KR100345300B1 - Fabrication Method of SmCo Hard Magnetic Film - Google Patents
Fabrication Method of SmCo Hard Magnetic Film Download PDFInfo
- Publication number
- KR100345300B1 KR100345300B1 KR1019990044457A KR19990044457A KR100345300B1 KR 100345300 B1 KR100345300 B1 KR 100345300B1 KR 1019990044457 A KR1019990044457 A KR 1019990044457A KR 19990044457 A KR19990044457 A KR 19990044457A KR 100345300 B1 KR100345300 B1 KR 100345300B1
- Authority
- KR
- South Korea
- Prior art keywords
- smco
- thin film
- substrate
- target
- hard magnetic
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 46
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims description 13
- 239000010409 thin film Substances 0.000 claims abstract description 53
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 238000000151 deposition Methods 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 4
- 230000010355 oscillation Effects 0.000 claims abstract description 4
- 238000000608 laser ablation Methods 0.000 abstract description 8
- 239000013078 crystal Substances 0.000 abstract description 7
- 230000001678 irradiating effect Effects 0.000 abstract description 2
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002679 ablation Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910004247 CaCu Inorganic materials 0.000 description 1
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910020637 Co-Cu Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/20—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation
- H01F41/205—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation by laser ablation, e.g. pulsed laser deposition [PLD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/22—Heat treatment; Thermal decomposition; Chemical vapour deposition
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Thin Magnetic Films (AREA)
- Physical Vapour Deposition (AREA)
Abstract
본 발명은 SmCo계 경자성 박막의 제조방법에 관한 것이며, 그 목적하는 바는 반응실 내부에 장착된 타겟에 레이저광(excimer laser beam)을 조사하여 박막을 제조하는 레이저어블레이션법을 적용함으로써 공정변수를 적절히 변화시켜 양호한 자기특성을 나타내는 SmCo계 박막을, 박막의 대량생산시 저가로 가장 일반적으로 사용할 수 있는 Si단결정 기판위에 형성시키고자 하는데 있다.The present invention relates to a method for producing a SmCo-based hard magnetic thin film, and an object thereof is to apply a laser ablation method of manufacturing a thin film by irradiating a laser beam to a target mounted inside a reaction chamber. It is intended to form a SmCo-based thin film exhibiting good magnetic properties by appropriately changing the parameters on a Si single crystal substrate which can be most commonly used at low cost in mass production of thin films.
상기 목적을 달성하기 위한 본 발명은 조성이 Sm100-XCoX(at.%)인 SmCo계 타겟을 진공상태의 반응실내에 장착하고, 단결정 Si기판을 가열하는 단계; 상기 SmCo계 타겟 및 Si기판을 회전시킨 후, 광학적으로 발진 시간을 늘여 펄스폭(pulse width)을 100-250μs로 한 고정 Q모드(Fixed Q mode)의 Nd-YAG 레이저광을 상기 타겟에 조사하여 상기 기판상에 SmCo계박막을 증착하는 단계; 박막이 증착된 Si기판을 분당 3∼5oC의 냉각속도로 냉각하는 단계를 포함하여 구성되는 SmCo계 경자성 박막의 제조방법에 관한 것을 그 요지로 한다.The present invention for achieving the above object is a step of mounting a SmCo-based target composition of Sm 100-X Co X (at.%) In a vacuum reaction chamber, and heating a single crystal Si substrate; After rotating the SmCo-based target and the Si substrate, the target is irradiated with Nd-YAG laser light in fixed Q mode with a pulse width of 100-250 μs by optically extending the oscillation time. Depositing an SmCo-based thin film on the substrate; The present invention relates to a method for producing a SmCo-based hard magnetic thin film comprising the step of cooling a Si substrate on which a thin film is deposited at a cooling rate of 3 to 5 ° C. per minute.
Description
본 발명은 자기기록소자를 비롯한 여러 전자분야에 적용가능한 SmCo계 박막을 제조하는 방법에 관한 것으로, 보다 상세하게는 레이저어블레이션(laser ablation)법에 의해 SmCo계 경자성박막을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a SmCo-based thin film applicable to various electronic fields, including a magnetic recording device, and more particularly to a method for manufacturing a SmCo-based hard magnetic thin film by a laser ablation method will be.
1970년대 이래 CaCu5구조를 가지는 희토류-천이금속(rare earth-transition metal) 금속간화합물의 자기특성에 관한 연구가 광범위하게 이루어져왔다. 이러한 금속간화합물 중에서 몇 종류의 화합물이 나타내는 탁월한 성질은 거대한 경자기 특성이라 할 수 있다. 일례로, Sm(Co-Ni)5, Sm(Co-Cu)5등의 화합물에서는 극저온에서 측정된 이방성자기장은 100 T의 order를 나타내며, 보자력은 20 T를 넘는 거대 경자기 특성이 보고[S. Foner, E. J. McNiff, H. Oesterreicher, F. T. Parker and M. Misroch : J. Appl. Phys., 49 , 2061 (1979)]되었고, 이는 영구자석으로서의 활용에 최고 재료임이 잘 알려져 있으며 실제 Sm2Co7, SmCo5계 벌크(bulk)영구자석은 고온용으로 상용화되어 있다.Since the 1970s, extensive research has been conducted on the magnetic properties of rare earth-transition metal intermetallic compounds with CaCu 5 structure. Among these intermetallic compounds, the excellent properties exhibited by several kinds of compounds are enormous light magnetic properties. For example, in the compounds such as Sm (Co-Ni) 5 and Sm (Co-Cu) 5 , the anisotropic magnetic field measured at cryogenic temperature shows an order of 100 T, and the coercive force has a large light magnetic property of more than 20 T reported [S . Foner, EJ McNiff, H. Oesterreicher, FT Parker and M. Misroch: J. Appl. Phys., 49 , 2061 (1979)], and it is well known that it is the best material for use as a permanent magnet. In fact, Sm 2 Co 7 and SmCo 5 bulk permanent magnets are commercially available for high temperature.
한편, 컴퓨터 기술의 진보에 따라 자기기록소자에 있어서는 기록밀도증가를 요구하며 이를 충족시키기 위한 재료로 SmCo5가 주상인 희토류-천이금속화합물의 박막화에 관한 연구[Y. Liu, D. J. Sellmyer, B. W. Robertson, S. S. Shan and S. H. Liou : IEEE Trans. Magn. MAG-31 , 2740 (1995), E. M. T. Velu and D. N. Lambeth : IEEE Trans. MAG-28 , 3949 (1992)]가 진행되어져 왔으며, 마이크로파 장비가 소형 및 경량화됨에 따라 효율적 MMIC(microwave and millimeter wave monolithic integrated circuit)화를 위한 바이어스(bias) 자장용 자석으로서의, 혹은 마이크로모터 (micromotor)와 마이크로액츄에이더(microactuator)등과 같은 마이크로기계 및 마이크로전자(micromechanics 및 microelectronics)분야에서의 활용에 대한 기대로 영구자석의 박막화[S. Yamashita and J. Yamasaki : J. Appl. Phys. 70 , 6627 (1991), D. D. Stancil : Microwave Opt. Technol. Lett. 2(3) , 53(1989)]에 관한 연구에 관심이 모아지고 있다.On the other hand, according to the progress of computer technology, the magnetic recording device requires an increase in recording density and a study on the thinning of the rare earth-transition metal compound whose main phase is SmCo 5 as a material to satisfy this [Y. Liu, DJ Sellmyer, BW Robertson, SS Shan and SH Liou: IEEE Trans. Magn. MAG-31 , 2740 (1995), EMT Velu and DN Lambeth: IEEE Trans. MAG-28 , 3949 (1992)], as microwave equipment becomes smaller and lighter, as a magnet for bias magnetic field or micromotor for efficient microwave and millimeter wave monolithic integrated circuits (MMIC). Thinning of permanent magnets in anticipation of applications in micromechanics and microelectronics such as microactuators and microactuators [S. Yamashita and J. Yamasaki: J. Appl. Phys. 70 , 6627 (1991), DD Stancil: Microwave Opt. Technol. Lett. 2 (3) , 53 (1989)].
종래의 SmCo계 박막 제조방법으로서 스퍼터링(sputtering)법이 주로 이용되어졌다[F. J. Cadieu : J. Vac. Sci. Technol., A6(3) , 1668(1988), F. J. Cadieu, H. Hegde and K. Chen : IEEE Trans. Mag., 25 , 3783(1989), K.-H Muller, Lei CaO, N. M. Dempsey and P. A. P. Wendhausen : J. Appl. Phys. 79 , 5045(1996)]. 그러나, 이 방법들은 반응실 내부에 에너지원이 존재함으로 장치가 비교적 복잡하며 타겟을 이루는 개개 원소의 스퍼터율(sputtering yield)이 다르므로 제조공정상 SmCo와 같은 합금박막의 제조에 있어서 정확한 조성제어가 다소 곤란하다.As a conventional SmCo-based thin film manufacturing method, sputtering method has been mainly used [FJ Cadieu: J. Vac. Sci. Technol., A6 (3) , 1668 (1988), FJ Cadieu, H. Hegde and K. Chen: IEEE Trans. Mag., 25 , 3783 (1989), K.-H Muller, Lei CaO, NM Dempsey and PAP Wendhausen: J. Appl. Phys. 79 , 5045 (1996). However, these methods are relatively complex due to the presence of energy sources inside the reaction chamber, and the sputtering yields of the individual elements to be targeted are different. Therefore, precise compositional control in the production of alloy thin films such as SmCo is somewhat difficult in the manufacturing process. It is difficult.
이에, 본 발명의 목적하는 바는, 상기 박막 제조법의 문제점 해결에 상대적으로 유리한, 최근에 그 방법이 개발된 반응실 내부에 장착된 타겟에 레이저광(excimer laser beam)을 조사하여 박막을 제조하는 레이저어블레이션(laser ablation)법[S. B. Krupanidhi, N. Maffei, D. Roy and C. J. Peng : J. Vac. Sci. Technol. A10 (4), p.1815 (1992), K. Tanaka, Y. Omata, Y. Nishikawa, Y. Yoshida K. Nakamura : IEEE Trans. Journal on Magnetics in Japan. 6 , 11, p.1001 (1991), R. Seed and C. Vittoria : IEEE Trans. Mag. 28 , p.3216 (1992)]을 적용함으로써 공정변수를 적절히 변화시겨 양호한 자기특성을 나타내는 SmCo계 박막을, 박막의 대량생산시 저가로 가장 일반적으로 사용할 수 있는 Si단결정 기판위에 형성시키고자 하는데 있다.Accordingly, an object of the present invention is to produce a thin film by irradiating a laser beam to a target mounted inside a reaction chamber in which the method is recently developed, which is relatively advantageous for solving the problem of the thin film manufacturing method. Laser ablation method [SB Krupanidhi, N. Maffei, D. Roy and CJ Peng: J. Vac. Sci. Technol. A10 (4), p. 1815 (1992), K. Tanaka, Y. Omata, Y. Nishikawa, Y. Yoshida K. Nakamura: IEEE Trans. Journal on Magnetics in Japan. 6 , 11, p. 1001 (1991), R. Seed and C. Vittoria: IEEE Trans. Mag. 28 , p.3216 (1992)] is used to form SmCo thin films on Si single crystal substrates that can be used at low cost in mass production. have.
도 1은 SmCo계 박막의 기판온도에 따른 보자력 및 각형비를 보이는 그래프1 is a graph showing coercive force and squareness ratio according to substrate temperature of an SmCo-based thin film
도 2는 SmCo계 박막의 Co농도에 따른 보자력 및 각형비를 보이는 그래프2 is a graph showing the coercive force and the angular ratio according to the Co concentration of the SmCo-based thin film
상기 목적을 달성하기 위한 본 발명은 조성이 Sm100-XCoX(at.%)인 SmCo계 타겟을 진공상태의 반응실내에 장착하고, 단결정 Si기판을 가열하는 단계;The present invention for achieving the above object is a step of mounting a SmCo-based target composition of Sm 100-X Co X (at.%) In a vacuum reaction chamber, and heating a single crystal Si substrate;
상기 SmCo계 타겟 및 Si기판을 회전시킨 후, 광학적으로 발진 시간을 늘여 펄스폭(pulse width)을 100-250μs로 한 고정 Q모드(Fixed Q mode)의 Nd-YAG 레이저광을 상기 타겟에 조사하여 상기 기판상에 SmCo계박막을 증착하는 단계;After rotating the SmCo-based target and the Si substrate, the target is irradiated with Nd-YAG laser light in fixed Q mode with a pulse width of 100-250 μs by optically extending the oscillation time. Depositing an SmCo-based thin film on the substrate;
박막이 증착된 Si기판을 분당 3∼5oC의 냉각속도로 냉각하는 단계를 포함하여 구성되는 SmCo계 경자성 박막의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a SmCo-based magnetic thin film comprising the step of cooling the Si substrate on which the thin film is deposited at a cooling rate of 3-5 ° C. per minute.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 레이저어블레이션법을 이용하여 박막을 제조하는 방법에 관한 것으로, 먼저, SmCo계 타겟을 진공상태의 반응실내에 장착하고, 단결정 Si기판을 가열하는 과정을 거친다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film using a laser ablation method. First, a SmCo-based target is mounted in a vacuum reaction chamber, and a single crystal Si substrate is heated.
상기 SmCo계 타겟은 형성하고자 하는 박막에 알맞는 조성의 것을 선택한다. 특히, 고정 Q모드(Fixed Q mode) 레이저광을 이용한 어블레이션시 사용하는 타겟의 조성은 Sm100-XCoX(73≤X≤83.3)가 바람직하다. 이는 73at.%미만이 되면 각형성과 보자력 특성은 양호하나 고가의 희토류 원소가 다량 필요하여 타겟의 취성 증가로 타겟제조가 어려우며 경제적으로도 불리하기 때문이며, 83.3at.%를 초과하면 각형성과 보자력 특성이 감소하여 경자기 특성에 악영향을 줄 수 있기 때문이다.The SmCo-based target is selected to have a composition suitable for the thin film to be formed. In particular, the composition of the target used in the ablation using a fixed Q mode laser light is preferably Sm 100-X Co X (73 ≦ X ≦ 83.3). It is because the angle and coercivity property is good when it is less than 73at.%, But it requires a large amount of expensive rare earth elements, which makes the target difficult to manufacture due to the increase in brittleness of the target, and it is disadvantageous economically. It can decrease and adversely affect the magnetic properties.
상기 타겟은 Sm100-XCoX(73≤X≤93) 합금타겟으로 플라즈마 아크 용해에 의하여 제작할 수 있으며, 타겟의 직경은 20∼50 mm이면 바람직하고, 구성원소는 고순도일수록 좋으나 99.9% 이상의 순도를 가지면 바람직하다.The target can be produced by plasma arc melting with Sm 100-X Co X (73≤X≤93) alloy target, the diameter of the target is preferably 20 to 50 mm, the higher the purity of the element is more than 99.9% purity It is preferable to have.
상기 Si기판은 레이저어블레이션법을 적용하여 가열을 행한다. 이때, 가열은 적어도 660oC이상의 온도로 가열함이 바람직한데, 그 이유는 660℃미만의 온도로 가열하면 타겟으로부터 어블레이션된 입자가 기판상에서 급냉되어 SmCo계 비정질상(amorphous phase)이 주류를 이루어 박막은 연자기 특성(soft magnetic propertes)을 나타냄으로써 보자력(coercivity)이 심각하게 작아지는 등 박막의 경자기 특성에 악영향을 미쳐 바람직하지 않기 때문이다. 또한, 상기 Si기판의 가열은 700oC이하의 온도로 함이 보다 바람직한데, 그 이유는 700oC를 초과하면 형성된 SmCo계 박막중 Sm1Co5, Sm2Co17경자성 결정립이 과도하게 성장하여 오히려 경자기 특성에 악영향을 줄 수 있기 때문이다.The Si substrate is heated by applying a laser ablation method. At this time, the heating is preferably heated to a temperature of at least 660 ° C. The reason is that when heated to a temperature of less than 660 ℃, the ablated particles from the target is quenched on the substrate, the SmCo amorphous phase (amorphous phase) is the mainstream This is because the thin film exhibits soft magnetic propertes, which adversely affects the hard magnetic properties of the thin film, such as coercivity being significantly reduced. In addition, the heating of the Si substrate is more preferably at a temperature of 700 o C or less, because the Sm 1 Co 5 , Sm 2 Co 17 hard magnetic grains in the SmCo-based thin film formed when it exceeds 700 o C Rather, it may adversely affect the characteristics of the light magnetic field.
상기 Si기판은 단결정으로서, 여러 가지의 단결정에 적용할 수 있는데, 특히 (100)면의 Si단결정 기판을 적용하는 경우 보다 우수한 효과를 보인다.The Si substrate is a single crystal, and can be applied to various single crystals. In particular, when the Si single crystal substrate of the (100) plane is applied, the Si substrate has an excellent effect.
또한, 본 발명에서는 상기 SmCo계 타겟 및 Si기판을 회전시킨 후, 광학적으로 발진 시간을 늘여 펄스폭(pulse width)을 100-250μs로 한 고정 Q모드(Fixed Q mode)의Nd-YAG 레이저광을 상기 타겟에 조사하여 상기 기판상에 SmCo계박막을 증착하는 과정을 거친다.In addition, in the present invention, after rotating the SmCo-based target and the Si substrate, the Nd-YAG laser light of the fixed Q mode (Fixed Q mode) with a pulse width of 100-250μs by optically extending the oscillation time The target is irradiated to deposit a SmCo thin film on the substrate.
상기 레이저어블레이션시 타겟의 경제적인 이용 및 균일한 플룸 (plume)을 얻기 위하여 SmCo계타겟과 증착되는 박막의 두께 균일화를 위하여 Si 기판을 위치시킨 기판홀더를 회전시켜 줌이 바람직하며, 보다 바람직한 회전속도는 3∼4 rpm 이다.It is preferable to rotate the substrate holder on which the Si substrate is placed to achieve uniform use of the SmCo-based target and the thin film deposited to obtain economical use of the target and uniform plume during the laser ablation. The speed is 3 to 4 rpm.
상기와 같이 회전되는 SmCo타겟에 조사되는 Nd-YAG 레이저광은 펄스폭을 100-250μs로 한다. 상기 펄스폭이 100μs미만이면 증착시간 단축효과가 거의 없고, 250μs을 초과하면 너무 빨라 증착시간 제어에 어려운 문제가 있기 때문이다.The Nd-YAG laser beam irradiated to the SmCo target rotated as described above has a pulse width of 100-250 µs. This is because if the pulse width is less than 100 μs, there is little effect of shortening the deposition time, and if it exceeds 250 μs, it is too fast to control the deposition time.
또한, 상기 Nd-YAG 레이저광은 고정 Q모드(Fixed Q mode)것으로 높은 에너지밀도인 1x105∼2x105J/cm2범위가 바람직한데, 그 이유는 1x105J/cm2이하로 되면 타겟 표면에서 플룸(plume)가 발생하지 않아 박막의 형성이 불가능하며 2x105J/cm2이상이 되면 빠른 증착속도로 증착시간의 제어가 극히 곤란해지며, 특히 SmCo 박막의 결정화가 활발하지 못하며, 박막표면에 입자(droplet)수가 급격히 증가하여 자기특성 및 박막의 표면형상에 악영향을 주기 때문이다.In addition, the Nd-YAG laser light is a fixed Q mode (Fixed Q mode) is a high energy density range of 1x10 5 ~ 2x10 5 J / cm 2 is preferred, because the 1x10 5 J / cm 2 or less target surface It is impossible to form a thin film because there is no plume at. In case of more than 2x10 5 J / cm 2 , it is very difficult to control the deposition time at a fast deposition rate, especially the crystallization of SmCo thin film is not active and the surface of thin film This is because the number of droplets rapidly increases, adversely affecting the magnetic properties and the surface shape of the thin film.
또한, 본 발명에서는 박막이 증착된 Si기판을 분당 3∼5oC의 냉각속도로 냉각하는 과정을 거친다.In addition, in the present invention, the Si substrate on which the thin film is deposited is cooled at a cooling rate of 3 to 5 ° C. per minute.
상기 증착된 Si기판은 분당 3∼5oC의 냉각속도로 냉각하는데, 그 이유는 상기 냉각속도가 5oC를 초과하면 기판면에서 박막의 박리 및 균열이 유발되고, 3oC보다 느리면 냉각에 너무 많은 시간이 소요되어 불필요하기 때문이다.The deposited Si substrate to cool at a cooling rate per minute of 3~5 o C, The reason is that the peeling and cracks of the thin film on the substrate surface when the cooling rate exceeds 5 o C and induced, slow cooling than 3 o C This is because it takes too much time and is unnecessary.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
실시예 1Example 1
레이저어블레이션 장치의 반응실의 초기진공을 4x10-6Torr 이하로 한 후, 기판온도를 상온, 640, 660, 680, 700oC에 도달하게 하여 각각의 온도에서 고정 Q모드(Fixed Q mode)의 레이저광을 이용하여 박막을 제작하였다. 그리고, 레이저어블레이션시 순도 99.9 %, 직경이 50 mm인 Sm16.7Co83.3타겟을 레이저광 입사방향으로 부터 45o기울게 위치시켰으며, 그 회전속도를 3.3 rpm으로 하였다. 그리고, 기판은 10 x 10 x 1 mm 크기의 (100)Si 단결정을 사용하였으며, 상기 타겟 중심부로부터 기판 중앙부까지의 거리는 5cm로 고정하였고 그 회전속도는 3rpm 이었다. 이때, 파장이 1064nm인 Nd-YAG 레이저광을 발생하는 장비를 사용하였다. 타겟 표면에서의 레이저광에너지밀도는 레이저광의 펄스주파수 (repetition rate)를 50Hz로 고정한 후, 레이저 출력은 촛점거리가 50cm인 2개의 볼록렌즈를 조합하여 1x105J/cm2가 되도록 타겟 표면에서 광의 크기를 조절하였다.After the initial vacuum of the reaction chamber of the laser ablation apparatus is 4x10 -6 Torr or less, the substrate temperature is reached at room temperature, 640, 660, 680, 700 o C, and fixed Q mode at each temperature. The thin film was produced using the laser beam. In the laser ablation, a Sm 16.7 Co 83.3 target having a purity of 99.9% and a diameter of 50 mm was positioned at an angle of 45 ° from the laser beam incident direction, and the rotation speed was 3.3 rpm. The substrate used a (100) Si single crystal having a size of 10 x 10 x 1 mm, and the distance from the target center to the center of the substrate was fixed at 5 cm and the rotation speed was 3 rpm. At this time, a device for generating an Nd-YAG laser light having a wavelength of 1064 nm was used. The laser light energy density at the target surface is fixed at 50Hz pulse frequency (repetition rate) of the laser light, and then the laser output is 1x10 5 J / cm 2 by combining two convex lenses having a focal length of 50 cm. The size was adjusted.
상기와 같은 레이저어블레이션으로 1분간 박막 형성을 끝낸 후, 300oC까지 3∼5oC/분의 냉각속도로 온도를 내린 후 상온까지 챔버내에서 냉각시켰다.After the thin film formation was completed for 1 minute by the laser ablation as described above, the temperature was lowered at a cooling rate of 3 to 5 o C / min to 300 o C and then cooled in the chamber to room temperature.
상기의 방법으로 제조된 SmCo 박막의 여러 가지 특성을 평가하고 그 결과를 하기 표1 및 도 1에 나타내었다. 특성중 막두께는 "알파스텝"(α-step)으로 측정하였으며, 표면형상은 주사전자현미경(SEM)으로 관찰하였다. 박막의 결정상은 X선 회절분석으로 평가하였고, 자기적 특성은 시편진동형자력계(vibrating sample magnetometer, VSM)를 사용하여 평가하였다.Various properties of the SmCo thin film prepared by the above method were evaluated and the results are shown in Table 1 and FIG. 1. Among the properties, the film thickness was measured by "alpha-step" (α-step), and the surface shape was observed by scanning electron microscope (SEM). The crystal phase of the thin film was evaluated by X-ray diffraction analysis, and the magnetic properties were evaluated by using a vibrating sample magnetometer (VSM).
[상기 표1에서 각형비, 보자력은 16 kOe의 자장중에서 측정된 값이며 //, ⊥는 각각 측정시 박막면에 대하여 평행 혹은 수직방향으로 자장을 인가하였음을 표시함][Rectangle ratio and coercive force in Table 1 are measured values in the magnetic field of 16 kOe //, ⊥ indicates that the magnetic field was applied in parallel or vertical direction with respect to the thin film surface at the time of measurement, respectively]
상기 표1 및 도 1에 나타난 바와 같이, 기판온도가 증가할수록, 특히 박막면에 대하여 평행으로 자기장을 인가한 경우(발명예 1, 2, 3)의 각형비, 보자력은 각각 최고 0.8, 4070 Oe까지의 양호한 값을 나타낸다. 이러한 특성의 원인은 온도증가에따라 결정화가 왕성하게 되어 Sm1Co5, Sm2Co17와 같은 경자성상이 박막내 다량 생성되기 때문인 것으로 X선 회절실험을 통하여 확인하였다. 발명예 1, 2, 3의 자기특성은 면내 자기기록매체에 요구되는 특성[D. N. Lambeth, D. E. Laughlin, S. Charp, L.-L. Lee, P. Harllee and L. Lang, Nanomagnetism, edited by G. C. Hadjipanayis (1996), p.49]을 만족하는 것이다.As shown in Table 1 and FIG. 1, as the substrate temperature increases, particularly when the magnetic field is applied in parallel to the thin film surface (Inventive Examples 1, 2, and 3), the angular ratio and the coercive force are at most 0.8 and 4070 Oe, respectively. The good value until is shown. The cause of this characteristic was confirmed by X-ray diffraction experiments because the crystallization is increased with increasing temperature, and a large amount of hard magnetic phases such as Sm 1 Co 5 and Sm 2 Co 17 are generated in the thin film. The magnetic properties of Inventive Examples 1, 2 and 3 are required for in-plane magnetic recording media [DN Lambeth, DE Laughlin, S. Charp, L.-L. Lee, P. Harllee and L. Lang, Nanomagnetism, edited by GC Hadjipanayis (1996), p. 49].
실시예 2Example 2
상기 실시예 (1)에서 알 수 있듯이 기판온도가 640oC 이상이 되면 양호한 경자기 특성을 나타내었다. 경자기 특성에 미치는 조성의 영향을 파악하기 위하여 Sm100-XCoX(73≤X≤93) 타겟을 사용하고 기판온도를 680oC로 한 후, 레이저광에너지밀도를 1x105하여 조사하여 실시예 (1)과 동일한 방법으로 박막을 제조하고 제특성을 분석평가한 후 자기특성을 하기 표2 및 도 2에 나타내었다.As can be seen in Example (1), when the substrate temperature was 640 ° C. or more, good hard magnetic properties were exhibited. In order to understand the effect of composition on hard magnetic properties, Sm 100-X Co X (73≤X≤93) target was used and the substrate temperature was 680 o C, followed by irradiation with laser light energy density of 1x10 5 . After the thin film was prepared in the same manner as in Example (1), the characteristics were analyzed and evaluated, and the magnetic properties are shown in Table 2 and FIG. 2.
[표 2에서 각형비, 보자력은 16 kOe의 자장중에서 측정된 값이며 //, ⊥는 각각측정시 박막면에 대하여 평행 혹은 수직방향으로 자장을 인가하였음을 표시함]In Table 2, the angular ratio and coercive force are the values measured in the magnetic field of 16 kOe.
상기 표2 및 도 2에 나타난 바와 같이, Sm100-XCoX에서 Co 농도 X가 73≤X≤83.3인 범위에서 X가 감소할수록 박막면에 대하여 평행으로 자기장을 인가한 경우(발명예 2, 4, 5)의 각형비, 보자력은 증가하여 최고 0.9, 6288 Oe까지의 매우 양호한 값을 나타낸다. 이러한 특성의 원인은, X선 회절실험에서 Sm5Co2화합물의 회절선이 주회절선으로 관측되고, 경자성상인 Sm1Co5, Sm2Co17의 회절선이 다수 관찰됨과 동시 EPMA(Electron Probe Micro Analysis)를 통한 박막의 평균조성에서 Sm 농도가 타겟보다 높았던 것이 주원인이며, 타겟 성분과 거의 동일한 박막표면의 입자 기여도 매우 컸던 것으로 판명되었다. 즉, X가 감소할수록 경자기 특성이 양호해진 것은, 박막의 평균조성에 있어 Sm의 농도와 밀접한 관계가 있어서 X가 클 때는 Sm5Co2, Sm1Co5, Sm2Co17상의 화합물이 존재하나 경자성상인 Sm1Co5, Sm2Co17을 활발히 생성시키기에는 생성된 Sm5Co2의 량이 부족하였고, 이에 반하여 X가 작을 때는 Sm5Co2화합물의 생성이 Sm1Co5, Sm2Co17상의 생성을 조장시켰음에 기인한 것으로 생각된다. 이 특성 역시 면내 자기기록매체에 요구되는 특성을 만족하는 것이며 MMIC를 위한 바이어스(bias) 자장용 자석박막으로서, 마이크로기계 및 마이크로전자 (micromechanics 및 microelectronics)분야에서의 활용이 기대된다.As shown in Table 2 and Figure 2, when the magnetic field is applied in parallel to the thin film surface as X decreases in the range of Co concentration X 73 ≤ X ≤ 83.3 in Sm 100-X Co X (Invention Example 2, The square ratio and the coercive force of 4 and 5) increase and show very good values up to 0.9 and 6288 Oe. The reason for this characteristic is that in the X-ray diffraction experiment, the diffraction lines of the Sm 5 Co 2 compounds are observed as the main diffraction lines, and the diffraction lines of the hard magnetic phases Sm 1 Co 5 and Sm 2 Co 17 are observed and the simultaneous EPMA It was found that the Sm concentration was higher than the target in the average composition of the thin film through micro analysis, and the particle contribution of the thin film surface which is almost the same as the target component was also very high. That is, as the X decreases, the hard magnetic properties are improved, which is closely related to the concentration of Sm in the average composition of the thin film. When X is large, compounds of Sm 5 Co 2 , Sm 1 Co 5 , and Sm 2 Co 17 are present. However, the amount of Sm 5 Co 2 produced was insufficient to actively generate Sm 1 Co 5 and Sm 2 Co 17 , which are light magnetic phases. On the other hand, when X is small, the production of Sm 5 Co 2 compound is Sm 1 Co 5 , Sm 2. It is thought to be due to promoting the production of Co 17 phase. This characteristic also satisfies the characteristics required for in-plane magnetic recording media and is expected to be used in micromechanics and microelectronics as a bias magnetic field magnetic thin film for MMIC.
상술한 바와같은 본 발명에 의하면, 기록밀도 증가를 요하는 자기기록 소자 및 바이어스 자장용 자석, 마이크로 모터와 마이크로 엑츄에이터와 같은 마이크로 기계를 비롯한 여러 전자분야에 유용하게 적용가능한 SmCo계 경자성 박막을 레이저어블레이션법을 통하여 얻을 수 있는 효과가 제공된다.According to the present invention as described above, the SmCo-based hard magnetic thin film that can be usefully applied to a variety of electronic fields, including magnetic recording elements and magnets for bias magnetic field, micro motors and micro actuators that require an increase in recording density. The effects that can be obtained through the ablation method are provided.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990044457A KR100345300B1 (en) | 1999-10-14 | 1999-10-14 | Fabrication Method of SmCo Hard Magnetic Film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990044457A KR100345300B1 (en) | 1999-10-14 | 1999-10-14 | Fabrication Method of SmCo Hard Magnetic Film |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010037125A KR20010037125A (en) | 2001-05-07 |
KR100345300B1 true KR100345300B1 (en) | 2002-07-25 |
Family
ID=19615290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990044457A KR100345300B1 (en) | 1999-10-14 | 1999-10-14 | Fabrication Method of SmCo Hard Magnetic Film |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100345300B1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60170916A (en) * | 1984-02-15 | 1985-09-04 | Yaskawa Electric Mfg Co Ltd | Formation of hard magnetic film |
JPS60218815A (en) * | 1984-04-13 | 1985-11-01 | Yaskawa Electric Mfg Co Ltd | Manufacture of hard magnetic film |
JPS60218809A (en) * | 1984-04-14 | 1985-11-01 | Yaskawa Electric Mfg Co Ltd | Multi-pole magnetization method |
KR920020536A (en) * | 1991-04-04 | 1992-11-21 | 홍종우 | Rare earth permanent magnet and manufacturing method |
JPH10189335A (en) * | 1996-12-26 | 1998-07-21 | Victor Co Of Japan Ltd | Magnetic recording medium and its manufacture |
-
1999
- 1999-10-14 KR KR1019990044457A patent/KR100345300B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60170916A (en) * | 1984-02-15 | 1985-09-04 | Yaskawa Electric Mfg Co Ltd | Formation of hard magnetic film |
JPS60218815A (en) * | 1984-04-13 | 1985-11-01 | Yaskawa Electric Mfg Co Ltd | Manufacture of hard magnetic film |
JPS60218809A (en) * | 1984-04-14 | 1985-11-01 | Yaskawa Electric Mfg Co Ltd | Multi-pole magnetization method |
KR920020536A (en) * | 1991-04-04 | 1992-11-21 | 홍종우 | Rare earth permanent magnet and manufacturing method |
JPH10189335A (en) * | 1996-12-26 | 1998-07-21 | Victor Co Of Japan Ltd | Magnetic recording medium and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
KR20010037125A (en) | 2001-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5290761A (en) | Process for making oxide superconducting films by pulsed excimer laser ablation | |
USRE36517E (en) | Thin film magnet, cylindrical ferromagnetic thin film and production method thereof | |
EP0468228B1 (en) | Method of producing amorphous magnetic film | |
US5147734A (en) | Magnetic recording media manufactured by a process in which a negative bias voltage is applied to the substrate during sputtering | |
Homma et al. | Microstructural study on the functionally graded magnetic thin films prepared by electroless deposition | |
KR100345300B1 (en) | Fabrication Method of SmCo Hard Magnetic Film | |
Samarasekara | A pulsed rf sputtering method for obtaining higher deposition rates | |
US4946241A (en) | Method of manufacturing iron garnet layers | |
US5069983A (en) | Magnetic recording member | |
Piramanayagam et al. | Perpendicular magnetic anisotropy in NdFeB thin films | |
KR101982998B1 (en) | Rare earth thin film magnet and manufacturing method thereof | |
JP3305790B2 (en) | Manufacturing method of thin film permanent magnet | |
KR100262673B1 (en) | Fabrication Method of Nd-Fe-B hard magnetic thin flim | |
CN1720595A (en) | Granular substance, magnetic thin film, and magnetic device | |
KR100270605B1 (en) | Fe based soft magnetic film alloys and their manufacturing method | |
JPH0897034A (en) | Soft magnetic multilayered film | |
KR100285352B1 (en) | Manufacturing method of ultra fine grain permanent magnet thin film of iron boron compound / niodymium iron boron / iron boron compound thin film structure | |
Hohl et al. | A comparative high-resolution electron microscope study of Ag clusters produced by a sputter-gas aggregation and ion cluster beam technique | |
KR0169583B1 (en) | Method for fabricating epitaxial yig thin film | |
KR20000042377A (en) | Method for manufacturing a permanent magnet film | |
Nakano et al. | Preparation of Nd–Fe–B films via a low-temperature process | |
KR100270074B1 (en) | The thin coating method for epitaxial ba-ferrite | |
RU2122243C1 (en) | Method for production of magnetically soft heat-resistant amorphous condensate of 3d metals | |
JPH03112114A (en) | Manufacture of magnetic film and alloy target used therefor | |
JPH04114904A (en) | Preparation of high-quality thin superconducting film of oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120703 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20130704 Year of fee payment: 12 |
|
LAPS | Lapse due to unpaid annual fee |