、及び保護層4の順に形成し
た媒体Aである。2つめの媒体は、図1(b)に断面略
図を示すように、基板1上に下地層2を形成した後、下
地層2の表面に図2のごとく同心円状のイオン打ち込み
領域5を形成し、この上に磁性膜3、及び保護層4の順
に形成した媒体Bである。3つめの媒体は、図1(c)
に断面略図を示すように、基板1上に下地層2、磁性膜
3を形成した後、磁性膜3の表面に図2のごとく同心円
状にイオン打ち込み領域5を形成し、この上に保護層4
を形成した媒体Cである。比較用として、基板、下地層
及び磁性膜のいずれにもイオン打ち込み領域を設けない
媒体を作成した。
In this example, the following four types of media were prepared in order to investigate the effect of ion implantation. First, as shown in the schematic sectional view in FIG.
As described above, the medium A is formed by concentrically forming the ion-implanted regions 5 and then forming the underlying layer 2, the magnetic film 3, and the protective layer 4 in this order. As for the second medium, as shown in the schematic sectional view of FIG. 1B, after forming the underlayer 2 on the substrate 1, a concentric ion implantation region 5 is formed on the surface of the underlayer 2 as shown in FIG. Then, the magnetic film 3 and the protective layer 4 are formed in this order on the medium B. The third medium is shown in FIG.
As shown in the schematic sectional view in FIG. 2, after forming the underlayer 2 and the magnetic film 3 on the substrate 1, the ion implantation region 5 is concentrically formed on the surface of the magnetic film 3 as shown in FIG. Four
It is the medium C which formed. For comparison, a medium having no ion-implanted region on any of the substrate, the underlayer, and the magnetic film was prepared.

【0020】図2に示したイオン打ち込み領域は、線幅
0.1〜1μmに収束したイオンビームを上記円板状の
媒体の所定の位置に照射し、これと共に媒体を中心軸の
回りに回転することによって形成できる。半径方向に隣
接する同心円状のイオン打ち込み領域間の間隔は0.2
〜2μmとした。イオン打ち込み領域の深さや打ち込み
量は、イオンビーム照射時の加速電圧やビーム電流、も
しくは円板の回転速度を調整することによって制御可能
である。本実施例では、加速電圧100V〜30kV、
ビーム電流1μA〜10mAの範囲で実験を行った。加
速電圧が500V以下ではイオン打ち込みの効果が少な
く、また20kV以上では試料表面が加工され、凹凸が
形成される場合があった。
In the ion implantation area shown in FIG. 2, an ion beam converged to a line width of 0.1 to 1 μm is irradiated to a predetermined position of the disk-shaped medium, and the medium is rotated around the central axis. Can be formed. The interval between the concentric ion implantation regions adjacent to each other in the radial direction is 0.2.
˜2 μm. The depth of the ion-implanted region and the amount of implantation can be controlled by adjusting the acceleration voltage and the beam current at the time of ion beam irradiation, or the rotation speed of the disk. In this embodiment, the acceleration voltage is 100V to 30kV,
The experiment was conducted in the range of the beam current of 1 μA to 10 mA. When the accelerating voltage was 500 V or less, the effect of ion implantation was small, and when the accelerating voltage was 20 kV or more, the sample surface was processed and unevenness was sometimes formed.

【0021】表1に、打ち込みイオンとしてBイオンを
用い、イオンビームの加速電圧10kV、ビーム電流5
0μAの条件でイオン打ち込み領域を形成した時の各媒
体の円周方向の保磁力Hc(θ)と半径方向の保磁力H
c(R)で示す。磁性膜3は、Coを主成分とし、これ
にCr,Fe,Mo,V,Ta,Pt,Si,B,I
r,W,Hf,Nb,Ti,Ni,CoO及び希土類元
素の中の少なくとも1つを添加した材料を用いることが
でき、ここではCoCr16Ta6 ,CoCr20Pt12
及びCoCr20Pt12Ta6 を用い、膜厚20nmとし
た例を示す。
In Table 1, B ions are used as the implanted ions, the acceleration voltage of the ion beam is 10 kV, and the beam current is 5
Coercive force Hc (θ) in the circumferential direction and coercive force H in the radial direction of each medium when the ion-implanted region is formed under the condition of 0 μA
It is shown by c (R). The magnetic film 3 contains Co as a main component, and contains Cr, Fe, Mo, V, Ta, Pt, Si, B, and I.
A material to which at least one of r, W, Hf, Nb, Ti, Ni, CoO, and a rare earth element is added can be used. Here, CoCr 16 Ta 6 , CoCr 20 Pt 12 ,
And CoCr 20 Pt 12 Ta 6 are used and the film thickness is 20 nm.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、基板、下地層又
は磁性膜に円周方向に沿ってイオン打ち込み領域を形成
することにより、基板上に形成した下地層や磁性膜結晶
に歪を与えることができ、その結果半径方向の保磁力に
比べて、円周方向の保磁力が大きい、いわゆる磁気的な
異方性をもつ面内磁気記録媒体を得ることができた。打
ち込みイオン種としては、B以外にも、Cr,Mo,
V,Ta,Pt,Si,B,Ir,W,Hf,Nb,R
u,Ti,Ga,O,Ar,Kr,Xeなどの元素、又
はこれらのうちの2種以上の元素を同時に用いることが
でき、いずれの場合でも同様の効果が得られる。打ち込
みイオン種として2種以上の元素を用いる場合には、ガ
ス状のイオン種を混合して収束イオンビームを作成して
用いる。また、イオン打ち込み領域は、らせん状として
も同様の効果を得ることができる。
As is clear from Table 1, by forming ion-implanted regions in the substrate, the underlayer or the magnetic film along the circumferential direction, the underlayer or the magnetic film crystal formed on the substrate is strained. As a result, it was possible to obtain an in-plane magnetic recording medium having so-called magnetic anisotropy, in which the coercive force in the circumferential direction was larger than the coercive force in the radial direction. Other than B, Cr, Mo,
V, Ta, Pt, Si, B, Ir, W, Hf, Nb, R
Elements such as u, Ti, Ga, O, Ar, Kr, and Xe, or two or more of these elements can be used at the same time, and the same effect can be obtained in any case. When two or more elements are used as the implanting ion species, a gaseous ion species is mixed to create a focused ion beam for use. Further, the same effect can be obtained even if the ion-implanted region has a spiral shape.

【0024】〔実施例2〕実施例1と同様のスパッタリ
ング装置を用いて、円板状の媒体に図3のごとく中心か
ら外周に向かって放射状にイオン打ち込み領域5を形成
した媒体を作成した。イオン打ち込みの効果を調べるた
めに、次の4種類の媒体を作成した。1つは、図1
(a)に断面略図を示すように、基板1の表面に図3の
ごとく放射状にイオン打ち込み領域5を形成し、その上
に下地層2、磁性膜3、及び保護層4の順に形成した媒
体AAである。2つめの媒体は、図1(b)に断面略図
を示すように、基板1上に下地層2を形成した後、下地
層2の表面に図3のごとく放射状にイオン打ち込み領域
5を形成し、その上に磁性膜3及び保護層4を形成した
媒体BBである。3つめの媒体は、図1(c)に断面略
図を示すように、基板1上に下地層2、磁性膜3を形成
した後、磁性膜3の表面に図3のごとく放射状にイオン
打ち込み領域5を形成し、この上に保護層4を形成した
媒体CCである。比較用として、基板、下地層及び磁性
膜のいずれにもイオン打ち込み領域を設けない媒体を作
成した。
Example 2 Using the same sputtering apparatus as in Example 1, a disk-shaped medium was prepared in which ion-implanted regions 5 were radially formed from the center toward the outer periphery as shown in FIG. In order to investigate the effect of ion implantation, the following four types of media were created. One is Figure 1
As shown in FIG. 3A, a medium in which ion implantation regions 5 are radially formed on the surface of a substrate 1 and an underlayer 2, a magnetic film 3 and a protective layer 4 are formed in this order on the region 5. It is AA. As for the second medium, as shown in the schematic sectional view of FIG. 1B, after forming the underlayer 2 on the substrate 1, ion implantation regions 5 are formed radially on the surface of the underlayer 2 as shown in FIG. , The medium BB on which the magnetic film 3 and the protective layer 4 are formed. As for the third medium, as shown in the schematic sectional view in FIG. 1C, after forming the underlayer 2 and the magnetic film 3 on the substrate 1, the surface of the magnetic film 3 is radially ion-implanted as shown in FIG. 5 is a medium CC on which the protective layer 4 is formed. For comparison, a medium having no ion-implanted region on any of the substrate, the underlayer, and the magnetic film was prepared.

【0025】図3に示したイオン打ち込み領域5は、線
幅0.1〜1μmに収束したイオンビームを上記円板状
の媒体の所定の位置に照射し、イオンビームを半径方向
に走査すると共に前記円板の回転中心を軸に円板を回す
ことによって形成できる。また複数のイオンビームを同
時に照射することも可能である。イオン打ち込み領域5
の間隔は、イオンビームの線幅と送り間隔をイオンビー
ムの線幅の1倍以上の範囲で任意に設定することによっ
て制御できる。
In the ion implantation area 5 shown in FIG. 3, an ion beam converged to a line width of 0.1 to 1 μm is applied to a predetermined position on the disk-shaped medium to scan the ion beam in the radial direction. It can be formed by rotating the disc around the rotation center of the disc. It is also possible to simultaneously irradiate with a plurality of ion beams. Ion implantation area 5
Can be controlled by arbitrarily setting the line width of the ion beam and the feed interval within a range of 1 time or more of the line width of the ion beam.

【0026】表2は、一例として基板1に超平滑NiP
被覆Al基板を用い、下地層2としてCr−15at%
Tiを50nm厚、磁性膜3として実施例1と同様のC
oCr16Ta6 ,CoCr20Pt12,及びCoCr20
12Ta6 を膜厚20nm形成し、イオン種としてCa
を用いた場合の各媒体の磁気特性を示す。
Table 2 shows, by way of example, super smooth NiP on the substrate 1.
Using a coated Al substrate, Cr-15 at% as the underlayer 2
Ti is 50 nm thick, and the same C as in Example 1 was used as the magnetic film 3.
oCr 16 Ta 6 , CoCr 20 Pt 12 , and CoCr 20 P
t 12 Ta 6 is formed to a film thickness of 20 nm, and Ca is used as an ion species.
The magnetic characteristics of each medium in the case of using are shown.

【0027】[0027]

【表2】 [Table 2]

【0028】表2から明らかなように、基板又、下地
層、又は磁性膜の半径方向に放射状にイオン打ち込み領
域を形成することにより、基板上に形成した下地層や磁
性膜結晶に歪を与えることができ、その結果円周方向の
保磁力に比べて、半径方向の保磁力が大きい、いわゆる
磁気的な異方性をもつ面内磁気記録媒体を得ることがで
きた。
As is clear from Table 2, by forming radially ion-implanted regions in the radial direction of the substrate, the underlayer, or the magnetic film, strain is applied to the underlayer and the magnetic film crystal formed on the substrate. As a result, an in-plane magnetic recording medium having so-called magnetic anisotropy, which has a larger coercive force in the radial direction than the coercive force in the circumferential direction, can be obtained.

【0029】〔実施例3〕実施例1と同様のスパッタリ
ング装置を用いて、図4(a)に示すように、非磁性層
を介して多層に積層した磁性膜を有する媒体Dを作製し
た。媒体Dの作製に当たっては、超平滑処理したNiP
被覆Al基板1の上に、磁性膜の構造制御用の下地層2
としてCr−15at%Ti合金下地層2を膜厚50n
m形成した。X線回折法で測定した結果、この下地層2
は、bcc構造を有し、(100)面が基板面に平行に
配向していた。この下地層2の表面に深さ約5nmのイ
オン打ち込み領域5を、図2のごとく同心円状に形成し
た。この下地層2の上に第1磁性膜31として膜厚15
nmのCoCr18Pt12合金膜を形成し、続いて下地層
と同じ組成のCr−15at%Ti合金膜からなる膜厚
2nmの非磁性層6を形成した。引き続いて、非磁性層
6の上に第2磁性膜32として第1磁性膜31と同じ組
成のCoCr18Pt12合金膜を膜厚15nm形成した。
第1、第2磁性膜及び非磁性層は、下地層上にエピタキ
シャル的に成長していた。さらに、この上に膜厚10n
mのカーボン保護層4を形成した。
Example 3 Using the same sputtering apparatus as in Example 1, as shown in FIG. 4A, a medium D having a magnetic film laminated in multiple layers with a non-magnetic layer interposed was produced. For the production of medium D, ultra-smoothed NiP
An underlying layer 2 for controlling the structure of the magnetic film is formed on the coated Al substrate 1.
As a Cr-15 at% Ti alloy underlayer 2 with a film thickness of 50 n
m formed. As a result of measurement by an X-ray diffraction method, this underlayer 2
Had a bcc structure, and the (100) plane was oriented parallel to the substrate surface. Ion-implanted regions 5 having a depth of about 5 nm were formed concentrically on the surface of the underlayer 2 as shown in FIG. A film thickness of 15 is formed as a first magnetic film 31 on the underlayer 2.
nm, a CoCr 18 Pt 12 alloy film having a thickness of 2 nm was formed, and subsequently, a nonmagnetic layer 6 having a film thickness of 2 nm and made of a Cr-15 at% Ti alloy film having the same composition as the underlayer was formed. Subsequently, a CoCr 18 Pt 12 alloy film having the same composition as that of the first magnetic film 31 was formed as the second magnetic film 32 on the non-magnetic layer 6 to a thickness of 15 nm.
The first and second magnetic films and the nonmagnetic layer were epitaxially grown on the underlayer. Further, a film thickness of 10n
m carbon protective layer 4 was formed.

【0030】比較のために、図4(b)のごとく、下地
層2の表面にイオン打ち込み領域を形成せず、非磁性層
6を介して磁性膜を2層積層した媒体Eを作製した。こ
の媒体は、下地層2、第1磁性膜31、非磁性層6、第
2磁性膜32、及び保護層4は材料組成、膜厚ともに同
図(a)と同じにした。第1、第2磁性膜及び非磁性層
は、下地層上にエピタキシャル的に成長していた。
For comparison, as shown in FIG. 4B, a medium E in which two layers of magnetic films were laminated with the non-magnetic layer 6 in between without forming an ion-implanted region on the surface of the underlayer 2 was produced. In this medium, the underlayer 2, the first magnetic film 31, the nonmagnetic layer 6, the second magnetic film 32, and the protective layer 4 have the same material composition and film thickness as in FIG. The first and second magnetic films and the nonmagnetic layer were epitaxially grown on the underlayer.

【0031】更に比較のために、超平滑処理したNiP
被覆Al基板1の上に、磁性膜の構造制御用の下地層2
としてCr−15at%Ti合金下地層2を膜厚50n
m形成し、この上に同図(a),(b)における第1磁
性膜と同じ組成のCoCr18Pt12合金膜からなる単一
層の磁性膜31を形成し、この上に膜厚10nmのカー
ボン保護層4を形成した媒体Fを作製した。磁性膜31
は、下地層2の上にエピタキシャル的に成長していた。
For further comparison, ultra-smoothed NiP is used.
An underlying layer 2 for controlling the structure of the magnetic film is formed on the coated Al substrate 1.
As a Cr-15 at% Ti alloy underlayer 2 with a film thickness of 50 n
m, and a single-layer magnetic film 31 made of a CoCr 18 Pt 12 alloy film having the same composition as that of the first magnetic film shown in FIGS. A medium F having the carbon protective layer 4 formed thereon was produced. Magnetic film 31
Were epitaxially grown on the underlayer 2.

【0032】表3に、上記3種類の媒体D,E,Fの保
磁力と、記録再生したときの再生ノイズの相対値比較を
線記録密度20kFCI(FCI:Flux Change per Inc
h)、100kFCI及び250kFCIについて行っ
た結果を示す。再生ノイズの相対値は、その値が小さい
程、媒体から発生するノイズが小さいことを示す。
Table 3 shows a comparison of the relative values of the coercive force of the above-mentioned three types of media D, E and F and the reproduction noise when recording / reproducing the linear recording density of 20 kFCI (FCI: Flux Change per Inc).
The results of h), 100 kFCI and 250 kFCI are shown. The smaller the relative value of the reproduction noise is, the smaller the noise generated from the medium is.

【0033】[0033]

【表3】 [Table 3]

【0034】表3から明らかなように、媒体の円周方向
にイオン打ち込み領域を設け、かつ磁性膜を非磁性層で
分割して多層に積層した媒体Dは、半径方向に比べて円
周方向の保磁力が大きい、いわゆる円周方向に磁気的な
異方性が付与され、また磁気記録再生特性におけるノイ
ズの値も他の比較媒体に比べて小さく、性能が改善され
た。
As is clear from Table 3, the medium D in which ion-implanted regions are provided in the circumferential direction of the medium and the magnetic film is divided by the non-magnetic layer to be laminated in multiple layers has a circumferential direction as compared with the radial direction. Has a large coercive force, that is, magnetic anisotropy is imparted in the so-called circumferential direction, and the noise value in the magnetic recording / reproducing characteristics is smaller than that of the other comparative media, resulting in improved performance.

【0035】ここでは磁性膜が2層の場合を例に説明し
たが、磁性膜を3層以上に多層化しても同様の効果が得
られた。また、非磁性層6としては、Cr,V,W,M
o,Pt,Pd,Si,Ge,Bから選ばれた少なくと
も1種類の材料を含む、bcc,fcc又は非晶質構造
の材料を用いても同様の効果を得ることができる。
Here, the case where the magnetic film has two layers has been described as an example, but the same effect can be obtained even when the magnetic film has three or more layers. The non-magnetic layer 6 is made of Cr, V, W, M.
The same effect can be obtained by using bcc, fcc or a material having an amorphous structure containing at least one material selected from o, Pt, Pd, Si, Ge and B.

【0036】〔実施例4〕実施例1と同様のスパッタリ
ング装置を用いて、図5(a)に断面略図を示す多層膜
構造の媒体Gを作製した。媒体Gの作製に当たっては、
ガラス基板1の上に膜厚50nmの構造制御用の下地層
2、膜厚15nmの第1磁性膜31を順次形成した。次
に、この第1磁性膜31の表面に逆スパッタ法によって
一様に数原子層のイオン照射層55を形成した。イオン
種は、Cr,Mo,V,Ta,Pt,Si,B,Ir,
W,Hf,Nb,Ru,Ti,O,Ar,Kr,Xeな
どを用いることができる。ここでは1keVに加速した
Arイオンを第1磁性膜31の表面全体に照射した。続
いてこのイオン照射層55の上に膜厚2nmの非磁性層
6、膜厚15nmの第2磁性膜32及び膜厚10nmの
カーボン保護層4を順次形成した。
[Embodiment 4] Using a sputtering apparatus similar to that of Embodiment 1, a medium G having a multilayer film structure whose cross-sectional schematic view is shown in FIG. In producing the medium G,
On the glass substrate 1, a structure controlling underlayer 2 having a film thickness of 50 nm and a first magnetic film 31 having a film thickness of 15 nm were sequentially formed. Next, an ion irradiation layer 55 of several atomic layers was uniformly formed on the surface of the first magnetic film 31 by the reverse sputtering method. Ion species are Cr, Mo, V, Ta, Pt, Si, B, Ir,
W, Hf, Nb, Ru, Ti, O, Ar, Kr, Xe or the like can be used. Here, the entire surface of the first magnetic film 31 was irradiated with Ar ions accelerated to 1 keV. Subsequently, a nonmagnetic layer 6 having a film thickness of 2 nm, a second magnetic film 32 having a film thickness of 15 nm, and a carbon protective layer 4 having a film thickness of 10 nm were sequentially formed on the ion irradiation layer 55.

【0037】ここでは、下地層2としてCr−10at
%V合金薄膜を、第1磁性膜31としてCoCr18Ta
6 合金薄膜を、第2磁性膜32としてCoCr20Pt12
合金薄膜を、さらに非磁性層6として下地層2と同じC
r−10at%V合金薄膜を用いた例により説明する。
この媒体Gの構造をX線回折法と透過電子顕微鏡により
調べた結果、第1磁性膜31は下地層2の上にエピタキ
シャル的に成長しており、また第2磁性膜32は非磁性
層6の上にエピタキシャル的に成長していることが確認
された。しかし、第1磁性膜31の磁性結晶と第2磁性
膜32の磁性結晶は、エピタキシャル的には成長してい
なかった。すなわち、第2磁性膜32の磁性結晶の磁化
容易軸は第1磁性膜31の磁性結晶の磁化容易軸に対し
て平行でかつ面内でランダムであり、いわゆる面内で等
方的であつた。
Here, Cr-10 at is used as the underlayer 2.
% V alloy thin film as the first magnetic film 31 of CoCr 18 Ta.
The 6 alloy thin film is used as the second magnetic film 32 for CoCr 20 Pt 12
The alloy thin film is further used as the non-magnetic layer 6 in the same C as the underlayer 2.
An example using a r-10 at% V alloy thin film will be described.
As a result of examining the structure of the medium G by an X-ray diffraction method and a transmission electron microscope, the first magnetic film 31 is epitaxially grown on the underlayer 2, and the second magnetic film 32 is the nonmagnetic layer 6. It was confirmed that the film was epitaxially grown on top of. However, the magnetic crystal of the first magnetic film 31 and the magnetic crystal of the second magnetic film 32 did not grow epitaxially. That is, the easy axis of magnetization of the magnetic crystal of the second magnetic film 32 is parallel to the easy axis of the magnetic crystal of the first magnetic film 31 and random in the plane, and is isotropic in the plane. .

【0038】比較用として、同様のスパッタリング装置
を用いて、図5(b)に断面略図を示すように、ガラス
基板1の上に膜厚50nmの構造制御用のCr−10a
t%V合金下地層2、膜厚15nmのCoCr18Ta6
合金薄膜からなる第1磁性膜31、膜厚2nmのCr−
10at%V合金非磁性層6、膜厚15nmのCoCr
20Pt12合金薄膜からなる第2磁性膜32及び膜厚10
nmのカーボン保護層4を順次形成した多層磁性膜構造
の媒体Hを作成した。この媒体HをX線回折法と透過電
子顕微鏡により調べた結果、第1磁性膜31、第2磁性
膜32は非磁性層6を介して下地層2の上にエピタキシ
ャル的に成長しており、さらに両磁性膜31,32の磁
化容易軸は面内で同一方向に揃っていた。表4に、前記
2種類の媒体G,Hの保磁力と、記録再生したときの再
生ノイズの相対値比較を線記録密度20kFCI、10
0kFCI及び250kFCIについて行った結果を示
す。
For comparison, a similar sputtering apparatus was used, and as shown in the schematic sectional view of FIG. 5 (b), Cr-10a for controlling the structure having a film thickness of 50 nm was formed on the glass substrate 1.
t% V alloy underlayer 2, 15 nm thick CoCr 18 Ta 6
First magnetic film 31 made of an alloy thin film, Cr-having a thickness of 2 nm
10 at% V alloy non-magnetic layer 6, 15 nm thick CoCr
20 Pt 12 alloy thin film second magnetic film 32 and film thickness 10
A medium H having a multilayer magnetic film structure in which a carbon protective layer 4 having a thickness of 10 nm was sequentially formed was prepared. As a result of examining the medium H by an X-ray diffraction method and a transmission electron microscope, the first magnetic film 31 and the second magnetic film 32 are epitaxially grown on the underlayer 2 via the nonmagnetic layer 6, Furthermore, the axes of easy magnetization of both magnetic films 31 and 32 are aligned in the same direction in the plane. Table 4 shows a comparison of the relative values of the coercive force of the two types of media G and H and the reproduction noise when recording / reproducing the linear recording density of 20 kFCI, 10
The results obtained for 0 kFCI and 250 kFCI are shown.

【0039】[0039]

【表4】 [Table 4]

【0040】表4から明らかなように、第1磁性膜と非
磁性層の間にイオン照射層を設け、かつ磁性膜を非磁性
層で分割して第1磁性膜と第2磁性膜の磁化容易軸を面
内で等方的に配向させ静磁気的な相互作用を磁性膜の膜
厚方向でも弱めるように多層に構成した媒体Gは、磁気
記録再生特性におけるノイズの値が比較媒体Hに比べて
小さく、性能が改善された。ここでは磁性膜が2層の場
合を例に説明したが、磁性膜を3層以上に多層化しても
同様の傾向があることを確認した。
As is clear from Table 4, the ion irradiation layer is provided between the first magnetic film and the non-magnetic layer, and the magnetic film is divided by the non-magnetic layer to magnetize the first magnetic film and the second magnetic film. The medium G having a multilayer structure in which the easy axis is isotropically oriented in the plane to weaken the magnetostatic interaction even in the film thickness direction of the magnetic film has a noise value in the magnetic recording / reproducing characteristics which is comparable to that of the comparative medium H. Smaller and improved performance. Here, the case where the magnetic film has two layers has been described as an example, but it has been confirmed that there is a similar tendency even when the magnetic film has three or more layers.

【0041】〔実施例5〕実施例4と同様のスパッタリ
ング装置を用いて、図6に断面略図を示す多層磁性膜構
造の媒体Iを作製した。媒体Iの作製に当たっては、ガ
ラス基板1の上にCr−10at%V合金薄膜からなる
膜厚50nmの構造制御用の下地層2を形成した。続い
て、この下地層の表面に収束したB(ボロン)イオンビ
ームを照射し、深さ約2nmのイオン打ち込み領域5
を、図2のごとく同心円状に形成した。この下地層上に
第1磁性膜31として膜厚15nmのCoCr18Ta6
合金薄膜を形成した。次に、この第1磁性膜31の表面
に逆スパッタ法によって一様に数原子層のイオン照射層
55を形成した。イオン種は、1keVに加速したAr
イオンを第1磁性膜31の表面全体に照射した。続いて
このイオン照射層55の上に膜厚2nmのCr−10a
t%V合金薄膜からなる非磁性層6、CoCr20Pt12
合金薄膜からなる膜厚15nmの第2磁性膜32及び膜
厚10nmのカーボン保護層4を順次形成した。
[Embodiment 5] Using a sputtering apparatus similar to that of Embodiment 4, a medium I having a multilayer magnetic film structure whose cross-sectional schematic view is shown in FIG. 6 was produced. In producing the medium I, the underlayer 2 for controlling the structure having a film thickness of 50 nm made of a Cr-10 at% V alloy thin film was formed on the glass substrate 1. Then, a focused B (boron) ion beam is applied to the surface of the underlayer to form an ion implantation region 5 having a depth of about 2 nm.
Were formed concentrically as shown in FIG. A 15 nm-thick CoCr 18 Ta 6 film having a thickness of 15 nm is formed on the underlayer as the first magnetic film 31.
An alloy thin film was formed. Next, an ion irradiation layer 55 of several atomic layers was uniformly formed on the surface of the first magnetic film 31 by the reverse sputtering method. The ion species is Ar accelerated to 1 keV.
The entire surface of the first magnetic film 31 was irradiated with ions. Then, Cr-10a having a film thickness of 2 nm is formed on the ion irradiation layer 55.
Non-magnetic layer 6 made of t% V alloy thin film, CoCr 20 Pt 12
A 15-nm-thick second magnetic film 32 made of an alloy thin film and a 10-nm-thick carbon protective layer 4 were sequentially formed.

【0042】比較のために、基板1、下地層2、第1磁
性膜31、第2磁性膜32、非磁性層6、及びイオン照
射層55の材料と膜厚等を同じに設定して、図5(a)
と同じ構成の媒体Jを作成した。表5に、前記2種類の
媒体I,J及び図5(b)に示した媒体Hの保磁力と、
記録再生したときの再生ノイズの相対値比較を線記録密
度20kFCI、100kFCI及び250kFCIに
ついて行った結果を示す。
For comparison, the materials and thicknesses of the substrate 1, the underlayer 2, the first magnetic film 31, the second magnetic film 32, the non-magnetic layer 6, and the ion irradiation layer 55 are set to be the same, Figure 5 (a)
A medium J having the same structure as that of was prepared. Table 5 shows the coercive force of the two types of mediums I and J and the medium H shown in FIG.
The results of relative value comparison of reproduction noise when recording and reproducing are shown for linear recording densities of 20 kFCI, 100 kFCI and 250 kFCI.

【0043】[0043]

【表5】 [Table 5]

【0044】表5から明らかなように、第1磁性膜と非
磁性層の間にイオン照射層を設け、かつ磁性膜を非磁性
層で分割して第1磁性膜と第2磁性膜の磁化容易軸を面
内で等方的に配向させ静磁気的な相互作用を磁性膜の膜
厚方向でも弱めるように多層に構成した媒体Jは、磁気
記録再生特性におけるノイズの値が他の比較媒体Hに比
べて小さく、性能が改善されている。さらに、媒体の円
周方向にイオン打ち込み領域を設け、かつ磁性膜をイオ
ン照射層と非磁性層で分割して多層に構成した媒体I
は、半径方向に比べて円周方向の保磁力が大きい、いわ
ゆる円周方向に磁気的な異方性が付与され、記録再生特
性等の性能改善の効果は明らかである。ここでは磁性膜
が2層の場合を例に説明したが、磁性膜を3層以上に多
層化しても同様の効果が得られることを確認した。
As is clear from Table 5, the ion irradiation layer is provided between the first magnetic film and the non-magnetic layer, and the magnetic film is divided by the non-magnetic layer to magnetize the first magnetic film and the second magnetic film. The medium J having a multilayer structure in which the easy axis is oriented isotropically in the plane and the magnetostatic interaction is weakened even in the film thickness direction of the magnetic film is a comparative medium having a noise value in the magnetic recording / reproducing characteristics. It is smaller than H and has improved performance. Further, the medium I is provided with an ion-implanted region in the circumferential direction of the medium, and the magnetic film is divided into an ion irradiation layer and a non-magnetic layer to form a multilayer structure.
Has a larger coercive force in the circumferential direction than in the radial direction, that is, magnetic anisotropy is imparted in the so-called circumferential direction, and the effect of improving performance such as recording / reproducing characteristics is clear. Here, the case where the magnetic film has two layers has been described as an example, but it has been confirmed that the same effect can be obtained even when the magnetic film has three or more layers.

【0045】〔実施例6〕実施例1と同様のスパッタリ
ング装置を用いて、図7(a)に断面略図を示す多層磁
性膜構造の媒体Kを作製した。媒体Kの作製に当たって
は、ガラス基板1の上に膜厚30nmの構造制御用の下
地層2、膜厚50nmの第1磁性膜33を順次形成し
た。下地層2にはhcp構造のTi−10at%Cr合
金薄膜を用いたが、Co,Ti,Ru,Hf,Ta,C
r,V,W,Mo,Pt,Pd,Si,Ge,Bから選
ばれた少なくとも1種類を含む六方稠密構造もしくは非
晶質構造の材料を用いることもできる。第1磁性膜33
としては、Coを主成分とするhcp構造のCo基合金
薄膜を用い、本実施例ではCoCr18Ta6 合金薄膜を
用いた。次に、この第1磁性膜33の表面に逆スパッタ
法によって一様に数原子層のイオン照射層55を形成し
た。イオン種には、Cr,Mo,V,Ta,Pt,S
i,B,Ir,W,Hf,Nb,Ru,Ti,O,A
r,Kr,Xeなどを用いることができる。ここでは
0.5keVに加速したKrイオンを第1磁性膜33の
表面全体に照射した。
[Embodiment 6] Using a sputtering apparatus similar to that of Embodiment 1, a medium K having a multilayer magnetic film structure whose cross-sectional schematic view is shown in FIG. 7A was produced. In producing the medium K, the structure controlling underlayer 2 having a film thickness of 30 nm and the first magnetic film 33 having a film thickness of 50 nm were sequentially formed on the glass substrate 1. A Ti-10 at% Cr alloy thin film having an hcp structure was used for the underlayer 2, but Co, Ti, Ru, Hf, Ta, C were used.
It is also possible to use a material having a hexagonal close-packed structure or an amorphous structure containing at least one selected from r, V, W, Mo, Pt, Pd, Si, Ge, and B. First magnetic film 33
As the thin film, a Co-based alloy thin film having an hcp structure containing Co as a main component was used, and a CoCr 18 Ta 6 alloy thin film was used in this example. Next, an ion irradiation layer 55 of several atomic layers was uniformly formed on the surface of the first magnetic film 33 by the reverse sputtering method. Ion species include Cr, Mo, V, Ta, Pt, S
i, B, Ir, W, Hf, Nb, Ru, Ti, O, A
r, Kr, Xe, etc. can be used. Here, the entire surface of the first magnetic film 33 was irradiated with Kr ions accelerated to 0.5 keV.

【0046】続いて、このイオン照射層55の上に膜厚
2nmの非磁性層6、膜厚50nmの第2磁性膜34及
び膜厚10nmのカーボン保護層4を順次形成した。非
磁性層6としては、Co,Ti,Ru,Hf,Ta,C
r,V,W,Mo,Pt,Pd,Si,Ge,Bから選
ばれた少なくとも1種類を含む六方稠密構造もしくは非
晶質構造の材料を用いる。ここでは、hcp構造のTi
−10at%Cr合金薄膜を用いた例により説明する。
第2磁性膜34は、第1磁性膜33と異なる組成の材料
を用いることができるが、ここでは第1磁性膜33と同
じCoCr18Ta6 合金薄膜を用いた例により説明す
る。
Subsequently, a nonmagnetic layer 6 having a film thickness of 2 nm, a second magnetic film 34 having a film thickness of 50 nm, and a carbon protective layer 4 having a film thickness of 10 nm were sequentially formed on the ion irradiation layer 55. As the non-magnetic layer 6, Co, Ti, Ru, Hf, Ta, C
A material having a hexagonal close-packed structure or an amorphous structure containing at least one selected from r, V, W, Mo, Pt, Pd, Si, Ge, and B is used. Here, Ti of hcp structure
An example using a -10 at% Cr alloy thin film will be described.
The second magnetic film 34 may be made of a material having a composition different from that of the first magnetic film 33. Here, an example using the same CoCr 18 Ta 6 alloy thin film as the first magnetic film 33 will be described.

【0047】X線回折法や媒体断面の透過電子顕微鏡観
察の結果、第1磁性膜33は下地層2の上に、第2磁性
膜34は非磁性層6の上にそれぞれエピタキシャル的に
成長しており、hcp構造の第1及び第2磁性膜の磁化
容易軸のc軸はそれぞれ基板面に垂直に配向していた。
またこの媒体薄膜の平面方向からの透過電子顕微鏡観察
の結果、第1磁性膜と第2磁性膜は、面内方向では独立
した結晶配向であった。
As a result of X-ray diffraction and transmission electron microscope observation of the medium cross section, the first magnetic film 33 was epitaxially grown on the underlayer 2, and the second magnetic film 34 was epitaxially grown on the nonmagnetic layer 6. Therefore, the c-axes of the easy axes of the first and second magnetic films having the hcp structure were oriented perpendicular to the substrate surface.
In addition, as a result of observing the medium thin film from the plane direction, the first magnetic film and the second magnetic film had independent crystal orientations in the in-plane direction.

【0048】比較のために、図7(b)のごとく、ガラ
ス基板1の上に膜厚30nmの構造制御用の下地層2、
膜厚50nmの第1磁性膜33、膜厚2nmの非磁性層
6、膜厚50nmの第2磁性膜34及び膜厚10nmの
カーボン保護層4を順次形成した多層磁性膜構造の媒体
Lを作製した。下地層、第1と第2磁性膜及び非磁性層
の材料組成は上記の媒体Kと同じにした。
For comparison, as shown in FIG. 7B, an underlayer 2 for controlling the structure having a thickness of 30 nm is formed on the glass substrate 1.
A medium L having a multilayer magnetic film structure in which a first magnetic film 33 having a film thickness of 50 nm, a nonmagnetic layer 6 having a film thickness of 2 nm, a second magnetic film 34 having a film thickness of 50 nm, and a carbon protective layer 4 having a film thickness of 10 nm are sequentially formed is manufactured. did. The material composition of the underlayer, the first and second magnetic films, and the nonmagnetic layer was the same as that of the medium K.

【0049】この媒体Lの構造をX線回折法や媒体断面
の透過電子顕微鏡観察により調べた結果、第1磁性膜3
3と第2磁性膜34は、非磁性層6を介して下地層2の
上にエピタキシャル的に成長しており、hcp構造の磁
性膜の磁化容易軸のc軸が基板面に垂直に配向してい
た。また、この媒体薄膜の平面方向からの透過電子顕微
鏡観察の結果、第1磁性膜33と第2磁性膜34は、面
内方向でも結晶軸は一致していることが確認された。
As a result of examining the structure of the medium L by X-ray diffraction and observing the cross section of the medium with a transmission electron microscope, the first magnetic film 3 is obtained.
3 and the second magnetic film 34 are epitaxially grown on the underlayer 2 via the non-magnetic layer 6, and the c-axis of the easy axis of magnetization of the magnetic film of the hcp structure is oriented perpendicular to the substrate surface. Was there. In addition, as a result of observing the thin film of the medium from the plane direction, it was confirmed that the first magnetic film 33 and the second magnetic film 34 had the same crystal axis even in the in-plane direction.

【0050】更に比較のために、図7(c)のごとく、
ガラス基板1の上に膜厚30nmの構造制御用の下地層
2を形成し、この上に膜厚100nmの磁性膜33及び
膜厚10nmのカーボン保護層4を順次形成した単層の
磁性膜からなる媒体Mを作製した。この媒体の下地層は
前記媒体Kの非磁性層と同じ材料を用い、磁性膜は、前
記媒体Kにおける第1磁性膜と同じCoCr18Ta6
金薄膜を用いた。
For further comparison, as shown in FIG.
A single-layer magnetic film in which a 30 nm-thickness underlayer 2 for structure control is formed on a glass substrate 1, and a 100 nm-thickness magnetic film 33 and a 10 nm-thickness carbon protective layer 4 are sequentially formed on the underlying layer 2. A medium M was prepared. The underlayer of this medium was made of the same material as the non-magnetic layer of the medium K, and the magnetic film was made of the same CoCr 18 Ta 6 alloy thin film as the first magnetic film of the medium K.

【0051】この媒体Mの構造をX線回折法や媒体断面
の透過電子顕微鏡観察により調べた結果、磁性膜33は
下地層2の上にエピタキシャル的に成長しており、hc
p構造の磁性膜33の磁化容易軸のc軸は基板面に垂直
に配向していた。表6に、上記3種類の媒体K,L,M
の膜面垂直方向の保磁力Hc(垂直)と、磁性粒子の平
均粒径、及び記録再生したときの再生ノイズの相対値比
較を線記録密度20kFCI、100kFCI及び25
0kFCIについて行った結果を示す。磁性粒子の平均
粒径は走査電子顕微鏡観察により求めた。
As a result of examining the structure of the medium M by an X-ray diffraction method or observing the cross section of the medium by a transmission electron microscope, the magnetic film 33 is epitaxially grown on the underlayer 2, and hc
The c axis of the easy magnetization axis of the magnetic film 33 having the p structure was oriented perpendicular to the substrate surface. Table 6 shows the above three types of media K, L, and M.
The relative values of the coercive force Hc (perpendicular) in the direction perpendicular to the film surface, the average particle diameter of the magnetic particles, and the reproduction noise when recording / reproducing were compared.
The results obtained for 0 kFCI are shown. The average particle size of the magnetic particles was determined by observation with a scanning electron microscope.

【0052】[0052]

【表6】 [Table 6]

【0053】表6から明らかなように、第1磁性膜と非
磁性層の間にイオン照射層を設け、かつ磁性膜を非磁性
層で分割して第1磁性膜と第2磁性膜の磁化容易軸を面
内で独立に配向させ静磁気的な相互作用を磁性膜の膜厚
方向でも弱めるように多層に構成した媒体Kは、磁性膜
を非磁性層で単に分割した多層膜媒体Lや単層磁性膜媒
体Mなどに比べて、磁気記録再生特性におけるノイズを
小さくできる。これは磁性粒子の平均粒径を小さくで
き、また磁化した時の磁区サイズを小さくできることに
起因すると考えられる。ここでは磁性膜が2層の場合を
例に説明したが、磁性膜を3層以上に多層化しても同様
の効果が得られた。
As is clear from Table 6, the ion irradiation layer is provided between the first magnetic film and the non-magnetic layer, and the magnetic film is divided by the non-magnetic layer to magnetize the first magnetic film and the second magnetic film. The medium K having a multilayer structure in which the easy axis is independently oriented in the plane and the magnetostatic interaction is weakened also in the film thickness direction of the magnetic film is a multilayer film medium L in which a magnetic film is simply divided by a non-magnetic layer. Noise in the magnetic recording / reproducing characteristics can be reduced as compared with the single-layer magnetic film medium M. It is considered that this is because the average particle size of the magnetic particles can be reduced and the magnetic domain size when magnetized can be reduced. Here, the case where the magnetic film has two layers has been described as an example, but the same effect can be obtained even when the magnetic film has three or more layers.

【0054】〔実施例7〕実施例1と同様のスパッタリ
ング装置を用いて、図8(a)に断面略図を示す多層磁
性膜構造の媒体Nを作製した。媒体Nの作製に当たって
は、ガラス基板1上に膜厚50nmの構造制御用の下地
層2、膜厚15nmの第1磁性膜31を順次形成した。
下地層2にはCr−15at%Ti合金下地層2を用い
た。この下地層はbcc構造を有し、(100)面が基
板面に平行に配向していた。第1磁性膜31としてCo
Cr18Ta6 合金薄膜を用いた。この磁性膜の磁化容易
軸は基板面に平行に配向していた。次に、この第1磁性
膜31の表面に一様に数原子層のイオン照射層55を形
成した。イオン種には、Cr,Mo,V,Ta,Pt,
Si,B,Ir,W,Hf,Nb,Ru,Ti,O,A
r,Kr,Xeなどを用いることができる。ここでは
0.5keVに加速したArイオンを第1磁性膜31の
表面全体に照射した。
[Embodiment 7] Using the same sputtering apparatus as in Embodiment 1, a medium N having a multi-layer magnetic film structure whose cross-sectional schematic view is shown in FIG. 8A was produced. In producing the medium N, the structure controlling underlayer 2 having a film thickness of 50 nm and the first magnetic film 31 having a film thickness of 15 nm were sequentially formed on the glass substrate 1.
The Cr-15 at% Ti alloy underlayer 2 was used as the underlayer 2. This underlayer had a bcc structure, and the (100) plane was oriented parallel to the substrate surface. Co as the first magnetic film 31
A Cr 18 Ta 6 alloy thin film was used. The easy axis of magnetization of this magnetic film was oriented parallel to the substrate surface. Next, the ion irradiation layer 55 of several atomic layers was formed uniformly on the surface of the first magnetic film 31. Ion species include Cr, Mo, V, Ta, Pt,
Si, B, Ir, W, Hf, Nb, Ru, Ti, O, A
r, Kr, Xe, etc. can be used. Here, the entire surface of the first magnetic film 31 was irradiated with Ar ions accelerated to 0.5 keV.

【0055】続いて、このイオン照射層55の上に膜厚
2nmの非磁性層6、膜厚70nmの第2磁性膜34及
び膜厚10nmのカーボン保護層4を順次形成した。非
磁性層6としては、Co,Ti,Ru,Hf,Ta,C
r,V,W,Mo,Pt,Pd,Si,Ge,Bから選
ばれた少なくとも1種類を含む六方稠密構造もしくは非
晶質構造の材料を用いる。ここでは、hcp構造のTi
−10at%Ru合金薄膜を用いた。第2磁性膜34に
は、CoCr18Pt12Ta5 合金膜を用いた。
Subsequently, a nonmagnetic layer 6 having a film thickness of 2 nm, a second magnetic film 34 having a film thickness of 70 nm, and a carbon protective layer 4 having a film thickness of 10 nm were successively formed on the ion irradiation layer 55. As the non-magnetic layer 6, Co, Ti, Ru, Hf, Ta, C
A material having a hexagonal close-packed structure or an amorphous structure containing at least one selected from r, V, W, Mo, Pt, Pd, Si, Ge, and B is used. Here, Ti of hcp structure
A -10 at% Ru alloy thin film was used. As the second magnetic film 34, a CoCr 18 Pt 12 Ta 5 alloy film was used.

【0056】X線回折法と薄膜断面の透過電子顕微鏡観
察で調べたところ、上記非磁性層6はhcp構造のc軸
が基板面に垂直方向に配向しており、前記第2磁性膜3
4は、この非磁性層の上にエピタキシャル的に成長して
いて、その磁化容易軸は膜面垂直方向に配向していた。
すなわち、この媒体Nは、第1磁性膜の磁化容易軸は基
板面に平行、第2磁性膜の磁化容易軸は基板面に垂直に
配向した多層膜構造からなっている。
When examined by X-ray diffractometry and a transmission electron microscope observation of the cross section of the thin film, the nonmagnetic layer 6 was found to have the c axis of the hcp structure oriented in the direction perpendicular to the substrate surface.
No. 4 was epitaxially grown on this nonmagnetic layer, and its easy axis of magnetization was oriented in the direction perpendicular to the film surface.
That is, the medium N has a multilayer film structure in which the easy axis of magnetization of the first magnetic film is oriented parallel to the substrate surface, and the easy axis of the second magnetic film is oriented perpendicular to the substrate surface.

【0057】比較のために、図8(b)のごとく、基板
1上にhcp構造のTi−10at%Ru合金薄膜から
なる膜厚50nmの下地層2を形成し、この上にCoC
18Ta6 合金薄膜からなる膜厚15nmの第1磁性膜
33、Ti−10at%Ru合金薄膜からなる膜厚2n
mの非磁性層6、CoCr18Pt12Ta5 合金薄膜から
なる膜厚膜厚70nmの第2磁性膜34及び膜厚10n
mのカーボン保護層4を順次形成した多層磁性膜構造の
媒体Oを作成した。この媒体Oは、第1磁性膜33及び
第2磁性膜34が非磁性層6を介して下地層2の上にエ
ピタキシャル的に成長しており、第1磁性膜33も第2
磁性膜34も磁化容易軸は膜面垂直方向に配向してい
た。
For comparison, as shown in FIG. 8B, a 50 nm-thick underlayer 2 made of a Ti-10 at% Ru alloy thin film having an hcp structure is formed on a substrate 1 and CoC is formed thereon.
The first magnetic film 33 having a film thickness of 15 nm made of an r 18 Ta 6 alloy thin film and the film thickness 2n made of a Ti-10 at% Ru alloy thin film.
m nonmagnetic layer 6, a second magnetic film 34 of CoCr 18 Pt 12 Ta 5 alloy thin film having a film thickness of 70 nm, and a film thickness of 10 n.
A medium O having a multilayer magnetic film structure in which the m carbon protective layer 4 was sequentially formed was prepared. In this medium O, the first magnetic film 33 and the second magnetic film 34 are epitaxially grown on the underlayer 2 via the non-magnetic layer 6, and the first magnetic film 33 is also the second magnetic film 33.
The easy axis of magnetization of the magnetic film 34 was also oriented in the direction perpendicular to the film surface.

【0058】さらに比較のために、図8(c)のごと
く、基板1上にhcp構造のTi−10at%Ru合金
薄膜からなる膜厚50nmの下地層2を形成し、この上
にCoCr18Ta6 合金薄膜からなる膜厚70nmの磁
性膜33、及び膜厚10nmのカーボン保護層4を順次
形成した単層磁性膜構造の媒体Pを作成した。この媒体
Pの磁性膜33は下地層2の上にエピタキシャル的に成
長しており、磁化容易軸は膜面垂直方向に配向してい
た。
For comparison, as shown in FIG. 8C, a 50 nm-thick underlayer 2 made of a Ti-10 at% Ru alloy thin film having an hcp structure is formed on a substrate 1 and CoCr 18 Ta is formed thereon. A medium P having a single-layer magnetic film structure in which a magnetic film 33 of a 6- alloy thin film having a film thickness of 70 nm and a carbon protective layer 4 having a film thickness of 10 nm were sequentially formed was prepared. The magnetic film 33 of the medium P was epitaxially grown on the underlayer 2, and the easy axis of magnetization was oriented in the direction perpendicular to the film surface.

【0059】表7に、上記の3種類の媒体N,O,Pの
膜面垂直方向の保磁力Hc(垂直)と、線記録密度10
0kFCIにおける再生出力(信号振幅の電圧にて相対
比較)、及び記録再生したときの再生ノイズの相対値比
較を線記録密度20kFCI、100kFCI及び25
0kFCIについて行った結果を示す。
Table 7 shows the coercive force Hc (perpendicular) of the above three types of media N, O and P in the direction perpendicular to the film surface and the linear recording density 10
The reproduction output at 0 kFCI (relative comparison by the voltage of the signal amplitude) and the relative value comparison of the reproduction noise at the time of recording and reproduction are compared with the linear recording density of 20 kFCI, 100 kFCI and 25.
The results obtained for 0 kFCI are shown.

【0060】[0060]

【表7】 [Table 7]

【0061】表7から明らかなように、第1磁性膜と非
磁性層の間にイオン照射層を設け、かつ磁性膜を非磁性
層で分割し、第1磁性膜の磁化容易軸を基板面内に配向
させ、第2磁性膜の磁化容易軸を膜面垂直方向に配向し
て多層に構成した媒体Nは、磁性膜を非磁性層で単に分
割した多層膜媒体Oや単層磁性膜媒体Pなどの比較媒体
に比べて、再生出力を大幅に増大でき、また磁化した時
の磁区サイズを他の比較媒体に比べて小さくできるた
め、磁気記録再生特性におけるノイズの値が他の比較媒
体に比べて小さく、性能改善の効果は明らかである。こ
こでは磁性膜が2層の場合を例に説明したが、磁性膜を
3層以上に多層化しても同様の効果が得られる。
As is clear from Table 7, the ion irradiation layer is provided between the first magnetic film and the nonmagnetic layer, the magnetic film is divided by the nonmagnetic layer, and the easy axis of magnetization of the first magnetic film is set to the substrate surface. The medium N in which the magnetic film is simply divided into non-magnetic layers is a multi-layer medium O or a single-layer magnetic film medium, in which the magnetic film is divided into non-magnetic layers. Compared with a comparative medium such as P, the reproduction output can be greatly increased, and the magnetic domain size when magnetized can be made smaller than other comparative media. Therefore, the noise value in the magnetic recording / reproducing characteristics is different from that of other comparative media. Compared to the above, the effect of performance improvement is clear. Here, the case where the magnetic film has two layers has been described as an example, but the same effect can be obtained even when the magnetic film has three or more layers.

【0062】〔実施例8〕図9に、実施例1から7の例
で説明した本発明による面内、及び垂直磁気記録媒体を
組み込んだ磁気記録再生装置の模式図を示す。磁気ディ
スク61は、モータにより回転する保持具により保持さ
れ、それぞれの各磁性膜に対応して情報の書き込み、読
み出しの磁気抵抗効果素子再生複合ヘッド62が配置さ
れている。この磁気抵抗効果素子再生複合ヘッド62の
磁気ディスク61に対する位置は、アクチュエータ63
とボイスコイルモータ64により制御する。さらにこれ
らを制御するために記録再生回路65、位置決め回路6
6、インターフェース制御回路67が設けられている。
[Embodiment 8] FIG. 9 shows a schematic view of a magnetic recording / reproducing apparatus incorporating the in-plane and perpendicular magnetic recording media according to the present invention described in the embodiments 1 to 7. The magnetic disk 61 is held by a holder rotated by a motor, and a magnetoresistive effect element reproducing composite head 62 for writing and reading information is arranged corresponding to each magnetic film. The position of the composite magnetoresistive element reproducing head 62 with respect to the magnetic disk 61 is determined by the actuator 63.
And the voice coil motor 64. Further, in order to control these, the recording / reproducing circuit 65 and the positioning circuit 6
6. An interface control circuit 67 is provided.

【0063】[0063]

【発明の効果】以上詳細に説明したごとく、本発明の磁
気記録媒体によれば、基板上、磁性膜の構造制御用下地
層上、磁性膜上のいずれかの選択された位置にイオン打
ち込み領域を形成し、また組成が同じもしくは異なる磁
性膜を多層に積層してなる面内、もしくは垂直磁気記録
膜を用いることにより、記録再生ノイズが小さい超高密
度磁気記録に好敵な磁気記録媒体と磁気記録再生装置を
提供でき、工業上の利用価値は極めて高い。
As described in detail above, according to the magnetic recording medium of the present invention, the ion-implanted region is formed at any selected position on the substrate, the underlayer for controlling the structure of the magnetic film, or the magnetic film. And a perpendicular magnetic recording film formed by laminating magnetic films having the same or different compositions in multiple layers, and by using a perpendicular magnetic recording film A magnetic recording / reproducing device can be provided, and its industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】イオン打ち込み領域を設けた磁気記録媒体の一
実施例の断面模式図。
FIG. 1 is a schematic sectional view of an example of a magnetic recording medium provided with an ion-implanted region.

【図2】イオン打ち込み領域形成法の一実施例の説明
図。
FIG. 2 is an explanatory view of an embodiment of an ion implantation area forming method.

【図3】イオン打ち込み領域形成法の他の実施例の説明
図。
FIG. 3 is an explanatory view of another embodiment of the ion implantation area forming method.

【図4】イオン打ち込み領域を設けた多層面内磁気記録
媒体の一実施例及び比較例の断面模式図。
FIG. 4 is a schematic cross-sectional view of an example and a comparative example of a multilayer in-plane magnetic recording medium provided with an ion-implanted region.

【図5】イオン打ち込み領域を設けた多層面内磁気記録
媒体の一実施例及び比較例の断面模式図。
FIG. 5 is a schematic cross-sectional view of an example and a comparative example of a multilayer in-plane magnetic recording medium provided with an ion-implanted region.

【図6】イオン打ち込み領域を設けた多層面内磁気記録
媒体の一実施例の断面模式図。
FIG. 6 is a schematic cross-sectional view of an example of a multilayer in-plane magnetic recording medium provided with an ion-implanted region.

【図7】イオン打ち込み領域を設けた多層垂直磁気記録
媒体の一実施例及び比較例の断面模式図。
FIG. 7 is a schematic cross-sectional view of an example and a comparative example of a multilayer perpendicular magnetic recording medium provided with an ion-implanted region.

【図8】イオン打ち込み領域を設けた多層垂直磁気記録
媒体の一実施例及び比較例の断面模式図。
FIG. 8 is a schematic cross-sectional view of an example and a comparative example of a multilayer perpendicular magnetic recording medium having an ion-implanted region.

【図9】磁気記録再生装置の模式図。FIG. 9 is a schematic diagram of a magnetic recording / reproducing device.

【符号の説明】[Explanation of symbols]

1…基板、2…下地層、3…磁性膜、4…保護層、5…
イオン打ち込み領域、6…非磁性層、31,33…第1
磁性膜、32,34…第2磁性膜、55…イオン照射
層、61…磁気ディスク、62…磁気抵抗効果素子再生
複合ヘッド、63…アクチュエータ、64…ボイスコイ
ルモータ、65…記録再生回路、66…位置決め回路、
67…インターフェース制御回路
1 ... Substrate, 2 ... Underlayer, 3 ... Magnetic film, 4 ... Protective layer, 5 ...
Ion-implanted region, 6 ... Nonmagnetic layer, 31, 33 ... First
Magnetic film, 32, 34 ... Second magnetic film, 55 ... Ion irradiation layer, 61 ... Magnetic disk, 62 ... Magnetoresistive element reproducing composite head, 63 ... Actuator, 64 ... Voice coil motor, 65 ... Recording / reproducing circuit, 66 ... positioning circuit,
67 ... Interface control circuit

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板上に下地層、磁性膜及び保護
層を積層してなる磁気記録媒体において、前記非磁性基
板、下地層又は磁性膜のうち少なくとも1つの選択され
た領域にイオン打込み領域を形成したことを特徴とする
磁気記録媒体。
1. A magnetic recording medium comprising a non-magnetic substrate, an underlayer, a magnetic film and a protective layer laminated on the non-magnetic substrate, and at least one selected region of the non-magnetic substrate, the underlayer or the magnetic film is ion-implanted. A magnetic recording medium having a region formed therein.
【請求項2】 非磁性基板上に下地層、非磁性層を介し
て複数層積層された磁性膜、及び保護層を積層してなる
磁気記録媒体において、前記非磁性基板、下地層又は複
数層積層された磁性膜中の個々の磁性膜のうち少なくと
も1つの選択された領域にイオン打込み領域を形成した
ことを特徴とする磁気記録媒体。
2. A magnetic recording medium comprising a non-magnetic substrate, a base layer, a magnetic film formed by laminating a plurality of layers via a non-magnetic layer, and a protective layer, wherein the non-magnetic substrate, the base layer or the plurality of layers are provided. A magnetic recording medium, wherein an ion-implanted region is formed in at least one selected region of the individual magnetic films in the stacked magnetic films.
【請求項3】 前記イオン打ち込み領域は同心円状又は
らせん状であることを特徴とする請求項1又は2記載の
磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the ion-implanted region has a concentric circular shape or a spiral shape.
【請求項4】 前記イオン打ち込み領域は中心から外周
部に向かう放射状であることを特徴とする請求項1又は
2記載の磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the ion-implanted region is radial from the center toward the outer peripheral portion.
【請求項5】 非磁性基板上に下地層、非磁性層を介し
た複数の磁性膜及び保護層を積層してなる磁気記録媒体
において、最上層以外の少なくとも1層の磁性膜の全面
にイオン打込み領域を形成したことを特徴とする磁気記
録媒体。
5. A magnetic recording medium comprising a non-magnetic substrate, a base layer, a plurality of magnetic films with a non-magnetic layer interposed therebetween, and a protective layer, wherein ions are formed on the entire surface of at least one magnetic film other than the uppermost layer. A magnetic recording medium having a drive region formed therein.
【請求項6】 前記全面にイオン打ち込み領域を形成し
た磁性膜以外の磁性膜の選択された領域にイオン打ち込
み領域を形成したことを特徴とする請求項5記載の磁気
記録媒体。
6. The magnetic recording medium according to claim 5, wherein an ion-implanted region is formed in a selected region of the magnetic film other than the magnetic film having the ion-implanted region formed on the entire surface.
【請求項7】 前記イオン打ち込み領域は同心円状又は
らせん状であることを特徴とする請求項6記載の磁気記
録媒体。
7. The magnetic recording medium according to claim 6, wherein the ion-implanted region has a concentric circular shape or a spiral shape.
【請求項8】 前記イオン打込み領域はCr,Mo,
V,Ta,Pt,Si,B,Ir,W,Hf,Nb,R
u,Ti,O,Ar,Kr,Xe元素の中から選ばれる
少なくとも1種類以上の元素を含んでなることを特徴と
する請求項1〜7のいずれか1項記載の磁気記録媒体。
8. The ion implantation region is made of Cr, Mo,
V, Ta, Pt, Si, B, Ir, W, Hf, Nb, R
8. The magnetic recording medium according to claim 1, comprising at least one element selected from the elements u, Ti, O, Ar, Kr, and Xe.
【請求項9】 前記磁性膜はCoを主成分とし、これに
Cr,Fe,Mo,V,Ta,Pt,Si,B,Ir,
W,Hf,Nb,Ti,Ni,CoO及び希土類元素の
中から選ばれる少なくとも1種類の元素又は化合物を含
む材料からなり、六方稠密構造を有することを特徴とす
る請求項1〜8のいずれか1項記載の磁気記録媒体。
9. The magnetic film contains Co as a main component, and Cr, Fe, Mo, V, Ta, Pt, Si, B, Ir,
9. A material containing at least one element or compound selected from W, Hf, Nb, Ti, Ni, CoO and rare earth elements, and having a hexagonal close-packed structure. The magnetic recording medium according to item 1.
【請求項10】 前記下地層及び非磁性層が面心立方構
造、体心立方構造、又は非晶質構造を有することを特徴
とする請求項2、5、6又は7記載の磁気記録媒体。
10. The magnetic recording medium according to claim 2, wherein the underlayer and the nonmagnetic layer have a face-centered cubic structure, a body-centered cubic structure, or an amorphous structure.
【請求項11】 前記下地層及び非磁性層がCr,V,
W,Mo,Pt,Pd,Si,Ge,Bから選ばれた少
なくとも1種類を含む材料、又はこれを含む合金材料か
らなることを特徴とする請求項2、5、6又は7記載の
磁気記録媒体。
11. The underlayer and the non-magnetic layer are made of Cr, V,
The magnetic recording according to claim 2, 5, 6, or 7, which is made of a material containing at least one selected from W, Mo, Pt, Pd, Si, Ge, and B, or an alloy material containing the same. Medium.
【請求項12】 前記下地層が面心立方構造、体心立方
構造又は非晶質構造を有し、前記非磁性層が六方稠密構
造又は非晶質構造をすることを特徴とする請求項2、
5、6又は7記載の磁気記録媒体。
12. The underlayer has a face-centered cubic structure, a body-centered cubic structure, or an amorphous structure, and the non-magnetic layer has a hexagonal close-packed structure or an amorphous structure. ,
The magnetic recording medium according to 5, 6, or 7.
【請求項13】 前記非磁性層がTi,Ru,Coを主
成分とし、これにCo,Ti,Ru,Hf,Ta,C
r,V,W,Mo,Pt,Pd,Si,Ge,Bから選
ばれた少なくとも1種類を含む六方稠密構造又は非晶質
構造の材料からなることを特徴とする請求項12記載の
磁気記録媒体。
13. The nonmagnetic layer contains Ti, Ru, and Co as main components, and contains Co, Ti, Ru, Hf, Ta, and C.
13. The magnetic recording according to claim 12, which is made of a material having a hexagonal close-packed structure or an amorphous structure containing at least one selected from r, V, W, Mo, Pt, Pd, Si, Ge and B. Medium.
【請求項14】 前記下地層及び非磁性層が六方稠密構
造、又は非晶質構造を有することを特徴とする請求項
2、5、6又は7記載の磁気記録媒体。
14. The magnetic recording medium according to claim 2, wherein the underlayer and the nonmagnetic layer have a hexagonal close-packed structure or an amorphous structure.
【請求項15】 前記下地層及び非磁性層がCo,T
i,Ru,Hf,Ta,Cr,V,W,Mo,Pt,P
d,Si,Ge,Bから選ばれた少なくとも1種類を含
む材料、又はこれを含む合金材料からなることを特徴と
する請求項14記載の磁気記録媒体。
15. The underlayer and the non-magnetic layer are Co, T
i, Ru, Hf, Ta, Cr, V, W, Mo, Pt, P
15. The magnetic recording medium according to claim 14, which is made of a material containing at least one selected from d, Si, Ge, and B, or an alloy material containing the same.
【請求項16】 磁性膜が非磁性基板に近い側の第1磁
性膜及び基板から遠い側の第2磁性膜の少なくとも2層
からなり、前記第1磁性膜及び第2磁性膜の磁化容易軸
が基板面内方向に配向していることを特徴とする請求項
2、5、6又は7記載の磁気記録媒体。
16. A magnetic film comprises at least two layers of a first magnetic film on a side closer to a non-magnetic substrate and a second magnetic film on a side farther from the substrate, and an easy axis of magnetization of the first magnetic film and the second magnetic film. 8. The magnetic recording medium according to claim 2, 5, 6 or 7, characterized in that is oriented in the in-plane direction of the substrate.
【請求項17】 前記第1磁性膜の磁化容易軸に対して
前記第2磁性膜の磁化容易軸が基板面内で等方的である
ことを特徴とする請求項16項記載の磁気記録媒体。
17. The magnetic recording medium according to claim 16, wherein the easy axis of magnetization of the second magnetic film is isotropic in the plane of the substrate with respect to the easy axis of the first magnetic film. .
【請求項18】 磁性膜が非磁性基板に近い側の第1磁
性膜及び基板から遠い側の第2磁性膜の少なくとも2層
からなり、前記第1磁性膜が基板面内方向に磁化容易軸
を有し、前記第2磁性膜が基板面に対して垂直方向に磁
化容易軸を有することを特徴とする請求項2、5、6又
は7記載の磁気記録媒体。
18. The magnetic film comprises at least two layers, a first magnetic film on the side closer to the non-magnetic substrate and a second magnetic film on the side farther from the substrate, and the first magnetic film has an easy axis of magnetization in the in-plane direction of the substrate. 9. The magnetic recording medium according to claim 2, wherein the second magnetic film has an easy axis of magnetization in a direction perpendicular to the substrate surface.
【請求項19】 磁性膜が非磁性基板に近い側の第1磁
性膜及び基板から遠い側の第2磁性膜の少なくとも2層
からなり、前記第1磁性膜及び第2磁性膜が基板面に垂
直な磁化容易軸を有することを特徴とする請求項2、
5、6又は7記載の磁気記録媒体。
19. The magnetic film comprises at least two layers, a first magnetic film on the side closer to the non-magnetic substrate and a second magnetic film on the side farther from the substrate, and the first magnetic film and the second magnetic film are on the surface of the substrate. 3. Having a perpendicular easy axis.
The magnetic recording medium according to 5, 6, or 7.
【請求項20】 請求項1〜19のいずれか1項に記載
の磁気記録媒体と、前記磁気記録媒体に磁気情報を記録
再生するための磁気ヘッドと、前記磁気記録媒体と前記
磁気ヘッドを相対運動させる駆動機構と、前記磁気ヘッ
ドを前記磁気記録媒体上の適当な場所に位置決めするた
めのアクチュエータとを含むことを特徴とする磁気記録
再生装置。
20. A magnetic recording medium according to claim 1, a magnetic head for recording / reproducing magnetic information on / from the magnetic recording medium, and the magnetic recording medium and the magnetic head are arranged relative to each other. A magnetic recording / reproducing apparatus comprising: a driving mechanism for moving the magnetic head; and an actuator for positioning the magnetic head at an appropriate position on the magnetic recording medium.
JP26903694A 1994-11-01 1994-11-01 Magnetic recording medium and magnetic recording-reproducing device Pending JPH08129738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26903694A JPH08129738A (en) 1994-11-01 1994-11-01 Magnetic recording medium and magnetic recording-reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26903694A JPH08129738A (en) 1994-11-01 1994-11-01 Magnetic recording medium and magnetic recording-reproducing device

Publications (1)

Publication Number Publication Date
JPH08129738A true JPH08129738A (en) 1996-05-21

Family

ID=17466786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26903694A Pending JPH08129738A (en) 1994-11-01 1994-11-01 Magnetic recording medium and magnetic recording-reproducing device

Country Status (1)

Country Link
JP (1) JPH08129738A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602612B2 (en) 1999-06-08 2003-08-05 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6638648B2 (en) 2000-09-28 2003-10-28 Hitachi, Ltd. Perpendicular magnetic recording medium and magnetic storage apparatus using the same
US6645646B1 (en) 1999-06-08 2003-11-11 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6689495B1 (en) 1999-06-08 2004-02-10 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6743528B2 (en) 1998-03-20 2004-06-01 Komag, Inc. Magnetic recording medium
US6753101B1 (en) 1999-06-08 2004-06-22 Fujitsu Limited Magnetic recording medium, magnetic storage apparatus, recording method and method of producing magnetic recording medium
US6821652B1 (en) 1999-06-08 2004-11-23 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US7108926B2 (en) 2001-01-04 2006-09-19 Samsung Electronics Co., Ltd. Perpendicular magnetic recording medium
WO2008017233A1 (en) * 2006-08-04 2008-02-14 Fang Fang A multifunctional digital violin
US8760787B2 (en) 2011-12-02 2014-06-24 HGST Netherlands B.V. Magnetic head having a thermal fly-height control (TFC) structure under a flat lower shield

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743528B2 (en) 1998-03-20 2004-06-01 Komag, Inc. Magnetic recording medium
US7166374B2 (en) 1998-03-20 2007-01-23 Komag, Inc. Magnetic recording medium
US6602612B2 (en) 1999-06-08 2003-08-05 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6645646B1 (en) 1999-06-08 2003-11-11 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6689495B1 (en) 1999-06-08 2004-02-10 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6753101B1 (en) 1999-06-08 2004-06-22 Fujitsu Limited Magnetic recording medium, magnetic storage apparatus, recording method and method of producing magnetic recording medium
US6821652B1 (en) 1999-06-08 2004-11-23 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6638648B2 (en) 2000-09-28 2003-10-28 Hitachi, Ltd. Perpendicular magnetic recording medium and magnetic storage apparatus using the same
US6881504B2 (en) 2000-09-28 2005-04-19 Hitachi Global Storage Technologies Japan, Ltd. Perpendicular magnetic recording medium and magnetic storage apparatus using the same
US7108926B2 (en) 2001-01-04 2006-09-19 Samsung Electronics Co., Ltd. Perpendicular magnetic recording medium
WO2008017233A1 (en) * 2006-08-04 2008-02-14 Fang Fang A multifunctional digital violin
US8760787B2 (en) 2011-12-02 2014-06-24 HGST Netherlands B.V. Magnetic head having a thermal fly-height control (TFC) structure under a flat lower shield

Similar Documents

Publication Publication Date Title
US5851643A (en) Magnetic recording media and magnetic recording read-back system which uses such media
US6730421B1 (en) Magnetic recording medium and its production method, and magnetic recorder
JP3809418B2 (en) Magnetic recording medium and magnetic recording apparatus
JP3652976B2 (en) Perpendicular magnetic recording medium and magnetic storage device using the same
JP2001523032A (en) Highly oriented magnetic thin film, recording medium using the same, transducer, device, and manufacturing method
US20030157373A1 (en) Magnetic recording medium, method of manufacture thereof, and magnetic recorder
JP3612087B2 (en) Magnetic recording medium
EP0140513A1 (en) Thin film magnetic recording structures
US5162158A (en) Low noise magnetic thin film longitudinal media
JPH0533461B2 (en)
JP2002190108A (en) Magnetic recording medium and its production method
JP2002208129A (en) Magnetic recording medium, its manufacturing method and magnetic recording device
JP2947029B2 (en) Perpendicular magnetic recording media
JPH08129738A (en) Magnetic recording medium and magnetic recording-reproducing device
US6544667B1 (en) Magnetic recording medium, producing method of the same and magnetic recording system
JPH11102510A (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JPH07134820A (en) Magnetic recording medium and magnetic recorder using the medium
JPH05315135A (en) Co/ni artificial lattice film, magnetoresistance element, magnetic head and magnetic recording medium, and manufacture of co/ni artificial lattice film
JP2004272982A (en) Manufacturing method of perpendicular magnetic recording medium, and perpendicular magnetic recording medium
JP2001256640A (en) Magnetic recording medium and magnetic recording device
JP3653039B2 (en) Magnetic recording / reproducing device
JP2967070B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device
JPS61113122A (en) Vertical magnetic recording medium
KR100867969B1 (en) Perpendicular magnetic recording medium, and magnetic recording apparatus
KR100811705B1 (en) Perpendicular magnetic recording medium, and magnetic storing apparatus