KR100305699B1 - Manufacturing Method of Ultrafine Permanent Magnet Thin Film of Niodymium Iron Boron / Iron / Niodymium Iron Boron Thin Film Structure - Google Patents

Manufacturing Method of Ultrafine Permanent Magnet Thin Film of Niodymium Iron Boron / Iron / Niodymium Iron Boron Thin Film Structure Download PDF

Info

Publication number
KR100305699B1
KR100305699B1 KR1019980058542A KR19980058542A KR100305699B1 KR 100305699 B1 KR100305699 B1 KR 100305699B1 KR 1019980058542 A KR1019980058542 A KR 1019980058542A KR 19980058542 A KR19980058542 A KR 19980058542A KR 100305699 B1 KR100305699 B1 KR 100305699B1
Authority
KR
South Korea
Prior art keywords
layer
ndfeb
thin film
substrate
target
Prior art date
Application number
KR1019980058542A
Other languages
Korean (ko)
Other versions
KR20000042377A (en
Inventor
김상원
양충진
Original Assignee
신현준
재단법인 포항산업과학연구원
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신현준, 재단법인 포항산업과학연구원, 박호군, 한국과학기술연구원 filed Critical 신현준
Priority to KR1019980058542A priority Critical patent/KR100305699B1/en
Publication of KR20000042377A publication Critical patent/KR20000042377A/en
Application granted granted Critical
Publication of KR100305699B1 publication Critical patent/KR100305699B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation

Abstract

본 발명은 레이져 어블레이션(laser ablation)법으로 Fe를 연자성층으로 사용한 NdFeB/Fe/NdFeB 구조의 초미세립 영구자석박막의 제조방법 관한 것으로, 레이져 어블레이션법을 이용하여 3층박막을 제조하는 방법에 있어서, 경자성층의 증착을 위하여 조성이 원자퍼센트(at.%)로 NdXFe90.98-XB9.02(25≤X≤32)인 NdFeB계 타겟과 연자성층의 증착을 위하여 순철(Fe) 타겟이 장착된 진공상태의 반응실내에서 단결정 (100)Si 기판온도를 620℃ 이상의 온도로 가열하는 단계와; NdFeB계 타겟, 순철 타겟 및 (100)Si 기판을 회전시킨 후 KrF 레이저 빔을 3.08 J/cm2의 에너지밀도 범위로 상기의 2가지 타겟에 교대로 시간동안 조사하여 상기 기판상에 경자성을 나타내는 제1층으로 두께 3.6∼54 나노미터(nm)의 NdFeB계 박막을 증착하고, 그 위에 제2층으로 두께 15∼112 나노미터의 연자성 순철 박막을 증착한 후 그 위에 다시 제1층과 동일한 두께로 제어된 3.6∼54 나노미터의 경자성 NdFeB계 박막을 증착하여 3층막을 형성시키는 단계와; 3층막 증착된 (100)Si 기판을 분당 3∼5oC의 냉각속도로 냉각하는 단계를 포함하여 구성됨을 특징으로 하는 NdFeB/Fe/NdFeB 구조의 초미세립 영구자석박막의 제조방법.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultrafine grain permanent magnet thin film having an NdFeB / Fe / NdFeB structure using Fe as a soft magnetic layer by a laser ablation method. the method, a composition for deposition of the magnetic layer around atomic percent (at.%) to Nd X Fe 90.98-X B 9.02 (25≤X≤32) of NdFeB-based targets and for the deposition of the soft magnetic pure iron (Fe) target Heating the single crystal (100) Si substrate temperature to a temperature of 620 ° C. or higher in the reaction chamber in a vacuum; After rotating the NdFeB-based target, the pure iron target and the (100) Si substrate, KrF laser beams were alternately irradiated to the above two targets in an energy density range of 3.08 J / cm 2 for a period of time showing hard magnetism on the substrate. Depositing a NdFeB-based thin film having a thickness of 3.6 to 54 nanometers (nm) with a first layer, and depositing a soft magnetic pure iron thin film having a thickness of 15 to 112 nanometers with a second layer thereon, and then again having the same layer as that of the first layer. Depositing a 3.6-54 nanometer hard magnetic NdFeB-based thin film controlled in thickness to form a three-layer film; A method of manufacturing an ultrafine grain permanent magnetic thin film having a NdFeB / Fe / NdFeB structure, comprising: cooling a three-layer deposited (100) Si substrate at a cooling rate of 3 to 5 ° C. per minute.

Description

니오디뮴철붕소/철/니오디뮴철붕소 박막구조의 초미세립 영구자석박막의 제조방법Manufacturing method of ultra fine grain permanent magnet thin film of niobium iron boron / iron / niodymium iron boron thin film structure

본 발명은 레이져 어블레이션(laser ablation)법으로 Fe를 연자성층으로 사용한 NdFeB/Fe/NdFeB 구조의 초미세립 영구자석박막의 제조방법 관한 것으로, 특히 반응실 내부에 장착된 타겟에 엑시머 레이저빔을 조사하여 박막을 제조하는 레이져 어블레이션을 적용함으로써 공정변수 및 박막의 두께를 적절히 제어하여 교환상호작용의 유도를 통해 보자력과 잔류자화값을 동시에 증가시키는 NdFeB/Fe/NdFeB 3층구조의 초미세립 영구자석박막 생산시 저가로 가장 일반적으로 사용할 수 있는 (100)Si 기판위에 형성시킬 수 있도록 한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultrafine grain permanent magnet thin film having an NdFeB / Fe / NdFeB structure using Fe as a soft magnetic layer by laser ablation, and in particular, irradiating an excimer laser beam to a target mounted inside a reaction chamber. By applying laser ablation to produce thin films, the ultrafine grain permanent magnet of 3-layer structure of NdFeB / Fe / NdFeB which simultaneously increases coercive force and residual magnetization value through induction of exchange interaction by controlling process variables and thickness of thin film It can be formed on the (100) Si substrate which is the most commonly used at low cost in thin film production.

1983년 탁월한 경자기특성(hard magnetic properties)을 나타내는 3원 Nd2Fe14B상을 기반으로 하는 벌크(bulk)영구자석합금의 발견이래, 경자기특성 발현기구의 해명과 제조공정의 최적조건을 도출하고자 하는 연구가 활발하게 수행되어왔다.Since 1983, the discovery of bulk permanent magnetic alloys based on three-way Nd 2 Fe 14 B phase exhibiting excellent hard magnetic properties, The research to be derived has been actively conducted.

한편 1988년에는 종래의 Nd2Fe14B상을 기반으로 하는 벌크(bulk)영구자석합금의 특성보다는 다소 열악하지만 페라이트 영구자석보다는 특성이 양호하면서도 제조원가를 대폭 줄일 수 있는 초미세립 복합상 영구자석에 대한 연구가 활발하게 진행되고 있다(R.Coehoorn, D.B.de Mooij, J.P.W.B. Duchateau, and K.H.J.Buschow : J.de Phys., 49, (1988)C8-669, E.F.Kneller and R.Hawig : IEEE Trans. Magn., 27, (1991)3583, S.Hirosawa, H.Kanekiyo, and M.Uehara : J. Appl. Phys., 73, (1993)6488, R.K.Mishra and V.Panchanathan : J. Appl. Phys., 75, (1994)6652, C.J.Yang and E.B.Park : J. Magn. Magn. Mat., 80, (1997)101, J.Ding, P.G.McCormic, and R.Street : J. Magn. Magn. Mat., 124, (1994)1, J.Ding, Y.Liu, R.Street, and P.G.McCormic : J. Appl. Phys., 72, (1994)1032).On the other hand, in 1988, it was slightly inferior to the characteristics of the bulk permanent magnet alloy based on the conventional Nd 2 Fe 14 B phase, but it was better than the ferrite permanent magnet, but better than the ferrite permanent magnet. (R. Coehoorn, DBde Mooij, JPWB Duchateau, and KHJ Buschow: J.de Phys., 49, (1988) C8-669, EFKneller and R. Hawig: IEEE Trans. Magn., 27) , (1991) 3583, S.Hirosawa, H.Kanekiyo, and M. Uehara: J. Appl. Phys., 73, (1993) 6488, RKMishra and V. Panchanathan: J. Appl. Phys., 75, (1994 6652, CJ Yang and EBPark: J. Magn. Magn. Mat., 80, (1997) 101, J. Ding, PGMcCormic, and R. Street: J. Magn. Magn. Mat., 124, (1994) 1, J. Ding, Y. Liu, R. Street, and PGMcCormic: J. Appl. Phys., 72, (1994) 1032).

초미세립 복합상 영구자석은 재료 내부에 경자기 특성을 나타내는 나노미터 사이즈(nanometer size)의 Nd2Fe14B상과 낮은 가격의 재료로 연자기 특성을 나타내는 Fe, Fe3B상을 일정체적비 이상으로 동시에 생성시켜 경,연자성 결정립간에 교환상호작용(exchange coupling)을 유도시킴으로써 높은 잔류자화값과 높은 보자력을 동시에 실현시켜 높은 에너지적((BH)max)을 나타내도록 한 것이다.The ultrafine composite permanent magnet has a nanometer-sized Nd 2 Fe 14 B phase that exhibits hard magnetic properties and a low-cost Fe, Fe 3 B phase that exhibits soft magnetic properties. By generating exchange coupling between hard and soft magnetic grains simultaneously, high residual magnetization value and high coercive force are realized simultaneously to show high energy ((BH) max ).

그러나 최근에 MMIC(monolithic microwave integrated circuit)의 진보로 마이크로파 장비가 소형 및 경량화 됨에 따라 효율적 MMIC화를 위한 바이어스(bias) 자장용 자석으로서의 혹은 마이크로모터 (micromotor)와 마이크로액츄에이더(microactuator)등과 같은 마이크로기계 및 마이크로전자 (micromechanics 및 microelectronics)분야에서의 활용에 대한 기대로 관심이 고조되는 상기의 영구자석재료에 대한 박막화에 관한 연구는 벌크에 비하여 상대적으로 많지 않으며 특히 초미세립 영구자석박막의 제조에 관한 연구는 드물다.Recent advances in monolithic microwave integrated circuits (MMICs), however, have led to the miniaturization and lightweighting of microwave equipment, as magnets for bias magnetic fields for efficient MMICs, such as micromotors and microactuators. Research on thinning of the permanent magnet material, which is of interest due to the expectation of application in the field of micromechanics and microelectronics (micromechanics and microelectronics), is relatively less than bulk, and especially in the manufacture of ultrafine permanent magnet thin film. There is rare research on this.

종래의 NdFeB계 박막 제조방법으로서 스퍼터링(sputtering)법이 주로 이용되어졌다(F.J.Cadieu, T.D.Cheung, L.Wickramasekara and N.Kamprath: IEEE Trans. Mag. Mag-22 (1986) p752, K.D.Aylesworth, Z.R.Zhao, D.J.Sellmyer and G.C.Hadjipanayis: J. Appl. Phys. 64,(1988) p.5742, S.M.Parhofer, J.Wecker, G.Gieres and L.Schultz: IEEE Trans. Mag. Mag-32(5) (1966) p.4437)The sputtering method has been mainly used as a conventional NdFeB-based thin film manufacturing method (FJCadieu, TDCheung, L. Wickramasekara and N. Kamprath: IEEE Trans. Mag. Mag-22 (1986) p752, KDAylesworth, ZR Zhao, DJSellmyer and GCHadjipanayis: J. Appl. Phys. 64, (1988) p.5742, SM Parhofer, J. Wecker, G.Gieres and L. Schultz: IEEE Trans. Mag. Mag-32 (5) ( 1966) p.4437)

그러나 이 방법들은 반응실 내부에 에너지원이 존재함으로 장치가 비교적 복잡하며 타겟을 이루는 개개 원소의 스퍼터율 (sputtering yield)이 다르므로 제조공정상 NdFeB와 같은 삼원이상의 합금박막의 제조에 있어서 정확한 조성제어가 곤란하다.However, these methods are relatively complex due to the presence of energy sources inside the reaction chamber, and the sputtering yields of the individual elements of the target are different. Therefore, accurate composition control in the production of three or more alloy thin films such as NdFeB in the manufacturing process is difficult. It is difficult.

본 발명의 목적은 상기 박막 제조법의 문제점 해결에 상대적으로 유리한, 최근에 그 방법이 개발된 반응실 내부에 장착된 타겟에 엑시머 레이저빔(excimer laser beam)을 조사하여 박막을 제조하는 레이져 어블레이션(laser ablation)법 (S.B.Krupanidhi, N.Maffei, D.Roy and C.J.Peng : J. Vac. Sci. Technol. A10 (4), (1992) p.1815, K.Tanaka, Y.Omata, Y.Nishikawa, Y.Yoshida, K.Nakamura:IEEE Trans.Journal on Magnetics in Japan. 6,11(1991) P.1001, R.Seed and C.Vittoria : IEEE Trans. Mag. 28, 5 (1992) P.3216)을 적용함으로써 공정변수 및 박막의 두께를 적절히 제어하여 교환상호작용의 유도를 통해 보자력과 잔류자화값을 동시에 증가시키는 NdFeB/Fe/NdFeB 3층구조의 초미세립 영구자석박막을 대량생산시 저가로 가장 일반적으로 사용할 수 있는 (100)Si 기판위에 형성시키고자 하는데 있다.It is an object of the present invention to irradiate an excimer laser beam to a target mounted inside a reaction chamber in which the method is recently developed, which is relatively advantageous for solving the problems of the thin film manufacturing method. laser ablation method (SBKrupanidhi, N.Maffei, D.Roy and CJPeng: J. Vac.Sci.Technol.A10 (4), (1992) p.1815, K.Tanaka, Y.Omata, Y.Nishikawa , Y. Yoshida, K. Nakamura: IEEE Trans. Journal on Magnetics in Japan. 6, 11 (1991) P. 1001, R. Seed and C. Victoria: IEEE Trans. Mag. 28, 5 (1992) P. 3216 By applying), NdFeB / Fe / NdFeB 3 layer structure ultra fine grain permanent magnet thin film which increases the coercive force and residual magnetism at the same time by controlling the process variables and the thickness of the thin film and inducing exchange interaction, It is intended to be formed on the most commonly used (100) Si substrate.

도 1은 본 발명의 방법에 따라 제조된 NdFeB/Fe/NdFeB계 3층막의 자기특성을 나타낸 그래프1 is a graph showing the magnetic properties of the NdFeB / Fe / NdFeB-based three-layer film prepared according to the method of the present invention

도 2는 본 발명의 방법에 따라 제조된 NdFeB/Fe/NdFeB계 3층막의 자기특성을 나타내는 또다른 그래프Figure 2 is another graph showing the magnetic properties of the NdFeB / Fe / NdFeB-based three-layer film prepared according to the method of the present invention

본 발명은 레이져블 어블레이션법을 이용하여 3층박막을 제조하는 방법에 있어서, 경자성층의 증착을 위하여 조성이 원자퍼센트(at.%)로 NdXFe90.98-XB9.02(25≤X≤32)인 NdFeB계 타겟과 연자성층의 증착을 위하여 순철(Fe) 타겟이 장착된 진공상태의 반응실내에서 단결정 (100)Si 기판온도를 620℃ 이상의 온도로 가열하는 단계 및 NdFeB계 타겟, 순철 타겟 및 (100)Si 기판을 회전시킨 후 KrF 레이저 빔을 3.08 J/cm2의 에너지밀도 범위로 상기의 2 가지 타겟에 교대로 조사하여 상기 기판상에 경자성을 나타내는 제1층으로 Si 기판상에 두께 3.6∼54 나노미터(nm)의 NdFeB계박막을 증착하고, 그 위에 제2층으로 두께 15∼112 나노미터(nm)의 연자성 순철 박막을 증착한 후 그 위에 다시 제1층과 동일한 두께로 제어된 3.6∼54 나노미터의 경자성 NdFeB계박막을 증착하여 3층막을 형성시키는 단계 및 3층막 증착된 (100)Si 기판을 분당 3∼5℃의 냉각속도로 냉각하는 단계로 이루어진다.The present invention relates to a method for manufacturing a three-layer thin film using the laser ablation method, wherein the composition is Nd X Fe 90.98-X B 9.02 (25≤X≤) in atomic percent (at.%) For deposition of the hard magnetic layer. 32) heating a single crystal (100) Si substrate temperature to a temperature of 620 ° C. or higher in a vacuum reaction chamber equipped with a pure iron (Fe) target to deposit an NdFeB-based target and a soft magnetic layer, and an NdFeB-based target and a pure iron target. And rotating the (100) Si substrate and irradiating the KrF laser beam alternately on the two targets in an energy density range of 3.08 J / cm 2 to the first substrate exhibiting hard magnetism on the substrate. Depositing an NdFeB based thin film having a thickness of 3.6 to 54 nanometers (nm), and depositing a soft magnetic pure iron thin film having a thickness of 15 to 112 nanometers (nm) as a second layer thereon, and then again having the same thickness as that of the first layer. To form a three-layer film by depositing a hard magnetic NdFeB-based thin film of 3.6 to 54 nanometers And cooling the three-layer film deposited (100) Si substrate at a cooling rate of 3 to 5 ° C. per minute.

이와같이 구성된 본 발명의 작용을 설명하면 다음과 같다.Referring to the operation of the present invention configured as described above is as follows.

본 발명은 레이져 어블레이션법을 적용하여 (100)Si 기판을 적어도 620℃ 보다 높은 온도로 가열함이 바람직한데, 그 이유는 그 이하의 온도로 가열하면 3층 구조중 제1층과 제3층의 경자성층을 형성할 NdFeB계 타겟으로부터 어블레이션된 입자가 기판상에서 급냉되어 NdFeB 비정질상(amorphous phase)이 주류를 이루어 박막은 연자기특성(soft magnetic propertes)을 나타냄으로써 보자력(coercivity)이 심각하게 작아지는 등 교환상호작용발현에 악영향을 미쳐 바람직하지 않기 때문이다.In the present invention, the laser ablation method is applied to heat the (100) Si substrate to a temperature higher than at least 620 ° C., because the first layer and the third layer of the three-layer structure are heated when the temperature is lower than that. Absorbed particles from the NdFeB-based target to form the hard magnetic layer of the quenched on the substrate, the NdFeB amorphous phase (mainstream) is the mainstream of the thin film exhibits soft magnetic propertes (coercivity) is significantly small This is because it adversely affects the expression of exchange interactions.

이와같은 (100)Si 기판의 가열온도는 640∼700℃의 온도범위로 함이 보다 바람직한데, 그 이유는 700℃ 이상이 되면 형성된 NdFeB계 박막중 Nd2Fe14B 경자성 결정립이 과도하게 성장하여 오히려 경자기특성에 악영향을 주기 때문이다.The heating temperature of the (100) Si substrate is more preferably in the temperature range of 640 to 700 ° C. The reason is that when the temperature reaches 700 ° C or higher, the Nd 2 Fe 14 B hard magnetic grains grow excessively in the formed NdFeB-based thin film. Rather, because it adversely affects the magnetic properties.

한편 이상과 같이 (100)Si 기판의 가열온도를 640∼700℃의 온도범위로 조절한 후에는 레이져 어블레이션시 타겟의 경제적인 이용 및 균일한 플룸 (plume)을 얻기 위하여 NdFeB계타겟, 순철 타겟 및 증착되는 박막의 두께 균일화를 위하여 (100)Si 기판을 회전시켜 줌이 바람직하며 보다 바람직한 회전속도는 3∼4 rpm 이다.On the other hand, after adjusting the heating temperature of the (100) Si substrate to a temperature range of 640 to 700 ° C., the NdFeB-based target and the pure iron target can be used to obtain economical use of the target during laser ablation and to obtain a uniform plume. And (100) Si substrate is preferably rotated for uniform thickness of the deposited thin film, more preferably 3 to 4 rpm.

상기와 같이 회전되는 NdFeB계타겟과 순철 타겟에 조사되는 KrF 엑시머 레이저빔의 에너지 밀도는 2.75∼3.2 J/cm2범위가 바람직한데, 그 이유는 2.75 J/cm2이하로 되면 제1층의 증착속도는 2.0 Å/S 이하, 제2층의 층착속도는 0.65 Å/S 이하가 되어 소정의 박막 두께로 제조하는데 시간이 길어져 생산성이 떨어져 바람직하지 않으며, 3.5 J/cm2이상이 되면 빠른 증착속도로 인하여 Nd2Fe14B의 결정화가 활발하지 못하여 제1층의 경자기특성에 악영향을 주거나 제1층 혹은 제2층의 표면이 현저하게 거칠어져 3층막 구조에서 교환상호작용 유도가 곤란하기 때문이다.The energy density of the KrF excimer laser beam irradiated to the rotated NdFeB-based target and the pure iron target is preferably 2.75 to 3.2 J / cm 2 , because the deposition of the first layer is less than 2.75 J / cm 2 . rate is 2.0 Å / S or less, cheungchak speed of the second layer is a 0.65 Å / S or less is not desirable the longer the Time productivity for producing a predetermined film thickness away from fast evaporation rate is above 3.5 J / cm 2 Due to the lack of active crystallization of Nd 2 Fe 14 B, it adversely affects the magnetic properties of the first layer or the surface of the first layer or the second layer is remarkably rough, which makes it difficult to induce exchange interaction in the three-layer film structure. to be.

어블레이션시 사용하는 NdFeB계 타겟의 조성은 NdXFe90.98-XB9.02(25≤X≤32)가 바람직한데 25 at.% 이하가 되면 각형성과 보자력특성이 저하되어 연자기특성을 나타내며 32 at.% 이상이 되면 경자기특성은 양호해지나 고가의 희토류원소인 Nd가 다량 필요하게 되므로 경제적으로 불리하기 때문이다.The composition of the NdFeB-based target used in the ablation is preferably Nd X Fe 90.98-X B 9.02 (25≤X≤32). When it is 25 at.% Or less, the angular formation and the coercive force property are deteriorated, indicating soft magnetic properties. If it is more than.%, The light magnetic properties become good, but it is economically disadvantageous because a large amount of expensive rare earth element Nd is required.

그외 Fe 혹은 B가 상대적으로 많이 함유된 타겟을 사용하면 각각 박막중 과잉의 α-Fe가 생성되거나 비정질의 결정화온도를 높이게 되는 결과를 초래하여 경자기특성에 악영향을 주기 때문이다.In addition, the use of a target containing relatively high amounts of Fe or B causes excessive α-Fe in each thin film or increases the amorphous crystallization temperature, which adversely affects the hard magnetic properties.

어블레이션시 3층막의 구조에 있어 연,경자성층간 교환상호작용을 유도하여 보자력 및 잔류자화값을 증가시키기 위하여서는 제2층의 두께를 15∼30 나노미터로 제어하고 3층막의 전체체적에 대한 제2층막의 체적비율이 50∼80%가 되도록 제1층막의 두께를 3.6∼11 나노미터로의 제어가 바람직한데, 제2층의 두께가 15 나노미터 이하가 되면, 제2층막의 체적비율이 최소 50 %를 만족하기 위해서 1층 및 3층의 두께가 4 나노미터 이하가 되어야하는데 막두께가 너무 얇아 균일한 두께의 Nd2Fe14B 막의 형성이 용이하지 않아 경자기 특성의 획득이 용이하지 않기 때문이며, 제2층의 두께가 30 나노미터 이상이 되면 연,경자성층간 교환상호작용이 감소하여 연자성층인 순철의 연자기특성이 나타나 본 발명의 목적에 맞지 않으며, 제2층막의 체적비율이 50% 이하 그리고 80% 이상이 되어도 연,경자성층간 교환상호작용이 감소하여 본 발명의 목적을 달성하는데 불리하기 때문이다.In order to increase the coercive force and residual magnetization value by inducing exchange interaction between soft and hard magnetic layers in the structure of the three-layer film during ablation, the thickness of the second layer is controlled to 15 to 30 nanometers and the total volume of the three-layer film is controlled. It is preferable to control the thickness of the first layer film to 3.6 to 11 nanometers so that the volume ratio of the second layer film to 50 to 80%. When the thickness of the second layer is 15 nm or less, the volume of the second layer film is In order to satisfy the ratio of at least 50%, the thicknesses of the first and third layers should be 4 nanometers or less. The film thickness is so thin that the formation of Nd 2 Fe 14 B films with uniform thickness is not easy to obtain the magnetic properties. If the thickness of the second layer is more than 30 nanometers, the exchange interaction between the soft and hard magnetic layers is reduced, and thus the soft magnetic properties of pure iron, which is a soft magnetic layer, are not suitable for the purposes of the present invention. Volume ratio is less than 50% Be not less than 80% is because soft, hard magnetic interlayer exchange interaction is reduced to a disadvantage in achieving the object of the present invention.

본 발명에서는 상기의 조건으로 NdFeB계 3층막이 증착되면 기판을 분당 3∼5oC의 냉각속도로 냉각함이 바람직한데, 그 이유는 상기 냉각속도가 5℃ 이상으로 빠르면 기판면에서 박막의 박리 및 균열이 유발되고, 3℃ 이하로 늦으면 냉각에 너무 많은 시간이 소요되어 불필요하기 때문이다.In the present invention, when the NdFeB-based three-layer film is deposited under the above conditions, it is preferable to cool the substrate at a cooling rate of 3 to 5 ° C. per minute, because if the cooling rate is higher than 5 ° C., the thin film is separated from the substrate surface. And cracking is caused, and if it is later than 3 ° C, it takes too much time for cooling and is unnecessary.

또한 본 발명에서 사용되는 타겟은 소정의 조성으로 NdFeB 합금 혹은 순철로 플라즈마 아크 용해에 의하여 제작하였으며 타겟의 직경은 20∼50mm이면 바람직하고, 구성원소는 고순도의 것일수록 좋으나 99.9% 이상의 순도를 가지면 바람직하다.In addition, the target used in the present invention was produced by plasma arc melting with NdFeB alloy or pure iron in a predetermined composition, and the diameter of the target is preferably 20 to 50 mm, and the element is preferably high purity, but preferably 99.9% or more. Do.

이와같이 본 발명에 따라 기판온도, 레이저빔에너지밀도, 타겟의 조성 및 각층의 두께를 엄밀히 조절하여 레이져 어블레이션법으로 박막을 성장시키면 교환상호작용이 발현되어 보자력과 잔류자화값이 동시에 증가하는 NdFeB계 초미세립 영구자석박막이 얻어진다.As described above, when the thin film is grown by the laser ablation method by precisely controlling the substrate temperature, the laser beam energy density, the composition of the target, and the thickness of each layer, the exchange interaction is expressed, and the coercive force and residual magnetization value are simultaneously increased. An ultrafine permanent magnet thin film is obtained.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예1]Example 1

레이저 어블레이션 장치의 반응실의 초기진공을 4x10-6Torr 이하로 한 후, 기판온도를 680℃에 도달하게 하여 박막을 제작하였다. 그리고 원판상에 120°간격으로 3종류까지 타겟의 장착이 가능하고 3층막 제작시 제1층에서 3층까지 순서에 따라 증착이 가능하도록 회전이 가능한 타겟홀더에 직경이 50mm, 두께가 5mm인 Nd27.51Fe63.47B9.02타겟과 순철 타겟을 장착하여 어블레이션시의 타겟은 레이저빔 입사방향으로부터 45°기울게 위치되도록 하여 타겟의 회전속도를 3.3rpm으로 하였다.After the initial vacuum of the reaction chamber of the laser ablation apparatus was 4x10 -6 Torr or less, a thin film was prepared by allowing the substrate temperature to reach 680 ° C. Nd with a diameter of 50mm and a thickness of 5mm on a target holder that can be mounted on a disc with three types of targets at intervals of 120 ° and can be deposited in order from the first layer to the third layer when manufacturing a three-layer film. 27.51 Fe 63.47 B 9.02 The target and the pure iron target were mounted so that the target at the time of ablation was tilted at 45 ° from the direction of the laser beam incident, so that the rotational speed of the target was 3.3 rpm.

그리고 기판은 10×10×1mm 크기의 (100)Si 단결정을 사용하였으며 상기 타겟 중심부로부터 기판 중앙부까지의 거리는 5 cm로 고정하였고 그 회전속도는 3 rpm 이었다. 이때, 파장이 248nm인 엑시머 레이저(Excimer laser)빔 발생원으로써 Kr, F 가스를 이용하는 장비를 사용하였다.The substrate was a 10 × 10 × 1 mm size (100) Si single crystal. The distance from the target center to the center of the substrate was fixed at 5 cm, and the rotation speed was 3 rpm. In this case, an equipment using Kr and F gas was used as an excimer laser beam generator having a wavelength of 248 nm.

타겟 표면에서의 레이저빔에너지 밀도는 레이저빔의 펄스주파수 (repetition rate)를 10 Hz로 고정한 후, KrF 레이저 출력은 촛점거리가 50 cm인 2 개의 볼록렌즈를 조합하여 타겟 표면에서의 빔의 크기를 조절하여 에너지밀도를 3.08 J/cm2로 하였고, 레이저파워에너지미터 (laser power energy meter)를 사용하여 그 값을 확인하였다.After the laser beam energy density at the target surface is fixed at the pulse frequency (repetition rate) of the laser beam at 10 Hz, the KrF laser output combines two convex lenses with a focal length of 50 cm to determine the size of the beam at the target surface. The energy density was adjusted to 3.08 J / cm 2 , and the value was confirmed using a laser power energy meter.

상기와 같은 레이져 어블레이션공정으로 제2층인 순철 Fe층의 체적분율(아래구조식에서 B/(2A+B))이 51%가 되도록 A를 3.6∼54, B를 15∼112로 제어한 (A nm)[NdFeB]/(B nm)[Fe]/(A nm)[NdFeB] 구조의 3층막을 형성시킨 후 300℃까지 3∼5 ℃/분의 냉각속도로 온도를 내린 후 상온까지 챔버내에서 냉각시켰다.In the laser ablation process described above, A was controlled to 3.6 to 54 and B to 15 to 112 so that the volume fraction (B / (2A + B) in the structural formula below) of the pure iron Fe layer as the second layer was 51%. nm) [NdFeB] / (B nm) [Fe] / (A nm) [NdFeB] After forming a three-layer film, lowering the temperature to 300 ° C at a cooling rate of 3 to 5 ° C / min, and then in the chamber to room temperature. Cooled in.

상기의 방법으로 제조된 3층막의 여러 가지 특성을 평가하고 그 결과를 하기표 1, 도 1에 나타내었다. 특성중 막두께는 "알파스텝"(α-step)으로 측정하였으며, 표면형상은 원자력현미경(Atomic force microscopy, AFM)으로 관찰하였다. 박막의 결정배향성은 X선 회절분석으로 평가하였고, 자기특성은 시편진동형자력계 (vibrating sample magnetometer, VSM)를 사용하여 평가하였다.Various characteristics of the three-layer film prepared by the above method were evaluated and the results are shown in Table 1 and FIG. 1. Among the properties, the film thickness was measured by "alpha-step" and the surface shape was observed by atomic force microscopy (AFM). Crystal orientation of thin films was evaluated by X-ray diffraction analysis, and magnetic properties were evaluated using a vibrating sample magnetometer (VSM).

상기 표 1에서 각형비, 보자력은 16 kOe의 자장중에서 측정된 값이며 //,는 각각 측정시 박막면에 대하여 평행, 수직방향으로 자장을 인가하였음을 표시함.In Table 1, the angular ratio and coercive force are measured values in a magnetic field of 16 kOe, and //, Indicates that the magnetic fields were applied in parallel and vertical directions with respect to the thin film plane during measurement.

상기 표 1 및 도 1에 나타난 바와같이 각형비, 보자력은 연자성층인 순철(제2층)의 두께에 따라 민감하게 변화하며, 특히 박막면에 대하여 수직보다 수평으로 자기장을 인가한 경우 그 변화는 현저하다.As shown in Table 1 and FIG. 1, the angular ratio and the coercive force are sensitively changed according to the thickness of the pure iron (second layer), which is a soft magnetic layer. In particular, when the magnetic field is applied horizontally to the thin film surface, the change is Remarkable

즉 순철의 두께가 112 나노미터에서 감소할수록 교환상호작용의 발현의 증거인 각형비과 보자력이 동시에 증가하는 경향이 나타나며 두께가 23 나노미터에서 두 값 모두 동일한 경향으로 극대값을 나타낸 후 감소하는 양상을 보인다.In other words, as the thickness of pure iron decreases at 112 nanometers, the angular ratio and coercive force, which are evidence of the exchange interaction, tend to increase at the same time, and at 23 nanometer thickness, both values show the same tendency and then decrease.

발명예 1, 2, 3의 박막면에 대해 수평자기장 인가시 얻어진 각형비와 보자력을 경자성 단층막인 비교예 1의 값과 비교하면 각각 2배 이상 증가한 값을 나타내고 있다.The angular ratio and the coercive force obtained when the horizontal magnetic field is applied to the thin film surfaces of Inventive Examples 1, 2, and 3 are compared with the values of Comparative Example 1, which are hard magnetic monolayer films, respectively.

한편 15 나노미터 이하에서는 제1층, 제3층의 두께가 너무 얇아져 교환상호작용을 일으킬 수 있는 균일한 박막의 형성이 곤란하며, 30 나노미터 이상에서는 교환상호작용력의 유효거리이상이 되어 연자성층인 순철층의 자기특성이 막 전체의 특성을 결정하여 연자성을 나타내도록 하였다.On the other hand, if the thickness of the first layer and the third layer is less than 15 nanometers or less, it is difficult to form a uniform thin film that can cause exchange interactions. If the thickness is more than 30 nanometers, the soft magnetic layer becomes larger than the effective distance of the exchange interaction force. The magnetic properties of the pure iron layer determined the characteristics of the entire film to show soft magnetic properties.

결국 순철(제2층)의 두께가 15∼30 나노미터의 범위일 때 상하의 경자성층(제1층, 제3층)과의 교환상호작용이 증가하면서 3층막 전체가 완전히 교환상호작용력에 의하여 결합되었고, 이 두께가 교환상호작용을 발현시키기 위한 최적의 거리임을 의미한다. 이 경우 AFM을 통하여 확인한 최상층(제3층)의 결정입경은 20∼30 나노미터였다.Eventually, when the thickness of pure iron (second layer) is in the range of 15 to 30 nanometers, the exchange interaction with the upper and lower hard magnetic layers (first layer and third layer) increases, and the entire three layer film is completely bonded by the exchange interaction force. This thickness is the optimal distance for developing exchange interactions. In this case, the crystal grain diameter of the uppermost layer (third layer) confirmed through AFM was 20-30 nanometers.

[실시예2]Example 2

상기 실시예 1에서 알 수 있듯이 3층막 구조에 있어 순철(제2층)의 두께가 15∼30 나노미터의 범위가 교환산호작용을 발현시키기 위한 최적의 거리가 되어 각형비와 보자력이 동시에 증가하였으므로 순철의 두께를 23 나노미터로 고정하고 제1층과 제3층의 두께를 적절히 조절하여 3층막 전체체적에 대한 순철의 체적을 변화시킨 (A nm)[NdFeB]/(23 nm)[Fe]/(A nm)[NdFeB] 구조의 3층막을 실시예 1과 동일한 방법으로 박막을 제조한 후 박막의 자기특성에 미치는 순철의 체적분율의 영향을 실시예 1과 동일한 방법으로 분석평가한 후 그 결과를 하기 표 2와 도 2에 나타내었다.As can be seen in Example 1, since the thickness of the pure iron (second layer) in the range of 15 to 30 nanometers in the three-layer film structure is the optimum distance for expressing the exchange and coral action, the square ratio and the coercivity increase simultaneously. (A nm) [NdFeB] / (23 nm) [Fe] changed the volume of pure iron to the total volume of the three-layer film by fixing the thickness of pure iron to 23 nanometers and adjusting the thickness of the first layer and the third layer appropriately. After the thin film was prepared by the same method as in Example 1, the effect of the volume fraction of pure iron on the magnetic properties of the thin film was analyzed by the same method as in Example 1, and then The results are shown in Table 2 and FIG. 2.

상기 표 2에서 각형비, 보자력은 16 kOe의 자장중에서 측정된 값이며 //,는 각각 측정시 박막면에 대하여 평행, 수직방향으로 자장을 인가하였음을 표시함.In Table 2, the angular ratio and coercive force are measured values in a magnetic field of 16 kOe, and //, Indicates that the magnetic fields were applied in parallel and vertical directions with respect to the thin film plane during measurement.

상기 표 2 및 도 2에 나타난 바와같이 각형비, 보자력은 연자성층인 순철(제2층)의 체적분율에 따라 민감하게 변화하며 특히 박막면에 대하여 수직보다 수평으로 자기장을 인가한 경우 그 변화는 현저하다.As shown in Table 2 and FIG. 2, the angular ratio and the coercive force are sensitively changed depending on the volume fraction of the pure iron (second layer), which is a soft magnetic layer. Remarkable

즉 순철의 체적분율이 50%이상에서 약 80%까지로 증가할수록 각형비는 증가하여 비교예 8의 순철 단층막 특성에 근접해가는 특성을 보이는 반면 보자력은 연자성순철의 체적분율이 증가함에도 불구하고 비교예 8의 순철 특성에 근접하는 것이 아니라 오히려 계속 증가하여 약 80%부근에서 급격히 감소하는 경향을 나타내고 있다.In other words, as the volume fraction of pure iron increases from 50% to about 80%, the angular ratio increases to show the characteristics closer to that of pure iron monolayer of Comparative Example 8, while the coercive force is increased even though the volume fraction of soft magnetic pure iron increases. Rather than approaching the pure iron properties of Comparative Example 8, the increase was rather increased and rapidly decreased at about 80%.

따라서 순철의 체적분율이 50∼80%인 범위에서는 교환상호작용의 발현으로 각형비와 보자력의 증가가 동시에 얻어졌다. 발명예 2, 4, 5, 6의 박막면에 대해 수평자기장 인가시 얻어진 각형비와 보자력을 경자성 단층막인 비교예 1의 값과 비교하면 최대로 각각 2.4배 이상, 2.7 이상 증가한 값을 나타내고 있다.Therefore, in the range of 50-80% of the volume fraction of pure iron, the increase in the square ratio and the coercive force were simultaneously obtained by the expression of exchange interaction. The angular ratio and the coercive force obtained when the horizontal magnetic field is applied to the thin film surfaces of Inventive Examples 2, 4, 5, and 6 are increased by 2.4 times or more and 2.7 or more, respectively, when compared with those of Comparative Example 1, which is a hard magnetic monolayer. have.

한편 순철의 체적분율이 50%이하가 되면 교환상호작용이 충분히 얻어지지 않아 경자성층(제1층 및 제3층)의 특성을 나타내게 되며, 80% 이상이 되면 층간 교환상호작용력이 작아져 연자성인 순철층의 자기특성이 막 전체의 특성을 결정하여 연자성이 나타났다.On the other hand, when the volume fraction of pure iron is less than 50%, the exchange interaction is not sufficiently obtained, which shows the characteristics of the hard magnetic layer (first layer and the third layer). The magnetic properties of the pure iron layer determined the properties of the entire film, resulting in soft magnetic properties.

결국 순철(제2층)의 체적분율이 50∼80%의 범위일 때 상하의 경자성층(제1층, 제3층)과의 교환상호작용이 증가하고 3층막 전체가 완전히 교환상호작용력에 의하여 결합되었음을 나타낸다.As a result, when the volume fraction of pure iron (second layer) is in the range of 50 to 80%, the exchange interaction with the upper and lower hard magnetic layers (first layer and third layer) increases, and the entire three layer membrane is completely bonded by the exchange interaction force. It is displayed.

실시예 1과 2에서의 결과에 있어서 경자성과 연자성을 포함하는 3층구조의 박막특성은, 재료 내부에 경자기 특성을 나타내는 나노 사이즈(nano size)의 Nd2Fe14B상과 낮은 가격의 재료로 연자기 특성을 나타내는 Fe, Fe3B상을 일정체적비 이상으로 동시에 생성시켜 경,연자성 결정립간에 교환상호작용(exchange coupling)을 유도시킴으로써 높은 잔류자화값과 높은 보자력을 동시에 실현시켜 높은 에너지적((BH)max)을 나타내도록 한 초미세립 벌크 영구자석의 특성발현기구와 동일한 것이다.In the results of Examples 1 and 2, the thin-film properties of the three-layer structure including the hard and soft magnetic properties were similar to those of the nano-sized Nd 2 Fe 14 B phase showing the hard magnetic properties in the material and the low price. The Fe and Fe 3 B phases, which show soft magnetic properties, are simultaneously produced in a material with a certain volume ratio or higher to induce exchange coupling between hard and soft magnetic grains, thereby realizing high residual magnetization and high coercive force simultaneously. It is the same as the characterization mechanism of the ultrafine bulk permanent magnets, which represent the product (BH) max .

이상과 같은 본 발명은 반응실 내부에 장착된 타겟에 엑시머 레이저빔을 조사하여 박막을 제조하는 레이져 어블레이션을 적용함으로써 공정변수 및 박막의 두께를 적절히 제어하여 교환상호작용의 유도를 통해 보자력과 잔류자화값을 동시에 증가시키는 NdFeB/Fe/NdFeB 3층구조의 초미세립 영구자석박막을 대량생산시 저가로 가장 일반적으로 사용할 수 있는 (100)Si 기판위에 형성시킬 수 있는 효과가 있다.As described above, the present invention applies a laser ablation to produce a thin film by irradiating an excimer laser beam to a target mounted inside the reaction chamber, thereby appropriately controlling process variables and the thickness of the thin film, thereby inducing coercive force and residual force. The ultrafine grain permanent magnet thin film of NdFeB / Fe / NdFeB three-layer structure, which simultaneously increases the magnetization value, can be formed on the (100) Si substrate which can be most commonly used at low cost in mass production.

Claims (4)

레이져 어블레이션법을 이용하여 3층박막을 제조하는 방법에 있어서, 경자성층의 증착을 위하여 조성이 원자퍼센트(at.%)로 NdXFe90.98-XB9.02(25≤X≤32)인 NdFeB계 타겟과 연자성층의 증착을 위하여 순철(Fe) 타겟이 장착된 진공상태의 반응실내에서 단결정 (100)Si 기판온도를 620℃ 이상의 온도로 가열하는 단계와; NdFeB계 타겟, 순철 타겟 및 (100)Si 기판을 회전시킨 후 KrF 레이저 빔을 3.08 J/cm2의 에너지밀도 범위로 상기의 2가지 타겟에 교대로 조사하여 상기 기판상에 경자성을 나타내는 제1층으로 두께 3.6∼54 나노미터(nm)의 NdFeB계박막을 증착하고, 그 위에 제2층으로 두께 15∼112 나노미터의 연자성 순철 박막을 증착한 후 그 위에 다시 제1층과 동일한 두께로 제어된 3.6∼54 나노미터의 경자성 NdFeB계박막을 증착하여 3층막을 형성시키는 단계와; 3층막 증착된 (100)Si 기판을 분당 3∼5℃의 냉각속도로 냉각하는 단계를 포함하여 구성됨을 특징으로 하는 NdFeB/Fe/NdFeB 구조의 초미세립 영구자석박막의 제조방법.In the method of manufacturing a three-layer thin film using the laser ablation method, NdFeB having a composition of Nd X Fe 90.98-X B 9.02 (25≤X≤32) in atomic percent (at.%) For the deposition of the hard magnetic layer Heating the single crystal (100) Si substrate temperature to a temperature of 620 ° C. or higher in a vacuum reaction chamber equipped with a pure iron (Fe) target to deposit a system target and a soft magnetic layer; After rotating an NdFeB-based target, a pure iron target, and a (100) Si substrate, a KrF laser beam was alternately irradiated to the above two targets in an energy density range of 3.08 J / cm 2 to display a first magnet having hard magnetism on the substrate. A layer of NdFeB based thin film having a thickness of 3.6 to 54 nanometers (nm) was deposited on the layer, and a soft magnetic thin film of 15 to 112 nanometers thick on the second layer thereon, and then on the same thickness as that of the first layer. Depositing a controlled 3.6-54 nanometer hard magnetic NdFeB based thin film to form a three-layer film; A method of manufacturing an ultrafine grain permanent magnetic thin film having a NdFeB / Fe / NdFeB structure, comprising: cooling a three-layer deposited (100) Si substrate at a cooling rate of 3 to 5 ° C. per minute. 제 1항에 있어서, 상기 (100)Si 기판이 640∼700℃의 온도범위로 가열됨을 특징으로 하는 NdFeB/Fe/NdFeB 구조의 초미세립 영구자석박막의 제조방법.The method of claim 1, wherein the (100) Si substrate is heated to a temperature range of 640 ~ 700 ℃ ultra fine grain permanent magnet thin film of the NdFeB / Fe / NdFeB structure. 제 1항 또는 제 2항에 있어서, 상기 KrF 레이저빔 에너지 밀도가 2.75 ∼3.2 J/cm2인 것을 특징으로 하는 NdFeB/Fe/NdFeB 구조의 초미세립 영구자석박막의 제조방법.3. The method of manufacturing an ultrafine grain permanent magnet thin film according to claim 1 or 2, wherein the KrF laser beam energy density is 2.75 to 3.2 J / cm 2 . 제 3항에 있어서, 제 2층의 두께가 15∼30 나노미터이며, 3층막 전체 체적에 대한 제2층의 체적분율이 50∼80%인 것을 특징으로 하는 NdFeB/Fe/NdFeB 구조의 초미세립 영구자석박막의 제조방법.The ultrafine grain of the NdFeB / Fe / NdFeB structure according to claim 3, wherein the thickness of the second layer is 15 to 30 nanometers and the volume fraction of the second layer is 50 to 80% of the total volume of the three-layer film. Method for producing a permanent magnetic thin film.
KR1019980058542A 1998-12-24 1998-12-24 Manufacturing Method of Ultrafine Permanent Magnet Thin Film of Niodymium Iron Boron / Iron / Niodymium Iron Boron Thin Film Structure KR100305699B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980058542A KR100305699B1 (en) 1998-12-24 1998-12-24 Manufacturing Method of Ultrafine Permanent Magnet Thin Film of Niodymium Iron Boron / Iron / Niodymium Iron Boron Thin Film Structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980058542A KR100305699B1 (en) 1998-12-24 1998-12-24 Manufacturing Method of Ultrafine Permanent Magnet Thin Film of Niodymium Iron Boron / Iron / Niodymium Iron Boron Thin Film Structure

Publications (2)

Publication Number Publication Date
KR20000042377A KR20000042377A (en) 2000-07-15
KR100305699B1 true KR100305699B1 (en) 2001-11-30

Family

ID=19565624

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980058542A KR100305699B1 (en) 1998-12-24 1998-12-24 Manufacturing Method of Ultrafine Permanent Magnet Thin Film of Niodymium Iron Boron / Iron / Niodymium Iron Boron Thin Film Structure

Country Status (1)

Country Link
KR (1) KR100305699B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102043951B1 (en) 2013-09-24 2019-11-12 엘지전자 주식회사 Hard-soft Composite Magnet Having Layered Structure and Method of Preparing the Same
KR102522549B1 (en) * 2018-12-03 2023-04-14 한국전기연구원 Method for optimizing magnetic material comprised soft magnetic-hard magnetic multi layer thin film and optimized magnetic material by the same
CN113593881A (en) * 2021-07-13 2021-11-02 东阳市顶峰磁材有限公司 Method for preparing neodymium iron boron composite permanent magnet by liquid phase laser ablation method

Also Published As

Publication number Publication date
KR20000042377A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
Wang FePt magnetic nanoparticles and their assembly for future magnetic media
Balamurugan et al. Prospects for nanoparticle-based permanent magnets
TW226034B (en)
CN105989983B (en) Permanent magnet
JPWO2009038105A1 (en) Metal glass, magnetic recording medium using the same, and manufacturing method thereof
Li et al. Patterning of FePt for magnetic recording
KR101862959B1 (en) Rare-earth thin-film magnet, process for producing same, and target for forming rare-earth thin-film magnet
KR100305699B1 (en) Manufacturing Method of Ultrafine Permanent Magnet Thin Film of Niodymium Iron Boron / Iron / Niodymium Iron Boron Thin Film Structure
JP2017098538A (en) Mn-X BASED MAGNETIC MATERIAL
Ma et al. A study of sputtering process for nanocrystalline FeAlN soft magnetic thin films
KR100285352B1 (en) Manufacturing method of ultra fine grain permanent magnet thin film of iron boron compound / niodymium iron boron / iron boron compound thin film structure
JPWO2005022565A1 (en) Nanoparticle device and method for producing nanoparticle device
JP2004273101A (en) Thin film magnetic recording medium
JP4621899B2 (en) Magnetic media
Yin et al. High coercivity Co-ferrite thin films on SiO/sub 2/(100) substrate prepared by sputtering and PLD
CN101172656A (en) Method of producing low pressure gas-phase of ferromagnetism chromium oxide compound nano-grain film
Molian et al. Pulsed laser deposition and annealing of Dy–Fe–B thin films on melt-spun Nd–Fe–B ribbons for improved magnetic performance
KR100497190B1 (en) nanoscale multilayed permanent magnet including nanoparticles of SmCo6 and Sm2Co17
JP2003289005A (en) Manufacturing method for highly oriented magnetic thin film
JPH07335575A (en) Manufacture of thin film
Liu et al. Orientation and magnetic properties of the thick multilayered [NdFeBx/Tby] n films
KR100262673B1 (en) Fabrication Method of Nd-Fe-B hard magnetic thin flim
JPH097833A (en) Thin film magnet
WO2023173139A2 (en) Boron-based and high-entropy magnetic materials
KR100345300B1 (en) Fabrication Method of SmCo Hard Magnetic Film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120801

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20130724

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee