KR20020026664A - Method of fabricating Sm-Fe-N magnetic thin films by nitriding - Google Patents

Method of fabricating Sm-Fe-N magnetic thin films by nitriding Download PDF

Info

Publication number
KR20020026664A
KR20020026664A KR1020000057885A KR20000057885A KR20020026664A KR 20020026664 A KR20020026664 A KR 20020026664A KR 1020000057885 A KR1020000057885 A KR 1020000057885A KR 20000057885 A KR20000057885 A KR 20000057885A KR 20020026664 A KR20020026664 A KR 20020026664A
Authority
KR
South Korea
Prior art keywords
thin film
substrate
permanent magnet
magnetic
nitriding
Prior art date
Application number
KR1020000057885A
Other languages
Korean (ko)
Inventor
양충진
김상원
Original Assignee
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신현준, 재단법인 포항산업과학연구원 filed Critical 신현준
Priority to KR1020000057885A priority Critical patent/KR20020026664A/en
Publication of KR20020026664A publication Critical patent/KR20020026664A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/22Heat treatment; Thermal decomposition; Chemical vapour deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: A method for manufacturing a Sm-Fe-N permanent magnet thin film through the nitriding treatment is provided to improve the coercivity and the remanence density by employing the laser ablation. CONSTITUTION: In an evaporator, a thin film of Sm2Fe17 is deposited on a substrate with a thickness of 10-300 nm, by irradiating the laser beam on a target of Sm2Fe17. The evaporator has the vacuum level of 10¬-5-10¬-7 Torr. The laser beam has a beam energy density of 100-250 J/cm¬2 and a pulse frequency of 10-50 Hz(Hertz). The substrate provided with the deposited thin film of Sm2Fe17 is processed by the heat treatment with 2-5 pressure of N2 at 450-550 °C, to thereby form a thin film of Sm2Fe17Nx(x<=3). The substrate and the target rotate at the speed of 3-5 RPM(Revolution Per Minute).

Description

질화처리에 의한 사마륨-철-질소계 영구자석박막의 제조방법{Method of fabricating Sm-Fe-N magnetic thin films by nitriding}Method of Fabricating Samarium-Iron-Nitrogen Permanent Magnet Thin Film by Nitriding {Method of fabricating Sm-Fe-N magnetic thin films by nitriding}

본 발명은 미세기계가공소자, 마이크로센서류 등에 이용되는 Sm2Fe17Nx계 영구자석박막의 제조방법에 관한 것으로, 보다 상세하게는 레이저 어블레이션법과 질화처리에 의한 간단한 방법으로 벌크형(bulk) 영구자석에 버금가는 자기적특성을 갖는 강자성의 Sm2Fe17Nx계 박막을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a Sm 2 Fe 17 N x -based permanent magnet thin film used in micromachining devices, micro-sensors, and the like, and more specifically, bulk permanent by a simple method by laser ablation and nitriding treatment. The present invention relates to a method for producing a ferromagnetic Sm 2 Fe 17 N x based thin film having magnetic properties comparable to that of a magnet.

최근 들어 마이크로 모터, 마이크로 액츄에이터(actuator) 등의 미세가공소자(MEMS)에 바이아싱(biasing field) 자장이 필요하면서 강자성의 영구자석 박막의 개발이 활기를 띄고 있다. 주로 SmCo계 조성의 희토류 자성박막의 개발에 연구가 집중되고 있으며, 제조방법도 일반적인 스퍼터링(sputtering) 증착기술이 이용되고 있다(F.J. Cadieu:J. Vac. Sci. Technol., A6(3), 1668(1988), F.J.Cadieu, H. Hedge and K. Chen:IEEE Trans. Magn. MAG-25, 3783(1989)).Recently, the development of ferromagnetic permanent magnet thin films has been vigorous while a biasing field is required for MEMS, such as a micro motor and a micro actuator. The research is mainly focused on the development of rare earth magnetic thin films of SmCo-based composition, and the manufacturing method is using a general sputtering deposition technique (FJ Cadieu: J. Vac. Sci. Technol., A6 (3), 1668). (1988), FJ Cadieu, H. Hedge and K. Chen: IEEE Trans.Mag.MAG-25, 3783 (1989)).

그러나, 스퍼터링방법은 증착실내부에 에너지원이 존재하므로 장치가 비교적 복잡하며, 타겟(Target)을 이루는 각각의 원소의 스퍼터율(sputtering yield)이 다르므로 자성박막의 조성제어가 용이하지 못한 어려움이 있다. 또한, 고가의 Co원소가 사용되므로 경제적인 면에서 생산성의 부족하다는 단점이 있다. 한편, SmCo계 보다 저렴한 Sm2Fe17Nx(x≤3)계 영구자석이 알려져 있지만, 박막형으로 제조하는 기술이 개발되지 않아 벌크형으로 제조되고 있는 실정이다.However, the sputtering method is relatively complicated because the energy source is present in the deposition chamber, and the sputtering yield of each element constituting the target is different, which makes it difficult to control the composition of the magnetic thin film. have. In addition, since expensive Co elements are used, there is a disadvantage of lack of productivity in terms of economy. On the other hand, although Sm 2 Fe 17 N x (x≤3) -based permanent magnets are known to be cheaper than SmCo-based, the technology for manufacturing thin films has not been developed.

본 발명은 종래의 스퍼터링방법 대신 레이저 어블레이션법을 적용하여 Sm-Co계 보다는 저렴하면서 고보자력, 고잔류자속밀도, 면방향의 자기방향 이방성이 우수한 Sm-Fe-N계 영구자석박막의 제조방법을 제공하는데, 그 목적이 있다.The present invention applies a laser ablation method instead of the conventional sputtering method, and is less expensive than the Sm-Co system, but has a high coercive force, high residual magnetic flux density, and excellent magnetic direction anisotropy in the plane direction. To provide, for that purpose.

도 1은 본 발명에 부합되는 레이져 어블레이션 장치의 일례도1 is an example of a laser ablation apparatus according to the present invention.

도 2는 질화열처리공정에서 N2가스의 분압이 Sm2Fe17Nx에 미치는 영향을 나타내는 그래프2 is a graph showing the effect of partial pressure of N 2 gas on Sm 2 Fe 17 N x in the nitriding heat treatment process

도 3은 Sm2Fe17Nx의 박막두께에 따른 자기특성의 변화를 나타내는 그래프.3 is a graph showing the change in magnetic properties according to the thin film thickness of Sm 2 Fe 17 N x .

도 4는 Sm2Fe17Nx의 박막에서의 면방향과 면과 수직한 방향에서 측정된 자기특성을 나타내는 그래프.4 is a graph showing the magnetic properties measured in the plane direction and the direction perpendicular to the plane in the thin film of Sm 2 Fe 17 N x .

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1..... 타겟홀더 2..... 렌즈1 ..... Target holder 2 ..... Lens

3..... 레이저 빔 4..... 기판3 ..... Laser Beam 4 ..... Substrate

5..... 기판홀더 6..... 증착실5 ..... Substrate holder 6 ..... Deposition chamber

7..... KrF레이저 건7 ..... KrF laser gun

상기 목적을 달성하기 위한 본 발명의 Sm-Fe-N계 영구자석박막의 제조방법은, 진공의 증착실내에서 Sm2Fe17의 타겟에 레이저빔을 조사하여 기판상에 Sm2Fe17의 박막을 10-300nm의 두께로 증착하는 단계;A method for producing a Sm-Fe-N-based permanent magnet thin film of the present invention for achieving the above object, by irradiating a laser beam to the target of Sm 2 Fe 17 in a vacuum deposition chamber to form a thin film of Sm 2 Fe 17 on the substrate Depositing to a thickness of 10-300 nm;

Sm2Fe17의 박막이 증착된 기판을 2∼5기압의 N2분압으로 450∼550℃의 온도에서 질화열처리하여 Sm2Fe17Nx(x≤3)의 질화자성체 박막을 얻는 단계를 포함하여 구성된다.A step of obtaining a nitride magnetic thin film of Sm 2 Fe 17 Nx (x ≦ 3) by subjecting the substrate on which the thin film of Sm 2 Fe 17 is deposited to a temperature of 450 to 550 ° C. at a N 2 partial pressure of 2 to 5 atmospheres; It is composed.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

자성체 박막이 근본적으로 강자성체(ferromagnetic)에 속하면서 영구자석으로서의 기능을 발휘하기 위해서는 다음과 같은 특성이 요구된다.In order for a magnetic thin film to be essentially a ferromagnetic and to function as a permanent magnet, the following characteristics are required.

첫째, 보자력(coercivity) 및 잔류자속밀도(remanence)가 어느 정도 높아야 실제 활용이 가능하다는 점, 둘째, 경제성이 있으면서 자기특성이 영구자석 용도로 가능한 범위로 우수해야 한다는 점, 셋째, 실제 활용성을 감안할 때 자기이방성이 면방향으로 발휘되어야 한다는 점이다.First, the coercivity and residual magnetic flux density must be high enough to be practically used. Second, the economic characteristics and magnetic properties must be excellent to the extent possible for permanent magnets. In view of this, magnetic anisotropy should be exerted in the plane direction.

본 발명자들은 이러한 영구자성의 특성을 만족하는 박막형 영구자석을 개발하기 위한 연구과정에서 Sm2Fe17Nx(x≤3)계 영구자석을 레이저 어블레이션(ablation)법(S.B. Krupannidhi, N. Maffei, D. Roy and C.J. Peng:J.Vac. Sci. Technol., A10(4), 1815(1992), R.Seed and C. Vittoria: IEEE Trans. Magn. MAG28, 3216(1992))을 적용하여 박막형으로 제조하면 종래의 스퍼터링 박막제조법의 한계를 극복할 수 있다는데 착안하여 본 발명을 완성한 것이다.The present inventors have used the laser ablation method (SB Krupannidhi, N. Maffei) of Sm 2 Fe 17 N x (x≤3) -based permanent magnets in the process of developing thin-film permanent magnets satisfying the characteristics of such permanent magnets. , D. Roy and CJ Peng: J. Vac. Sci. Technol., A10 (4), 1815 (1992), R. Seed and C. Vittoria: IEEE Trans.Mag.MAG28, 3216 (1992)) The present invention has been completed in view of the fact that the thin film type can overcome the limitations of the conventional sputtering thin film manufacturing method.

본 발명의 연구에 따르면, 레이저 어블레이션법으로 Sm2Fe17Nx(x≤3)계 영구자석박막을 제조하는 기술에서 가장 중요한 요소는 Sm2Fe17Nx의 조성에서 x의 조성치를 높일 수 있는 공정조건의 제어이다. 이 조성계에서 N의 최대 조성치는 3인 것으로 알려져 있다. 나아가, 영구자석박막의 실제 활용성을 감안할 때 자기이방성이 면방향으로 발휘되도록 하는 것이다. 이러한 관점에서 본 발명의 제조방법을 설명한다.According to the study of the present invention, the most important factor in the technology for producing a Sm 2 Fe 17 N x (x≤3) -based permanent magnet thin film by the laser ablation method is to increase the composition of x in the composition of Sm 2 Fe 17 N x Control of process conditions. It is known that the maximum composition value of N in this composition system is three. Furthermore, the magnetic anisotropy is to be exerted in the plane direction in consideration of the practical application of the permanent magnet thin film. From this point of view, the production method of the present invention will be described.

도 1에 일례로 나타난 진공의 증착실내 타겟 홀더(1)에 Sm2Fe17을 장착한다. Sm2Fe17은 아크용해(arc melting)에 의하여 반복용해하여 제조하고 단일상을 갖도록균질화 열처리한 것을 사용하는 것이 바람직하다. 기판은 (001)Si, Al2O3의 단결정 또는 다결정을 사용하는 것이 권장된다. (001)Si기판은 기판 중에서 저가에 속하면서 간단하게 입수 가능하며 4축 대층성을 가지므로 기판의 절단이 용이하다는 장점이 있다. 또한 각종 마이크로 머신 부품이 실리콘 반도체 공정 및 그 부품과 호환성을 감안할 때 가장 적합한 기판이다. 한편, Al2O3의 단결정 또는 다결정 기판은 실제로 현재의 각종 컴퓨터 기록/재생 헤드(head)나, 기록매체(media) 기판으로 사용되고 있으므로 본 발명의 영구자석 박막이 활용도를 활성화 하기위해서는 실제상황에 맞는 기판을 사용한다는 측면에서 의미가 있다.Sm 2 Fe 17 is attached to the target holder 1 in the vacuum deposition chamber shown in FIG. 1 as an example. Sm 2 Fe 17 is preferably prepared by repeated melting by arc melting and homogenized heat treatment to have a single phase. It is recommended to use a single crystal or polycrystal of (001) Si, Al 2 O 3 as the substrate. The (001) Si substrate is easily available while being inexpensive among the substrates, and has an advantage of easy cutting of the substrate because it has a 4-axis lamination property. In addition, various micromachined components are the most suitable substrates in view of the silicon semiconductor process and compatibility with the components. Meanwhile, since Al 2 O 3 single crystal or polycrystalline substrates are actually used as various computer recording / reproducing heads or recording media substrates of the present, the permanent magnet thin film of the present invention may be used in actual situations. It makes sense in terms of using a suitable substrate.

증착실(6)의 초기 진공도는 높을수록 좋으나 경제성을 고려하여 10-5The initial degree of vacuum in the evaporation chamber (6) is good or higher in consideration of the economical efficiency 10 -5 to

10-7Torr로 하는 것이 무난하다. 진공도가 10-5미만일 때는 Sm2Fe17Nx조성에서 N의 함유량이 미미할 뿐 아니라 산화물이 형성될 가능성이 있으며, 진공도가 10-7Torr 보다 높을 때는 Sm2Fe17Nx박막의 자기특성이 좋으나, 증착속도가 너무 느리고, 또한 생산능력이 떨어져 경제성이 문제가 된다. 또한, 레이저의 에너지원은 KrF 또는 Nd-YAG레이저가 권장되는데, 그 이유는 나노(nano) 스케일 박막의 두께 제어가 용이하며 합금조성을 제어하는데 유리한 기술이기 때문이다.It is okay to set it to 10 -7 Torr. If the degree of vacuum is less than 10 -5 , not only the N content is small in the composition of Sm 2 Fe 17 N x but also oxides may be formed. When the degree of vacuum is higher than 10 -7 Torr, the magnetic properties of the Sm 2 Fe 17 N x thin film are Good, but the deposition rate is too slow, and also the production capacity is low, which is a problem of economic efficiency. In addition, the energy source of the laser is KrF or Nd-YAG laser is recommended because it is easy to control the thickness of the nano-scale thin film and advantageous technology for controlling the alloy composition.

그리고, 레이저빔의 에너지밀도(beam energy dencity)는 100-250 J/㎠의 범위가 바람직한데, 그 이유는 레이저 비 에너지가 100 J/cm2이하이면 자성박막의 성장이 느리고 생산성이 없으며, 250 J/cm2이상이면 성장된 박막의 표면거칠기가 불량하여 실제활용에 어려움이 있을 수 있다.And, the energy density of the laser beam (beam energy dencity) is preferably in the range of 100-250 J / ㎠, the reason is that when the laser specific energy of 100 J / cm 2 or less, the growth of the magnetic thin film is slow and there is no productivity, 250 If J / cm 2 or more may be difficult to practical use because the surface roughness of the grown thin film is poor.

또한, 레이져 펄스주파수는 주로 10-50 Hz 범위를 사용하는데, 그 이유는 10 Hz 이하를 사용할 때는 자성박막의 조성이 일치하지 않고, 50 Hz 이상일 경우 자성박막의 조성 및 표면거칠기가 불량해 진다. 레이저 증착시 레이저 빔이 일정부분에만 조사(ablated)되는 것을 방지하기 위해 증착시 타겟과 기판은 회전하는 것이 바람직하다. 회전속도는 3∼5rpm이 바람직한데, 이는 회전속도가 3rpm미만이면 성장하는 박막의 조성이 지역별로 불균질하며, 그리고, 5rpm 보다 빠르면 박막의 성장속도 제어가 힘들어 진다.In addition, the laser pulse frequency is mainly used in the range of 10-50 Hz, the reason is that the composition of the magnetic thin film does not match when using less than 10 Hz, the composition and surface roughness of the magnetic thin film is poor. In order to prevent the laser beam from being irradiated to only a portion of the laser deposition, the target and the substrate are preferably rotated during deposition. The rotational speed is preferably 3 to 5rpm. If the rotational speed is less than 3rpm, the composition of the growing thin film is heterogeneous by region, and if it is faster than 5rpm, it is difficult to control the growth rate of the thin film.

기판에 Sm2Fe17을 증착할 때 증착실내 N2가스 분위기를 조성하면 증착과정에서 Sm2Fe17에 N의 조성치를 높일 수 있다는 측면에서 바람직하다. 이때의 N2가스 분압은 0.5-0.9기압으로 하는 것이 바람직한데, 그 이유는 N2가스의 분압이 0.5기압 미만의 경우에는 N 함유량에 전혀 이득이 없고, 0.9기압보다 높은 경우에는 레이저 진공증착실의 진공유지가 어렵게 된다. 증착시 기판의 온도는 자성체 물질의 최적집합조직(texture)을 조성하기 위해 실온으로 하여 증착하는 것이 바람직하다.When depositing Sm 2 Fe 17 on the substrate, it is preferable to form an N 2 gas atmosphere in the deposition chamber in order to increase the composition of N in Sm 2 Fe 17 during the deposition process. At this time, the N 2 gas partial pressure is preferably 0.5-0.9 atm. The reason is that when the partial pressure of N 2 gas is less than 0.5 atm, there is no gain in N content at all. It is difficult to maintain vacuum. The temperature of the substrate during the deposition is preferably deposited at room temperature in order to form the optimum texture of the magnetic material.

상기와 같이 기판에 Sm2Fe17을 증착한 다음에 질화처리한다. 질화처리는 N2가스 분위기로 500∼700℃에서 가열한다. 열처리온도가 500℃ 미만이면 N2가스의 확산운동이 불충분하여 N의 조성이 최적 자기특성을 얻는데 불충분하며, 700℃ 보다 높을 때에는 자성체 내의 결정립이 과성장하여 보자력이 감소하는 역효과를 초래한다. 본 발명의 질화처리 과정에서는 자장을 외부에서 부하함으로써 자성박막 내에 존재하는 Sm2Fe17Nx(x≤3) 결정입자들의 자화용이축(easy magnetization axis)이 자장방향으로 배열 및 성장하여 자기이방성(magnetic anisotropy)이 면방향(in-plane)으로 배열되는 효과를 얻을 수 있다. 이와 같이 자성체 박막의 결정립이 집합조직을 갖기 위해 열처리 과정중 외부에서 자장을 부하하는데, 외부자장은 박막의 면방향과 평행하게 인가하며, 자장력은 3KOe이상으로 클수록 좋으나, 3-10KG정도면 충분하다. 한편, 증착과정에서도 외부자장을 걸어줄 수 있다.Sm 2 Fe 17 is deposited on the substrate as described above and then nitrided. The nitriding treatment is heated at 500 to 700 ° C. in an N 2 gas atmosphere. If the heat treatment temperature is less than 500 ° C., the diffusion of N 2 gas is insufficient, so that the composition of N is insufficient to obtain optimum magnetic properties. If the heat treatment temperature is higher than 700 ° C., the grains in the magnetic body grow excessively, and the coercive force decreases. In the nitriding process of the present invention, an easy magnetization axis of Sm 2 Fe 17 Nx (x≤3) crystal grains present in the magnetic thin film is arranged and grown in a magnetic field direction by externally loading a magnetic field. Magnetic anisotropy can be obtained in an in-plane arrangement. As such, the magnetic grains are magnetically loaded from the outside during the heat treatment process in order to have the aggregate structure. The external magnetic field is applied in parallel with the plane direction of the thin film, and the magnetic field force is higher than 3 KOe. Do. On the other hand, it is possible to apply an external magnetic field in the deposition process.

박막형 영구자석의 면방향에서 발생하는 강력한 자기장은 마이크로 모터, 마이크로 센서, 고밀도 기록용 자기헤드 등의 바이아싱(biasing)용으로 활용이 가능하다.The strong magnetic field generated in the plane direction of the thin-film permanent magnet can be used for biasing such as a micro motor, a micro sensor, and a high density recording magnetic head.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

Sm2Fe17조성의 타겟을 진공의 증착실내 타겟홀더(target holder)에 장착하고 Si(001) 기판을 타겟과의 거리를 5cm로 유지하면서 각 타겟 및 기판을 3.5rpm의 회전속도로 회전시켰다. 레이져 증착전에 증착실의 진공도를 3×10-5Torr로 유지한 후 증착실내로 N2개스를 불어 넣어 증착실의 압력이 0.9기압이 되도록 유지하였다. Si(100) 기판의 온도는 실온으로 유지하면서 Sm2Fe17박막이 두께 50nm까지 성장하도록 레이져 펄스를 10Hz로 고정하였다. 상기와 같이 성장한 Sm2Fe17의 박막은 진공열처리로에서 질화를 시키기 위해 진공로내 온도를 500℃로 고정하고 순도 99.99%이상의 질소가스를 열처리로 내에 불어 넣어 각각 0.75, 1, 1.5, 2.5 및 5기압으로 구별하여 1시간동안 열처리를 실시하였다. 열처리하는 동안 열처리로 밖에서 시편의 면방향과 평행되게 자장을 걸어 주었으며 이때 사용한 자장력은 4kG였다. 질화처리가 끝난 각각의 시편들은 진동시료자력계(Vibrating sample magnetometer)를 사용하여 최대 19kG의 자장에서 시편의 면방향으로 자기특성을 조사하였다. 측정된 결과를 도 2에 정리하였다.A target of Sm 2 Fe 17 composition was mounted in a vacuum target holder and the Si (001) substrate was rotated at a rotational speed of 3.5 rpm while maintaining a distance of 5 cm from the target. The vacuum degree of the deposition chamber was maintained at 3 × 10 −5 Torr before laser deposition, and then N 2 gas was blown into the deposition chamber to maintain the pressure of the deposition chamber at 0.9 atm. The laser pulse was fixed at 10 Hz so that the Sm 2 Fe 17 thin film was grown to 50 nm in thickness while maintaining the temperature of the Si (100) substrate. The thin films of Sm 2 Fe 17 grown as described above were fixed in a vacuum furnace at 500 ° C. to be nitrided in a vacuum heat treatment furnace, and nitrogen gas having a purity of 99.99% or higher was blown into the heat treatment furnace, respectively, 0.75, 1, 1.5, 2.5, and Heat treatment was performed for 1 hour at 5 atmospheres. During the heat treatment, the magnetic field was applied parallel to the plane direction of the specimen outside the heat treatment furnace, and the magnetic field force used was 4 kG. Each nitriding specimens were examined with magnetic properties in the plane direction of the specimen at a maximum magnetic field of 19kG using a Vibrating sample magnetometer. The measured results are summarized in FIG. 2.

도 2에서와 같이 0.75 및 1기압의 N2분압을 사용하여 질화처리된 시편은 질화의 정도가 미미하여 아직은 Sm2Fe17Nx가 생성을 하지 않았다. 따라서, 보자력(Coercivity:Hc)은 Sm2Fe17상의 특성인 약자성으로 200-300 Oe수준을 보이고있으며, 포화자화(saturation magnetization:4πMs)는 7kG 수준을 믿돌고 있다. 그러나, N2분압이 1.5, 3기압 등으로 증가하면 Sm2Fe17상은 완연히 Sm2Fe17Nx상으로 변환하여 강자성을 띄게 됨을 알 수 있다. 그리하여 보자력은 500 Oe 범위로 상승하고 포화자화력은 10kG이상을 유지함을 알 수 있다.FIG using 0.75, and N 2 partial pressure of 1 atmosphere, as in the second specimen, the degree of nitriding nitride mimihayeo yet Sm 2 Fe 17 N x, did not produce a. Therefore, Coercivity (Hc) is a weak magnetic property of Sm 2 Fe 17 phase shows 200-300 Oe level, saturation magnetization (4πMs) is believed to 7kG level. However, when the N 2 partial pressure increases to 1.5, 3 atm, etc., it can be seen that the Sm 2 Fe 17 phase is completely converted to the Sm 2 Fe 17 N x phase to become ferromagnetic. Thus, it can be seen that the coercive force rises to the 500 Oe range and the saturation magnetization force is maintained above 10 kG.

[실시예 2]Example 2

Sm2Fe17조성의 타겟을 진공의 레이저 증착실내 타겟홀더(target holder)에 장착하고 Si(001) 기판을 타겟과의 거리를 5cm로 유지하면서 각 타겟 및 기판을 3.5rpm의 회전속도로 회전시켰다. 레이져 증착전에 증착실의 진공도를 3×10-5Torr로 유지한 후 증착실내로 N2가스를 불어 넣어 증착실의 압력이 0.9기압이 되도록 유지하였다. Si(100) 기판의 온도는 실온으로 유지하면서 레이져 펄스를 10Hz로 고정하였다. 상기와 같이 증착조건을 고정하고 박막의 두께를 각각 50, 120, 190 및 300nm로 구별하여 성장시킨 Sm2Fe17의 박막은 진공열처리로에서 질화를 시키기 위해 진공로내 온도를 500℃로 고정하고 순도 99.99%이상의 질소가스를 열처리로 내에 불어 넣어 N2분압을 5기압으로 고정하고 1시간동안 열처리를 실시하였다. 열처리하는 동안 열처리로 밖에서 시편의 면방향과 평행되게 자장을 걸어 주었으며 이때 사용한 자장력은 4kG였다. 질화처리가 끝난 각각의 시편들은 실시예 1과 동일한 방법으로 측정하여 그 결과를 도 3에 정리하였다.The target of Sm 2 Fe 17 composition was mounted in a vacuum target holder in a vacuum deposition chamber, and the Si (001) substrate was rotated at a rotational speed of 3.5 rpm while maintaining a distance of 5 cm from the target. . Before the laser deposition, the vacuum of the deposition chamber was maintained at 3 × 10 −5 Torr, and N 2 gas was blown into the deposition chamber to maintain the pressure of the deposition chamber at 0.9 atm. The laser pulse was fixed at 10 Hz while maintaining the temperature of the Si (100) substrate at room temperature. The thin film of Sm 2 Fe 17 grown by fixing the deposition conditions as described above and dividing the thickness of the thin film into 50, 120, 190 and 300 nm, respectively, fixed the temperature in the vacuum furnace at 500 ° C. for nitriding in the vacuum heat treatment furnace. Nitrogen gas with a purity of 99.99% or more was blown into the heat treatment furnace, and the N 2 partial pressure was fixed at 5 atmospheres, followed by heat treatment for 1 hour. During the heat treatment, the magnetic field was applied parallel to the plane direction of the specimen outside the heat treatment furnace, and the magnetic field force used was 4 kG. Each of the specimens subjected to nitriding treatment was measured in the same manner as in Example 1, and the results are summarized in FIG. 3.

도 3에 나타난 바와 같이, 500℃에서 N2분압을 5기압으로 하고 1시간 열처리했을 때는 완전히 Sm2Fe17Nx조성으로 변화하였음을 확인하였다. 그러나, 증착시간을 오래하여 박막의 두께가 두터워질수록 Sm2Fe17Nx박막의 포화자화력 및 잔류자속밀도은 계속 증가하여 각각 10에서 13kG이상과 2.5에서 11.5kG까지 상승함을 알 수 있으나, 반대로 보자력은 두께에 따라 점차 감소하여 500 Oe 수준까지 하락함을 알 수 있다. 이는 Sm2Fe17Nx자성박막의 자화용이축(또는 자기이방화축)이 두께가 50nm이하에서는 면방향으로 누워 있으나, 두께가 증가할수록 자화용이축이 면방향으로 수직방향으로 변화함을 보여주는 증거이다. 따라서, 본 발명이 요하는 목표중의 하나인 자기이방성이 면방향으로 보유한 박막을 제조하기 위해서는 자성체 박막의 두께를 적절히 제어할 필요가 있음을 알 수 있다.As shown in FIG. 3, when the N 2 partial pressure was set to 5 atmospheres at 500 ° C. and heat treated for 1 hour, it was confirmed that the composition was completely changed to Sm 2 Fe 17 N x . However, as the deposition time increases and the thickness of the thin film becomes thicker, the saturation magnetization and residual magnetic flux density of the Sm 2 Fe 17 N x thin film continue to increase, increasing from 10 to 13 kG and 2.5 to 11.5 kG, respectively. On the contrary, the coercive force gradually decreases with thickness and drops to 500 Oe. This is evidence that the magnetization biaxial axis (or magnetic anisotropy axis) of Sm 2 Fe 17 N x magnetic thin film lies in the plane direction when the thickness is less than 50 nm, but as the thickness increases, the axis of magnetization changes in the vertical direction in the plane direction. to be. Therefore, it can be seen that it is necessary to appropriately control the thickness of the magnetic thin film in order to manufacture the thin film having the magnetic anisotropy held in the plane direction, which is one of the objectives of the present invention.

[실시예 3]Example 3

실시예 2에서 얻은 시편의 자기측정을 각각 시편의 면방향 및 수직방향으로 실시하고 그 결과를 도 4에 정리하였다.Magnetic measurements of the specimens obtained in Example 2 were carried out in the plane and vertical directions of the specimens, respectively, and the results are summarized in FIG. 4.

도 4에 나타난 바와 같이, 자성박막의 두께가 50nm에서 300nm 범위로 증가할수록 면방향에서 측정된 보자력은 급속히 감소하여 550 Oe에서 100 Oe이하로 감소하는 반면, 수직방향에서 측정된 보자력은 변함없이 450∼550 Oe수준을 유지한다. 따라서, Sm2Fe17Nx질화를 나노(nano) 스케일의 영구자석 박막은 면 방향의 자기이방성의 필요한 경우 박막의 두께를 50nm이하에서 사용해야 함을 알 수 있다.As shown in FIG. 4, as the thickness of the magnetic thin film increases from 50 nm to 300 nm, the coercivity measured in the plane direction decreases rapidly and decreases from 550 Oe to 100 Oe or less, while the coercive force measured in the vertical direction remains 450 Maintain a level of 550 Oe. Therefore, it can be seen that the Sm 2 Fe 17 N x nitrided permanent magnet thin film of the nanoscale should use the thickness of the thin film below 50 nm if necessary for magnetic anisotropy in the plane direction.

상술한 바와 같이, 본 발명은 각종 마이크로 머샌 및 그 응용부품, 각종 마이크로 모터, 마이크로 센서 및 고밀도 read head용 바이아싱(biasing)용 영구자석 박막소재로서 Sm2Fe17Nx조성의 자성체 박막은 향후 첨단 정보 통신 및 구동부품에서 용도가 활성화될 것으로 기대된다.The invention various micro meosaen and Application Part, and various micro-motors, micro-sensors and high-density as a read permanent magnet thin film material for Bahia Singh (biasing) head Sm 2 Fe 17 N x magnetic material thin film of the composition as described above for the next It is expected to be used in advanced information communication and driving parts.

Claims (8)

진공의 증착실내에서 Sm2Fe17의 타겟에 레이저빔을 조사하여 기판상에 Sm2Fe17의 박막을 10-300nm의 두께로 증착하는 단계;Irradiating a laser beam on a target of Sm 2 Fe 17 in a vacuum deposition chamber to deposit a thin film of Sm 2 Fe 17 on a substrate with a thickness of 10-300 nm; Sm2Fe17의 박막이 증착된 기판을 2∼5기압의 N2분압으로 450∼550℃의 온도에서 질화열처리하여 Sm2Fe17Nx(x≤3)의 질화자성체 박막을 얻는 단계를 포함하여 이루어지는 질화처리에 의한 Sm-Fe-N계 영구자석박막의 제조방법.A step of obtaining a nitride magnetic thin film of Sm 2 Fe 17 Nx (x ≦ 3) by subjecting the substrate on which the thin film of Sm 2 Fe 17 is deposited to a temperature of 450 to 550 ° C. at a N 2 partial pressure of 2 to 5 atmospheres; A method for producing a Sm-Fe-N based permanent magnet thin film by nitriding treatment. 제 1항에 있어서, 상기 증착실의 진공도는 10-5∼10-7Torr임을 특징으로 하는 질화처리에 의한 Sm-Fe-N계 영구자석박막의 제조방법.The method of claim 1, wherein the vacuum degree of the deposition chamber is 10 -5 to 10 -7 Torr. 제 1항에 있어서, 상기 증착실은 N2분압이 0.5-0.9기압임을 특징으로 하는 질화처리에 의한 Sm-Fe-N계 영구자석박막의 제조방법The method of claim 1, wherein the deposition chamber has a N 2 partial pressure of 0.5-0.9 atm, wherein the Sm-Fe-N-based permanent magnet thin film is manufactured by nitriding treatment. 제 1항에 있어서, 상기 레이저빔의 에너지밀도는 100∼250J/Cm2임을 특징으로 하는 질화처리에 의한 Sm-Fe-N계 영구자석박막의 제조방법 .The method of claim 1, wherein the energy density of the laser beam is 100 ~ 250J / Cm 2 The method of manufacturing a Sm-Fe-N-based permanent magnet thin film by the nitriding treatment. 제 1항에 있어서, 상기 레이저의 펄스주파수는 10∼50Hz임을 특징으로 하는질화처리에 의한 Sm-Fe-N계 영구자석박막의 제조방법 .The method according to claim 1, wherein the pulse frequency of the laser is 10 to 50 Hz. 제 1항에 있어서, 상기 기판과 타겟은 3∼5rpm으로 회전함을 특징으로 하는 질화처리에 의한 Sm-Fe-N계 영구자석박막의 제조방법 .The method of claim 1, wherein the substrate and the target is rotated at 3 to 5rpm, characterized in that the Sm-Fe-N-based permanent magnet thin film by the nitriding treatment. 제 1항에 있어서, 상기 기판은 (001)Si, Al2O3단결정 또는 다결정임을 특징으로 하는 질화처리에 의한 Sm-Fe-N계 영구자석박막의 제조방법.The method of claim 1, wherein the substrate is (001) Si, Al 2 O 3 single crystal or polycrystalline method of producing a Sm-Fe-N-based permanent magnet thin film by the nitriding treatment. 제 1 내지 제 7항에 있어서, 상기 열처리는 3KOe이상의 외부자장을 Sm2Fe17의 박막이 증착된 기판의 면방향과 평행하게 인가하면서 행함을 특징으로 하는 질화처리에 의한 Sm-Fe-N계 영구자석박막의 제조방법 .8. The Sm-Fe-N system according to claim 1, wherein the heat treatment is performed while applying an external magnetic field of 3 KOe or more in parallel with the surface direction of the substrate on which the Sm 2 Fe 17 thin film is deposited. Method for manufacturing permanent magnet thin film.
KR1020000057885A 2000-10-02 2000-10-02 Method of fabricating Sm-Fe-N magnetic thin films by nitriding KR20020026664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000057885A KR20020026664A (en) 2000-10-02 2000-10-02 Method of fabricating Sm-Fe-N magnetic thin films by nitriding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000057885A KR20020026664A (en) 2000-10-02 2000-10-02 Method of fabricating Sm-Fe-N magnetic thin films by nitriding

Publications (1)

Publication Number Publication Date
KR20020026664A true KR20020026664A (en) 2002-04-12

Family

ID=19691471

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000057885A KR20020026664A (en) 2000-10-02 2000-10-02 Method of fabricating Sm-Fe-N magnetic thin films by nitriding

Country Status (1)

Country Link
KR (1) KR20020026664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246685A (en) * 2019-07-17 2019-09-17 徐靖才 A kind of preparation method of samarium ferromagnetic phase

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246685A (en) * 2019-07-17 2019-09-17 徐靖才 A kind of preparation method of samarium ferromagnetic phase

Similar Documents

Publication Publication Date Title
US20050163037A1 (en) Magnetic anisotropy of soft-underlayer induced by magnetron field
JP2957421B2 (en) Thin film magnet, method of manufacturing the same, and cylindrical ferromagnetic thin film
KR910007776B1 (en) Magnetic media producing method
FI57673B (en) MAGNETIC DOMAINING
KR20020026664A (en) Method of fabricating Sm-Fe-N magnetic thin films by nitriding
JPS5963026A (en) Vertical magnetic recording medium
JPH1097707A (en) Production of soft magnetic thin film
Nikitin et al. Deposition of thin ferromagnetic films for application in magnetic sensor microsystems
JPH08180360A (en) Perpendicular magnetic recording medium and magnetic recorder
KR100305699B1 (en) Manufacturing Method of Ultrafine Permanent Magnet Thin Film of Niodymium Iron Boron / Iron / Niodymium Iron Boron Thin Film Structure
JPH0721544A (en) Magnetic recording medium and its production
JP2636860B2 (en) Method for manufacturing thin film for magneto-optical recording
JPH0252415A (en) Formation of magnetic thin film having uniaxial anisotropy
KR0169583B1 (en) Method for fabricating epitaxial yig thin film
KR100285352B1 (en) Manufacturing method of ultra fine grain permanent magnet thin film of iron boron compound / niodymium iron boron / iron boron compound thin film structure
JPH11288812A (en) High coercive force r-irone-b thin-film magnet and manufacture thereof
JPH0214895A (en) Thin film with ultrafine columnar crystal structure
JPH11256316A (en) Method for controlling crystal bearing of vapor deposited film by magnetic field
JPS63228443A (en) Production of magneto-optical recording material
JP2752199B2 (en) Magnetic head
KR100262673B1 (en) Fabrication Method of Nd-Fe-B hard magnetic thin flim
JPS63259072A (en) Method for controlling uniaxial magnetic anisotropy of amorphous soft magnetic material
CN110747440A (en) Ultra-low magnetic damping soft magnetic CoFeMnSi alloy film and preparation method thereof
JPH03162736A (en) Production of magneto-optical recording medium
JPS60187008A (en) Vertically magnetized magnetic thin-film

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid