JPS63259072A - Method for controlling uniaxial magnetic anisotropy of amorphous soft magnetic material - Google Patents

Method for controlling uniaxial magnetic anisotropy of amorphous soft magnetic material

Info

Publication number
JPS63259072A
JPS63259072A JP62092062A JP9206287A JPS63259072A JP S63259072 A JPS63259072 A JP S63259072A JP 62092062 A JP62092062 A JP 62092062A JP 9206287 A JP9206287 A JP 9206287A JP S63259072 A JPS63259072 A JP S63259072A
Authority
JP
Japan
Prior art keywords
magnetic
amorphous soft
temp
magnetic field
uniaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62092062A
Other languages
Japanese (ja)
Inventor
Kanji Nakanishi
中西 寛次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62092062A priority Critical patent/JPS63259072A/en
Publication of JPS63259072A publication Critical patent/JPS63259072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To control the magnitude of uniaxial magnetic anisotropy at a low temp. by disposing an amorphous soft magnetic material imparted with the uniaxial magnetic anisotropy in a rotating magnetic field in a vacuum and subjecting said material to a heat treatment at the temp. lower than the crystallization temp. and Curie temp. CONSTITUTION:The amorphous soft magnetic material is produced by a spurttering method, etc. by disposing the same in the static magnetic field impressed in the direction interesting approximately orthogonally with the direction where the high high-frequency magnetic permeability is desired to be finally obtd. The uniaxial magnetic anisotropy having the easy axis in the above-mentioned direction where the static magnetic field is impressed is thereby imparted to the above-mentioned material. The sample consisting of the above-mentioned material is thereafter disposed in a furnace 3 in which vacuum or nonoxidative atmosphere such as gaseous N2 is maintained. A motor 7 is then driven to rotate a magnet 6 mounted to a yoke 5 and the magnetic field rotating relatively within the plane inclusive of the above- mentioned easy axis direction and the direction where the high high-frequency magnetic permeability is desired to be finally obtd. is impressed to the sample. The sample is further heat-treated at the temp. lower than the crystallization temp. and Curie temp. The magnitude of the uniaxial magnetic anisotropy of the sample is controlled by this temp.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非晶質軟磁性材料の一軸磁気異方性の制御方法
に関し、特に広い周波数範囲で高透磁率が得られて薄膜
磁気ヘッドの磁気コアなどの各種磁気応用部品に好適な
非晶質軟磁性材料の一軸磁気異方性の制御方法に関する
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for controlling the uniaxial magnetic anisotropy of an amorphous soft magnetic material, and in particular to a method for controlling the uniaxial magnetic anisotropy of an amorphous soft magnetic material, and in particular to a method for controlling the uniaxial magnetic anisotropy of an amorphous soft magnetic material. The present invention relates to a method for controlling uniaxial magnetic anisotropy of an amorphous soft magnetic material suitable for various magnetic application parts such as magnetic cores.

(従来技術) 金属は、通常、固体状態において原子配列が規則性を有
した結晶構造を持って存在しているものであるが、例え
ば、ある種の合金溶液を溶融状態から急冷凝固させたり
、あるいは、ある糧のターゲット材料をイオンによりス
パッタリングし、その散乱された原子を基板上に急冷付
着させたりすることにより、固体状態でも液体状態に類
似した原子配列を持つ非晶質状態の軟磁性材料が得られ
ることは周知のとおりである。
(Prior Art) Metals usually exist in a solid state with a crystalline structure in which the atomic arrangement is regular. Alternatively, by sputtering a certain target material with ions and rapidly cooling and depositing the scattered atoms on a substrate, it is possible to create an amorphous soft magnetic material with an atomic arrangement similar to that in the liquid state even in the solid state. It is well known that the following can be obtained.

このようにして得られた非晶質軟磁性材料は、原子配列
が結晶質材料のような長範囲規則性を有せず、ランダム
に配列しているために元来、結晶質のような結晶磁気異
方性を有していない。
The amorphous soft magnetic material obtained in this way does not have the long-range regularity of atomic arrangement like crystalline materials, but is arranged randomly, so it is originally like a crystalline material. It does not have magnetic anisotropy.

しかし、非晶質軟磁性材料は、その製造時に何らかの理
由で材料中に磁気異方性が誘起されることが多い。とこ
ろが、このように年越された誘導磁気異方性は、その大
きさや方向の分布が不均一であり、製造直後の材料の磁
気特性が一般的に余り良くなく、シかも熱的にも不安定
である。また非晶質状態を作り出す際に、その製造方法
に起因する種々の歪が生じており、これが材料内部に残
留してしまい、この点からも磁気特性を悪くし、熱的に
不安定である。
However, magnetic anisotropy is often induced in the amorphous soft magnetic material for some reason during its manufacture. However, the induced magnetic anisotropy that has been aged for many years is uneven in its distribution in size and direction, and the magnetic properties of the material immediately after manufacture are generally not very good, and it may be unstable or thermally unstable. It is stable. In addition, when creating an amorphous state, various strains occur due to the manufacturing method, and this remains inside the material, which also impairs magnetic properties and makes it thermally unstable. .

非晶質軟磁性材料製造時のこれら誘導磁気異方性や内部
歪を除去するために、従来より行われている熱処理方法
、例えば、キュリー温度および結晶化温度以下の温度で
非酸化性雰囲気中において回転磁界中で熱処理する方法
は有効な方法であり、直流や低周波領域での透磁率を向
上させることができる。
In order to remove these induced magnetic anisotropy and internal strain during the production of amorphous soft magnetic materials, conventional heat treatment methods are used, for example, in a non-oxidizing atmosphere at a temperature below the Curie temperature and the crystallization temperature. The method of heat treatment in a rotating magnetic field is an effective method and can improve the magnetic permeability in the direct current and low frequency regions.

(発明が解決しようとする問題点〕 しかし、反面、誘導磁気異方性が除去されて磁気異方性
が小さくなると、磁区構造が不安定で粗大になり、磁壁
の移動が生じ易くなるため、高周波領域(I Mkls
以上)での透磁率は逆に低下してくるという問題が生じ
る。
(Problems to be Solved by the Invention) However, on the other hand, if the induced magnetic anisotropy is removed and the magnetic anisotropy becomes smaller, the magnetic domain structure becomes unstable and coarse, and domain walls tend to move. High frequency region (I Mkls
(above), the problem arises that the magnetic permeability conversely decreases.

高周波領域での透磁率を向上させるためには、磁化過程
として、磁壁移動よりもそのスイッチング速度が速い磁
化回転を用いる必要があり、そのためには、磁気材料に
ある適切な大きさの一軸磁気異方性を付与し、その困難
軸方向に駆動する必要がある。
In order to improve magnetic permeability in the high frequency region, it is necessary to use magnetization rotation, which has a faster switching speed than domain wall movement, as a magnetization process. It is necessary to provide directionality and drive in the direction of the difficult axis.

本発明の目的は、上記事情に基づいて行われたもので、
非晶質軟磁性材料の高周波特性が改善される熱処理方法
が提供することにある。つまり、高周波領域で使用する
非晶質軟磁性材料の特性を向上させるためには、製造時
に誘起される誘導磁気異方性や内部歪を除去するだけで
なく、所望の方向に目的に応じたある適切な大きさの一
軸磁気異方性を付与することが必要である。
The purpose of the present invention was achieved based on the above circumstances, and
An object of the present invention is to provide a heat treatment method that improves the high frequency characteristics of an amorphous soft magnetic material. In other words, in order to improve the properties of amorphous soft magnetic materials used in the high frequency range, it is necessary not only to remove the induced magnetic anisotropy and internal strain induced during manufacturing, but also to It is necessary to provide a certain appropriate amount of uniaxial magnetic anisotropy.

(問題点を解決するための手段) 本発明の上記目的は、非晶質軟磁性材料を、最終的に高
い高周波透磁率が得たい方向と略直交する方向に印加さ
れた靜磁界中に配置して作製し、最終的に高い高周波透
磁率を得たい方向と略直交する方向を容易軸とする一軸
磁気異方性を付与した後、該非晶質軟磁性材料を真空中
または非酸化性雰囲気中でかつ前記容易軸方向および最
終的に高い高周波透磁率を得たい方向とを含む平面内で
相対的に回転する磁界中に配置して該非晶質軟磁性材料
の結晶化温度およびキュリー温度よりも低い温度で熱処
理し、その温度により一軸磁気異方性の大きさを制御す
ることを特徴とする非晶質軟磁性材料の一軸磁気異方性
の制御方法により達成される。
(Means for Solving the Problems) The above object of the present invention is to place an amorphous soft magnetic material in a quiet magnetic field applied in a direction substantially perpendicular to the direction in which a high high frequency magnetic permeability is desired to be obtained. After imparting uniaxial magnetic anisotropy with the easy axis in a direction substantially orthogonal to the direction in which high-frequency magnetic permeability is desired to be obtained, the amorphous soft magnetic material is placed in vacuum or in a non-oxidizing atmosphere. The crystallization temperature and the Curie temperature of the amorphous soft magnetic material are placed in a magnetic field that rotates relatively within a plane that includes the easy axis direction and the direction in which high frequency magnetic permeability is desired to be obtained. This is achieved by a method for controlling uniaxial magnetic anisotropy of an amorphous soft magnetic material, which is characterized by heat-treating at a low temperature and controlling the magnitude of uniaxial magnetic anisotropy depending on the temperature.

上述のように熱処理された非晶質軟磁性材料は広い周波
数範囲で高透磁率が得られ、特に薄膜磁気ヘッドの磁気
コアに好適なものになる。
The amorphous soft magnetic material heat-treated as described above has high magnetic permeability over a wide frequency range, making it particularly suitable for the magnetic core of a thin-film magnetic head.

また、本発明を達成する熱処理方法は、非晶質軟磁性膜
を形成後、固定および/または回転磁場中で熱処理をし
て一軸磁気異方性を付与する方法に比べ、低い熱処理温
度で異方性が付与できる。
Furthermore, the heat treatment method for achieving the present invention has a lower heat treatment temperature than a method in which after forming an amorphous soft magnetic film, heat treatment is performed in a fixed and/or rotating magnetic field to impart uniaxial magnetic anisotropy. Direction can be given.

従って、下地層に高温に弱い層が配置されている場合な
どに、この熱処理方法は好都合である。
Therefore, this heat treatment method is convenient when a layer that is sensitive to high temperatures is disposed in the base layer.

以下、本発明の方法を詳細に説明−する。The method of the present invention will be explained in detail below.

非晶質軟磁性材料を作製するスパッタ装置は略従来と同
じ構成から成っており、また、作製される非晶質軟磁性
材料の膜面と平行かつこの軟磁性材料が最終的に高い高
周波透磁率を得たい方向と略直交する方向に配置された
静磁界が、スパッタリング中に印加できる構造を併せ有
している。
The sputtering equipment for producing the amorphous soft magnetic material has almost the same configuration as the conventional one. It also has a structure that allows a static magnetic field placed in a direction substantially perpendicular to the direction in which magnetic flux is desired to be applied during sputtering.

第1図は本発明の磁励中熱処理に用いる装置の好ましい
1例を示している。
FIG. 1 shows a preferred example of an apparatus used for heat treatment during magnetic excitation according to the present invention.

第1図において、基板上に非晶質膜が形成された試料l
は、架台2の上に載置される。架台2は石英管で囲われ
た炉3内に収納されており、ヒータ4により架台2上の
試料lは所定温度に加熱保持される。更に試料1は加熱
されながら外部磁場により面内方向に磁化される。外部
磁場は炉3の外面に配置されかつヨーク5に取り付けら
れた磁石6により形成される。ヨーク5はモータ8によ
り所定速度で回転可能なように設けられており、磁石6
は試料面内に回転磁界な印加できる。
In Figure 1, sample l has an amorphous film formed on a substrate.
is placed on the pedestal 2. The pedestal 2 is housed in a furnace 3 surrounded by a quartz tube, and the sample 1 on the pedestal 2 is heated and maintained at a predetermined temperature by a heater 4. Furthermore, the sample 1 is magnetized in the in-plane direction by an external magnetic field while being heated. The external magnetic field is formed by magnets 6 arranged on the outer surface of the furnace 3 and attached to the yoke 5. The yoke 5 is provided so that it can be rotated at a predetermined speed by a motor 8, and a magnet 6
can apply a rotating magnetic field within the sample plane.

(実施例) 以下、本発明の実施例を挙げて本発明を説明する。(Example) Hereinafter, the present invention will be explained by giving examples of the present invention.

スパッター法によりアルミナ基板上に10μm膜厚のC
081Zr7 Nb12 (ωt%)なる組成の非晶質
合金膜(飽和磁束密度B8= 10.5 KG、飽和磁
歪λS共+3 x 10−7.結晶化温度Tx = 4
80℃)を形成した。また、スパッタリングにより非晶
質合金膜が形成される際、非晶質合金膜面内でかつ非晶
質合金膜が最終的に高い高周波透磁率を得たい方向と略
直交する方向に50eの静磁界を印加し、磁界印加方向
を容易軸とする一軸磁気異方性を付与しな。
A 10 μm thick C film was deposited on an alumina substrate by sputtering.
Amorphous alloy film with a composition of 081Zr7Nb12 (ωt%) (saturation magnetic flux density B8 = 10.5 KG, saturation magnetostriction λS both +3 x 10-7. Crystallization temperature Tx = 4
80°C). In addition, when an amorphous alloy film is formed by sputtering, a 50e static current is applied in the plane of the amorphous alloy film and in a direction approximately perpendicular to the direction in which the amorphous alloy film ultimately wants to obtain high high-frequency magnetic permeability. Apply a magnetic field, and do not impart uniaxial magnetic anisotropy with the easy axis in the direction of magnetic field application.

次に、このようにして作製された試料を、第1図に示し
た装置内に配置して熱処理を施した。すなわち、30 
rpmで回転する回転磁界の磁束回転面と平行になるよ
うに試料面を配置すると共に、この試料を、第2図に図
示するように、10 〜1O−5Torrの真空中でそ
れぞれ160℃、200℃、250℃の温度で30分間
熱処理し、第3図に示すBH特性を得た。第3図から明
らかなとおり、各温度下において、最終的に高い高周波
透磁率を得たい方向が困難軸方向となっており、その−
軸異方性磁界H1(が熱処理温度とともに小さくなるよ
うに制御されていることが解る。特に、本発明では非晶
質合金膜の結晶化温度(上述の実施例ではTx=480
℃)に対して低い温度(例えば160℃ンでも一軸磁気
異方性が好適に付与できる。
Next, the sample thus prepared was placed in the apparatus shown in FIG. 1 and subjected to heat treatment. That is, 30
The sample surface was arranged so as to be parallel to the magnetic flux rotation plane of the rotating magnetic field rotating at rpm, and the sample was heated at 160°C and 200°C in a vacuum of 10 to 1 O-5 Torr, respectively, as shown in Fig. 2. A heat treatment was performed for 30 minutes at a temperature of 250°C, and the BH characteristics shown in FIG. 3 were obtained. As is clear from Figure 3, under each temperature, the direction in which high frequency permeability is ultimately desired is the difficult axis direction;
It can be seen that the axial anisotropic magnetic field H1 is controlled to decrease with the heat treatment temperature. In particular, in the present invention, the crystallization temperature of the amorphous alloy film (Tx = 480 in the above example)
Uniaxial magnetic anisotropy can be suitably imparted even at a low temperature (for example, 160°C).

第4図は、上述の実施例に基づいて、回転磁界中熱処理
温度による一軸異方性磁界Hkの変化を示している。ま
た、図では、他の材料(Co81 Fe4Nb1s)に
ついても前記実施例と同じ処理を施して異方性磁界を測
定したものがプロットしである。
FIG. 4 shows the change in the uniaxial anisotropy magnetic field Hk depending on the heat treatment temperature in the rotating magnetic field, based on the above-mentioned example. In addition, in the figure, the anisotropic magnetic field was measured for another material (Co81Fe4Nb1s), which was subjected to the same treatment as in the above example, and is plotted.

第5図は、本発明の方法が適用される薄膜磁気ヘッドに
ついて示す。
FIG. 5 shows a thin film magnetic head to which the method of the present invention is applied.

すなわち、この薄膜磁気ヘッドは、最終的に形成される
磁気コアの磁化方向と略直交する方向が容易軸となるよ
うに靜磁界を、非晶質合金膜のスパッタ時に印加し、更
に、このようにして形成される非晶質合金膜の膜面を回
転磁場中に配置して熱処理することにより、最終的にヘ
ッドの磁化方向の一軸磁気異方性が制御されて透磁率を
高くできる。
That is, in this thin-film magnetic head, a quiet magnetic field is applied during sputtering of an amorphous alloy film so that the easy axis is approximately perpendicular to the magnetization direction of the magnetic core that is finally formed. By placing the film surface of the amorphous alloy film formed in this manner in a rotating magnetic field and heat-treating it, the uniaxial magnetic anisotropy in the magnetization direction of the head is finally controlled and the magnetic permeability can be increased.

なお、磁気コア材料の一軸異方性磁界Hkは、磁壁が不
安定にならない範囲でかつなるべ(小さい方が良(、こ
れはコア寸法にもよるが略2・−60e程度である。従
って、第3図および第4図に示した先の測定結果より、
CoElI Zr7 Nb12では熱処理が略160℃
〜200℃で30分の範囲で行われることが望ましい。
The uniaxial anisotropy magnetic field Hk of the magnetic core material should be within a range that does not make the domain wall unstable (smaller is better (this depends on the core dimensions, but is about 2.-60e). , From the previous measurement results shown in Figures 3 and 4,
For CoElI Zr7 Nb12, heat treatment is approximately 160℃
It is desirable to carry out the treatment at a temperature of ~200°C for 30 minutes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するための磁界中熱処理装
置の構造の一例を示す図、第2図は非晶質軟磁性材料C
081Zr7 Nb12 (ωt%)熱処理温度と時間
の関係を示す図、第3図は実施例により得られた回転磁
界中熱処理温度とBH凸曲線示す図、第4図はCoNb
系非晶質軟磁性材料の回転磁界中熱処理温度と異方性磁
界の関係を示す図、第5図は本発明が適用される薄膜磁
気ヘッドにおける磁化方向とスパッタリング時の印加磁
界方向を示す図である。 1・・・試料、2・・・架台、3・・・炉、4・・・ヒ
ータ、5・・・ヨーク、6・・・磁石、7・・・モータ
第3図 Cos+ ’lry Nb+z wt’/a第5図
Figure 1 is a diagram showing an example of the structure of a heat treatment apparatus in a magnetic field for carrying out the method of the present invention, and Figure 2 is a diagram showing an example of the structure of an amorphous soft magnetic material C.
081Zr7 Nb12 (ωt%) A diagram showing the relationship between heat treatment temperature and time, Figure 3 is a diagram showing the heat treatment temperature in a rotating magnetic field and a BH convex curve obtained in the example, and Figure 4 is a diagram showing the relationship between CoNb
Figure 5 is a diagram showing the relationship between heat treatment temperature in a rotating magnetic field and anisotropic magnetic field for amorphous soft magnetic material, and Figure 5 is a diagram showing the direction of magnetization in a thin film magnetic head to which the present invention is applied and the direction of the magnetic field applied during sputtering. It is. 1... Sample, 2... Frame, 3... Furnace, 4... Heater, 5... Yoke, 6... Magnet, 7... Motor Figure 3 Cos+ 'lry Nb+z wt' /a Figure 5

Claims (1)

【特許請求の範囲】 1)非晶質軟磁性材料を、最終的に高い高周波透磁率が
得たい方向と略直交する方向に印加された静磁界中に配
置して作製し、最終的に高い高周波透磁率を得たい方向
と略直交する方向を容易軸とする一軸磁気異方性を付与
した後、該非晶質軟磁性材料を真空中または非酸化性雰
囲気中でかつ前記容易軸方向および最終的に高い高周波
透磁率を得たい方向とを含む平面内で相対的に回転する
磁界中に配置して該非晶質軟磁性材料の結晶化温度およ
びキュリー温度よりも低い温度で熱処理し、その温度に
より一軸磁気異方性の大きさを制御することを特徴とす
る非晶質軟磁性材料の一軸磁気異方性の制御方法。 2)スパッタリング法により作製されホ非晶質軟磁性材
料を用いることを特徴とする特許請求の範囲第1項に記
載の制御方法。
[Claims] 1) An amorphous soft magnetic material is produced by placing it in a static magnetic field applied in a direction substantially perpendicular to the direction in which high frequency magnetic permeability is desired to be obtained, and After imparting uniaxial magnetic anisotropy with the easy axis in a direction substantially orthogonal to the direction in which high-frequency magnetic permeability is desired, the amorphous soft magnetic material is prepared in vacuum or in a non-oxidizing atmosphere and The amorphous soft magnetic material is placed in a relatively rotating magnetic field in a plane including the direction in which high frequency magnetic permeability is desired to be obtained, and is heat-treated at a temperature lower than the crystallization temperature and Curie temperature of the amorphous soft magnetic material. A method for controlling uniaxial magnetic anisotropy of an amorphous soft magnetic material, the method comprising controlling the magnitude of uniaxial magnetic anisotropy by. 2) The control method according to claim 1, characterized in that an amorphous soft magnetic material manufactured by a sputtering method is used.
JP62092062A 1987-04-16 1987-04-16 Method for controlling uniaxial magnetic anisotropy of amorphous soft magnetic material Pending JPS63259072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62092062A JPS63259072A (en) 1987-04-16 1987-04-16 Method for controlling uniaxial magnetic anisotropy of amorphous soft magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62092062A JPS63259072A (en) 1987-04-16 1987-04-16 Method for controlling uniaxial magnetic anisotropy of amorphous soft magnetic material

Publications (1)

Publication Number Publication Date
JPS63259072A true JPS63259072A (en) 1988-10-26

Family

ID=14043991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62092062A Pending JPS63259072A (en) 1987-04-16 1987-04-16 Method for controlling uniaxial magnetic anisotropy of amorphous soft magnetic material

Country Status (1)

Country Link
JP (1) JPS63259072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707691A (en) * 1996-08-27 1998-01-13 The Coca-Cola Company Coating hollow containers by in-situ polymerization of monomers in bi-axially orientated form
CN113690043B (en) * 2021-10-25 2022-02-01 天津三环乐喜新材料有限公司 Neodymium iron boron heavy rare earth infiltration method and device thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707691A (en) * 1996-08-27 1998-01-13 The Coca-Cola Company Coating hollow containers by in-situ polymerization of monomers in bi-axially orientated form
CN113690043B (en) * 2021-10-25 2022-02-01 天津三环乐喜新材料有限公司 Neodymium iron boron heavy rare earth infiltration method and device thereof

Similar Documents

Publication Publication Date Title
US4475962A (en) Annealing method for amorphous magnetic alloy
JP2003286550A (en) SUPER-MAGNECTOSTRICTION MATERIAL FOR FeGa ALLOY
Wang et al. Effect of low dc magnetic field on the premartensitic phase transition temperature of ferromagnetic Ni2MnGa single crystals
JPS6133058B2 (en)
JPS63259072A (en) Method for controlling uniaxial magnetic anisotropy of amorphous soft magnetic material
JP2739574B2 (en) Heat treatment method for amorphous soft magnetic material
JPS63255371A (en) Heat treatment of amorphous soft magnetic material
JPS60194502A (en) Preparation of permanent magnet blank
JPH0375624B2 (en)
Kobayashi et al. Magnetic properties and magnetostriction in grain‐oriented (Tb x Dy1− x)(Fe1− y Mn y) 1.95 compounds
JP4919310B2 (en) Method for manufacturing giant magnetostrictive thin film element
JPS6216268B2 (en)
JPH0252415A (en) Formation of magnetic thin film having uniaxial anisotropy
JP3742116B2 (en) Method for controlling magnetic anisotropy of magnetic thin film
JPH0457637B2 (en)
JPH0354454B2 (en)
JPH03136216A (en) Manufacture of soft magnetic alloy film and heat treatment method
JPH11288812A (en) High coercive force r-irone-b thin-film magnet and manufacture thereof
JPH01168844A (en) Permanent magnet material
JPH0571163B2 (en)
JPH0571164B2 (en)
JPH0499010A (en) Forming method for rare earth alloy thin film magnet
KR20020026664A (en) Method of fabricating Sm-Fe-N magnetic thin films by nitriding
JPH0665662A (en) Soft magnetic alloy
KR20020080447A (en) Supermagnetostrictive alloy and method for preparation thereof