JPS6216268B2 - - Google Patents
Info
- Publication number
- JPS6216268B2 JPS6216268B2 JP58074877A JP7487783A JPS6216268B2 JP S6216268 B2 JPS6216268 B2 JP S6216268B2 JP 58074877 A JP58074877 A JP 58074877A JP 7487783 A JP7487783 A JP 7487783A JP S6216268 B2 JPS6216268 B2 JP S6216268B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- magnetic
- magnetic field
- thin film
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005291 magnetic effect Effects 0.000 claims description 178
- 238000000137 annealing Methods 0.000 claims description 115
- 238000000034 method Methods 0.000 claims description 41
- 230000005415 magnetization Effects 0.000 claims description 31
- 239000010408 film Substances 0.000 claims description 30
- 239000010409 thin film Substances 0.000 claims description 30
- 230000015572 biosynthetic process Effects 0.000 claims description 17
- 238000004544 sputter deposition Methods 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000002425 crystallisation Methods 0.000 claims description 7
- 230000008025 crystallization Effects 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 2
- 230000035699 permeability Effects 0.000 description 45
- 239000000758 substrate Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000696 magnetic material Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- GNEMDYVJKXMKCS-UHFFFAOYSA-N cobalt zirconium Chemical compound [Co].[Zr] GNEMDYVJKXMKCS-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- CZCQHARMSPTQNB-UHFFFAOYSA-N [B].[Si].[Fe].[Co] Chemical compound [B].[Si].[Fe].[Co] CZCQHARMSPTQNB-UHFFFAOYSA-N 0.000 description 1
- BDVUYXNQWZQBBN-UHFFFAOYSA-N [Co].[Zr].[Nb] Chemical compound [Co].[Zr].[Nb] BDVUYXNQWZQBBN-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
本発明は、非晶質軟磁性薄膜の製造方法に関
し、特に本発明は、透磁率が高く異方性磁界の小
さい一軸性の磁気異方性を有する非晶質軟磁性薄
膜の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an amorphous soft magnetic thin film, and in particular, the present invention relates to a method for manufacturing an amorphous soft magnetic thin film, and in particular, the present invention relates to a method for manufacturing an amorphous soft magnetic thin film. The present invention relates to a method of manufacturing a magnetic thin film.
非晶質磁性材料は超急冷法、スパツタ法、蒸着
法およびメツキ法などにより形成される。超急冷
法によれば一般に20〜100μm程度の比較的厚い
薄帯が形成されるが、スパツタ法、蒸着法、メツ
キ法は数μm以下の薄膜材料を得るのに適してい
る方法である。 The amorphous magnetic material is formed by an ultra-quenching method, a sputtering method, a vapor deposition method, a plating method, or the like. The ultra-quenching method generally forms a relatively thick ribbon of about 20 to 100 μm, but the sputtering method, vapor deposition method, and plating method are methods suitable for obtaining thin film materials of several μm or less.
非晶質軟磁性材料(以下非晶質軟磁性材料を単
に非晶質磁性材料と称す)は複数の構成元素が規
則配列をしないため、本質的に結晶磁気異方性を
有しない。しかし実際にはミクロ領域での磁性原
子の配列や磁歪に起因する磁気異方性が存在し、
作製したままの状態では磁気特性は実用上十分で
ない場合が多い。また非晶質状態そのものが1つ
の準安定状態に過ぎず、加熱などによつて他の準
安定状態に変化し、それに伴つて磁気特性も変化
してしまうなどの現象が生起することからみて熱
的安定性も悪い。そのため多くの場合、非晶質磁
性材料は焼鈍が施された上で使用される。このた
めの焼鈍方法として種々の方法が知られている。 An amorphous soft magnetic material (hereinafter simply referred to as an amorphous magnetic material) does not have a plurality of constituent elements arranged in a regular arrangement, so it essentially does not have magnetocrystalline anisotropy. However, in reality, magnetic anisotropy exists due to the arrangement of magnetic atoms and magnetostriction in the microscopic region.
In the as-manufactured state, the magnetic properties are often insufficient for practical use. Furthermore, the amorphous state itself is just one metastable state, and it changes to another metastable state by heating, etc., and the magnetic properties change accordingly. The stability is also poor. Therefore, in many cases, amorphous magnetic materials are used after being annealed. Various methods are known as annealing methods for this purpose.
超急冷薄帯などについて最も一般的に行われる
焼鈍方法は無磁界中で焼鈍する方法であり、この
ような方法は特開昭52−114421号公報などに開示
されている。この場合、焼鈍によつて磁気異方性
が誘導されないようにするため、焼鈍温度はキユ
リー温度よりも高い温度にする必要があり、一方
結晶化温度より低い温度で焼鈍しなければならな
いことは勿論である。従つて結晶化温度がキユリ
ー温度よりも高い非晶質磁性材料でなければこの
ような焼鈍法を実施することは無意味であるばか
りでなく、場合によつては有害である。 The most commonly used annealing method for ultra-quenched ribbons is a method of annealing in a non-magnetic field, and such a method is disclosed in JP-A-52-114421 and other publications. In this case, in order to prevent magnetic anisotropy from being induced by annealing, the annealing temperature must be higher than the Curie temperature, while of course the annealing must be performed at a temperature lower than the crystallization temperature. It is. Therefore, unless the material is an amorphous magnetic material whose crystallization temperature is higher than the Curie temperature, carrying out such an annealing method is not only meaningless but also harmful in some cases.
結晶化温度がキユリー温度より低い非晶質材料
に対しては磁界中焼鈍法が開発され、例えば特開
昭51−73925号公報や同昭52−114421号公報など
にこの焼鈍方法が開示されている。これらの磁界
中焼鈍の場合、磁界は一方向磁界であるため一軸
性の誘導磁気異方性が誘導され、超急冷薄帯では
優れた磁気特性が得られている。しかしスパツタ
法によつて形成されるコバルト―ジルコニウムや
鉄―コバルト―シリコン―ホウ素などの非晶質薄
膜ではこの焼鈍方法を実施すると異方性磁界はあ
まり小さくならず透磁率も高くならないことが特
開昭57−66611号公報に開示されている。また回
転磁界中で非晶質磁性材料を焼鈍する方法が特開
昭55−152164号公報、同昭56−5959〜5962号公
報、同昭56−44746号公報、同昭56−98465号公報
などに開示されている。これらの方法はいずれも
材料の特定方向に磁気異方性を生ぜしめず、等方
的特性を得ることを目的としており、これらの方
法よれば優れた磁気特性が得られている。このよ
うな回転磁界中焼鈍法はスパツタ法によつて形成
された非晶質軟磁性膜の焼鈍法としても有効であ
ることが特開昭57−66611や文献(第6回応用磁
気学会学術講演概要集15pB―7(1982))により
開示されている。非晶質磁性薄膜を回転磁界中で
焼鈍しても必ずしも等方的な磁気特性とはならな
いが、成膜時に形成される磁気異方性の磁化困難
軸方向での透磁率が高く異方性磁界の小さい特性
が得られる。 For amorphous materials whose crystallization temperature is lower than the Curie temperature, a magnetic field annealing method has been developed, and this annealing method is disclosed, for example, in Japanese Patent Application Laid-open Nos. 51-73925 and 1982-114421. There is. In the case of these annealing in a magnetic field, since the magnetic field is a unidirectional magnetic field, uniaxial induced magnetic anisotropy is induced, and excellent magnetic properties are obtained in the ultra-quenched ribbon. However, for amorphous thin films such as cobalt-zirconium or iron-cobalt-silicon-boron formed by the sputtering method, the anisotropic magnetic field does not become much smaller and the magnetic permeability does not increase when this annealing method is applied. It is disclosed in Japanese Patent Publication No. 1983-66611. In addition, methods for annealing amorphous magnetic materials in a rotating magnetic field are disclosed in Japanese Patent Laid-Open Nos. 55-152164, 5959-5962, 44746, 98465, and so on. has been disclosed. All of these methods aim to obtain isotropic properties without producing magnetic anisotropy in a particular direction of the material, and these methods have provided excellent magnetic properties. Such an annealing method in a rotating magnetic field is also effective as an annealing method for amorphous soft magnetic films formed by the sputtering method, as reported in Japanese Patent Application Laid-Open No. 57-66611 and in the literature (6th Academic Conference of the Japan Society of Applied Magnetics). Abstracts 15pB-7 (1982)). Annealing an amorphous magnetic thin film in a rotating magnetic field does not necessarily result in isotropic magnetic properties, but the magnetic anisotropy formed during film formation has high magnetic permeability in the direction of the difficult axis of magnetization, resulting in anisotropy. Characteristics with small magnetic field can be obtained.
電子通信学会電子材料部品・材料研究会
CPM81−11(1981)には、次のような焼鈍法が
開示されている。すなわちこの焼鈍法はスパツタ
法で形成されたコバルト―ジルコニウム薄膜の一
方向に比較的強い磁界を印加して焼鈍して一軸性
の磁気異方性を発生させた後、それと直角方向に
弱い磁界をかけて焼鈍して磁気異方性を分散させ
等方性の高い特性を得る方法である。 Institute of Electronics and Communication Engineers Electronic Materials Components and Materials Study Group
CPM81-11 (1981) discloses the following annealing method. In other words, this annealing method applies a relatively strong magnetic field in one direction to a cobalt-zirconium thin film formed by the sputtering method, anneales it to generate uniaxial magnetic anisotropy, and then applies a weak magnetic field in a direction perpendicular to the annealing. This is a method of distributing magnetic anisotropy and obtaining highly isotropic properties by annealing.
特開昭56−112450号公報によれば磁界中焼鈍に
よつて多軸磁気異方性を発生させる方法が開示さ
れている。この方法は所定時間毎に所定角度ずつ
試料を回転させて焼鈍を行う方法である。 JP-A-56-112450 discloses a method of generating multiaxial magnetic anisotropy by annealing in a magnetic field. In this method, the sample is rotated by a predetermined angle at predetermined time intervals to perform annealing.
以上に述べたように従来知られている焼鈍方法
は明確な一軸磁気異方性の形成を抑えるような焼
鈍方法である。先に述べた如く、非晶質軟磁性薄
膜にあつては成膜時に形成される一軸磁気異方性
は完全には消滅しないが、目的は同様である。し
かし或る種の用途においては明確な一軸性の磁気
異方性を、目的とする任意の方向に形成した方が
有利な場合がある。例えば磁性薄膜を磁気ヘツド
に応用する場合、一軸磁気異方性を付与して磁化
困難軸方向に磁路を形成するようにして用いるの
が一般的である。その理由は磁壁移動に依るより
も磁化回転による方が磁化反転の速度が速く高周
波での動作に優れていること、磁化困難軸方向の
方が容易軸方向よりも透磁率が高いこと、および
再生時のノイズが少ないなどである。磁性薄膜を
磁気ヘツドに用いる場合、記録感度を高くするた
めに異方性磁界の小さいことが必要であり、また
再生効率を高くするためには困難軸方向の透磁率
の高いことが望ましい。特に垂直磁気記録に用い
られる垂直ヘツドでは透磁率の高い程再生出力が
向上し透磁率を高くすることが有効である。 As described above, the conventionally known annealing method is an annealing method that suppresses the formation of clear uniaxial magnetic anisotropy. As mentioned above, in the case of amorphous soft magnetic thin films, the uniaxial magnetic anisotropy formed during film formation does not completely disappear, but the purpose is the same. However, in some applications, it may be advantageous to form clear uniaxial magnetic anisotropy in any desired direction. For example, when a magnetic thin film is applied to a magnetic head, it is generally used by imparting uniaxial magnetic anisotropy to form a magnetic path in the direction of the difficult axis of magnetization. The reasons for this are that the speed of magnetization reversal is faster and it operates better at high frequencies when magnetization is rotated than by domain wall movement, the permeability is higher in the direction of the difficult axis than in the direction of the easy axis, and For example, there is less noise at the time. When a magnetic thin film is used in a magnetic head, it is necessary to have a small anisotropic magnetic field in order to increase the recording sensitivity, and it is desirable that the magnetic permeability in the hard axis direction be high in order to increase the reproduction efficiency. In particular, in a perpendicular head used for perpendicular magnetic recording, the higher the magnetic permeability, the higher the reproduction output, so it is effective to increase the magnetic permeability.
後に述べるように、スパツタ法で成膜時に形成
される磁気異方性の磁化容易軸は膜面内の場所に
よつて異る。このことは任意の目的とする方向に
広い面積にわたつて一様な一軸磁気異方性を形成
することが困難なことを示している。従つて、か
かる非晶質磁性薄膜を回転磁界中で焼鈍しても任
意の方向に一軸磁気異方性を形成することはでき
ない。任意の方向に一軸磁気異方性を形成する有
利さは特に量産効果として大きく、また磁性薄膜
を微細加工した後に磁気異方性形成の焼鈍が可能
であるなどの点にある。 As will be described later, the axis of easy magnetization of the magnetic anisotropy formed during film formation by the sputtering method differs depending on the location within the film plane. This shows that it is difficult to form uniform uniaxial magnetic anisotropy over a wide area in any desired direction. Therefore, even if such an amorphous magnetic thin film is annealed in a rotating magnetic field, uniaxial magnetic anisotropy cannot be formed in any direction. The advantage of forming uniaxial magnetic anisotropy in any direction is particularly large as a mass production effect, and it is possible to perform annealing to form magnetic anisotropy after finely processing the magnetic thin film.
さて特開昭54−122000号公報には非晶質磁性薄
膜において磁化容易軸を安定化させ低い保磁力と
高い透磁率を得るために外部磁界中で焼鈍するこ
とが述べられている。外部一方向磁界中で長時間
(例えば250℃程度で16時間、350℃程度で1時
間)焼鈍することにより安定な容易軸が得られて
いる。容易軸の安定性の目安として上記焼鈍温度
よりも低い温度において磁化困難軸方向に磁界を
印加して焼鈍し、新たな容易軸の形成が起るまで
の焼鈍時間の長さをとつている。しかしこの方法
によれば、特開昭57−66611号公報などで述べら
れている通り、回転磁界中焼鈍で得られる程の高
い透磁率を得ることが難しい。 Now, JP-A-54-122000 describes that an amorphous magnetic thin film is annealed in an external magnetic field in order to stabilize the axis of easy magnetization and obtain low coercive force and high magnetic permeability. A stable easy axis is obtained by annealing in an external unidirectional magnetic field for a long time (eg, 16 hours at about 250°C, 1 hour at about 350°C). As a measure of the stability of the easy axis, annealing is performed by applying a magnetic field in the direction of the hard axis at a temperature lower than the above annealing temperature, and the length of annealing time until formation of a new easy axis occurs. However, according to this method, as described in JP-A-57-66611, etc., it is difficult to obtain magnetic permeability as high as that obtained by annealing in a rotating magnetic field.
本発明は以上のような現状に鑑みてなされたも
のであり、非晶質軟磁性薄膜の任意の方向に明確
な一軸性の磁気異方向を発生させ、なおかつ困難
軸方向の透磁率が高く異方性磁界の小さい非晶質
軟磁性薄膜(以下非晶質軟磁性薄膜を非晶質磁性
薄膜と称す)の製造方法を提供せんとするもので
ある。 The present invention has been made in view of the above-mentioned current situation, and it is possible to generate a clear uniaxial magnetic different direction in any direction of an amorphous soft magnetic thin film, and to create a material with high magnetic permeability in the difficult axis direction. It is an object of the present invention to provide a method for manufacturing an amorphous soft magnetic thin film (hereinafter referred to as an amorphous magnetic thin film) with a small directional magnetic field.
本発明による非晶質磁性薄膜の焼鈍法は次のよ
うにして実施される。すなわちスパツタ法で形成
された非晶質磁性薄膜を真空中又は不活性ガス中
に置き、膜面内の或る方向に直流磁界を印加して
おいて第1回目の焼鈍を行う。この時の焼鈍温度
は結晶化温度より低くしなければならないことは
勿論であるが、さらにこの第1回目の焼鈍によつ
て印加磁界の方向に新たに磁化容易軸の形成が起
らないような焼鈍温度と焼鈍時間に抑えることが
望ましい。しかしこれは絶対的な条件ではない。
具体的には200℃以上360℃程度が望ましい。200
℃より低い温度では焼鈍の効果は殆んどないし、
また360℃以上で焼鈍すると新しい方向への磁化
容易軸の形成が短時間に起り制御が難しい。第1
回目の焼鈍の効果は膜面内に垂直な磁膜面に垂直
な成分の磁気異方性を消失させると同時に恐らく
第2回目の焼鈍を実施して透磁率を向上させるた
めに必要な或る種の磁化容易軸の安定化を計る上
で効果があると考えられる。このことは後に実施
例で説明するが、第2回目の焼鈍において極めて
短時間で印加磁界方向に新たな磁化容易軸を形成
させ得るような低い温度で第1回目の焼鈍を実施
すると透磁率があまり高くならないからである。
従つて第1回目の焼鈍は好ましくは300℃以上、
第2回目の焼鈍温度より若干低い程度が望まし
い。次に非晶質薄膜を面内で90゜回転し、第1回
目の印加磁界方向と直交する方向に磁界を印加し
て第2回目の焼鈍を行う。この時の焼鈍温度は第
1回目の焼鈍温度より高くする。一方、焼鈍時間
を適正に選定し印加磁界の方向に新たに磁化容易
軸が発生したら出来るだけすみやかに焼鈍を止め
る。場合によつてはさらに膜面内で直流磁界方向
を90゜変えて第3回目の焼鈍を第2回目と同じ温
度、又は若干高くてもよい。第2回目およびそれ
以降の焼鈍において印加磁界方向に新たな容易軸
の形成が起つたならばすみやかに焼鈍を止める理
由は、更に焼鈍を続けると異方性磁界が大きくな
り透磁率が減少してしまうからである。第2回目
およびそれ以降の焼鈍温度は後述の実施例の場合
360〜380℃程度である。これらの最適焼鈍温度は
非晶質薄膜材料の組成によつて変わるものであ
る。 The method of annealing an amorphous magnetic thin film according to the present invention is carried out as follows. That is, an amorphous magnetic thin film formed by a sputtering method is placed in a vacuum or an inert gas, and a DC magnetic field is applied in a certain direction within the film surface, and then the first annealing is performed. Of course, the annealing temperature at this time must be lower than the crystallization temperature, but it is also necessary to ensure that the first annealing does not form a new axis of easy magnetization in the direction of the applied magnetic field. It is desirable to keep the annealing temperature and annealing time within limits. However, this is not an absolute condition.
Specifically, a temperature of 200°C or higher and around 360°C is desirable. 200
At temperatures lower than ℃, there is almost no effect of annealing,
Furthermore, when annealing at temperatures above 360°C, the formation of an axis of easy magnetization in a new direction occurs in a short period of time, which is difficult to control. 1st
The effect of the second annealing is to eliminate the magnetic anisotropy of the component perpendicular to the magnetic film plane, which is perpendicular to the film plane, and at the same time, it is probably necessary to carry out the second annealing to improve the magnetic permeability. This is thought to be effective in stabilizing the axis of easy magnetization of seeds. This will be explained later in Examples, but if the first annealing is performed at such a low temperature that a new axis of easy magnetization can be formed in the direction of the applied magnetic field in an extremely short time during the second annealing, the magnetic permeability will increase. This is because it doesn't get too expensive.
Therefore, the first annealing is preferably at 300°C or higher,
It is desirable that the annealing temperature be slightly lower than the second annealing temperature. Next, the amorphous thin film is rotated 90 degrees within the plane, and a second annealing is performed by applying a magnetic field in a direction perpendicular to the direction of the first applied magnetic field. The annealing temperature at this time is higher than the first annealing temperature. On the other hand, the annealing time is appropriately selected and the annealing is stopped as soon as possible when a new axis of easy magnetization occurs in the direction of the applied magnetic field. In some cases, the direction of the direct current magnetic field may be further changed by 90 degrees within the film plane, and the third annealing may be performed at the same temperature as the second annealing, or at a slightly higher temperature. The reason why annealing is stopped immediately when a new easy axis is formed in the direction of the applied magnetic field in the second and subsequent annealing is that if annealing is continued further, the anisotropic magnetic field increases and the permeability decreases. This is because it will be put away. The second and subsequent annealing temperatures are for the examples described below.
The temperature is about 360-380℃. These optimum annealing temperatures vary depending on the composition of the amorphous thin film material.
ところで、特開昭57−66611号公報には、直流
磁界中で焼鈍し磁気異方性を誘導させると透磁率
は大きくなり、異方性磁界はかなり大きくなるこ
とが記載されている。しかし焼鈍は1回しか行わ
れていない点において明らかに本発明の方法とは
異る。また文献(第6回日本応用磁気学会学術講
演概要集、15pB―7(1982))によれば、コバル
ト―ジルコニウム膜を直流磁界中で焼鈍し、その
後それを直角方向に磁界を加えて同じ温度で焼鈍
すると、焼鈍時間に対して透磁率は最大値を示す
ことが述べられている。またこの透磁率の最大値
は回転磁界中焼鈍の場合より小さいと述べられて
いる。この場合は2回の焼鈍が同じ温度でなされ
ていること、および2回目の焼鈍で印加磁界の方
向に磁化容易軸を形成せしめない点で本発明の方
法とは異る。 By the way, JP-A-57-66611 describes that when magnetic anisotropy is induced by annealing in a DC magnetic field, the magnetic permeability increases and the anisotropic magnetic field becomes considerably large. However, this method is clearly different from the method of the present invention in that annealing is performed only once. Also, according to the literature (6th Japanese Society of Applied Magnetics Academic Conference Abstracts, 15pB-7 (1982)), a cobalt-zirconium film is annealed in a direct current magnetic field, and then a magnetic field is applied in the perpendicular direction to the same temperature. It is stated that when annealed at , the magnetic permeability shows a maximum value with respect to the annealing time. It is also stated that this maximum value of magnetic permeability is smaller than that in the case of annealing in a rotating magnetic field. This case differs from the method of the present invention in that the two annealings are performed at the same temperature and that the second annealing does not form an axis of easy magnetization in the direction of the applied magnetic field.
次に本発明を図面を参照しながら詳細に説明す
る。 Next, the present invention will be explained in detail with reference to the drawings.
本発明は非晶質磁性薄膜の組成を特定するもの
ではないが、飽和磁束密度が高く、しかも零磁歪
組成を有するコバルト―ニオブ―ジルコニウムか
らなる非晶質磁性薄膜を選んで以下に説明する。
試料は公知の高周波スパツタ法によりガラス基板
上に形成した。5インチ径のコバルトターゲツト
上に5mm角のニオブとジルコニウムのペレツトを
均一に配列し、高周波電力密度0.8〜1.6W/cm2、
アルゴン圧2.5〜10mmTorrで厚さ0.2〜0.4μmの
磁性薄膜を形成した。基板ホルダーは水冷してい
るが、スパツタ中の基板表面温度は100〜150℃で
ある。形成された膜の組成は大よそ
Co85Nb10.0Zr4.5で、飽和磁束密度は10000ガウ
ス、磁歪定数は負の小さい値である。X線回折法
で調べた結果ハローパターンのみ観測され、得ら
れた膜は実質的に非晶質であることが確認され
た。磁化の温度変化によつて調べた結晶化温度は
460℃であつたが、390℃で1時間焼鈍すると局所
的に結晶化することが顕微鏡観察で確認された。 Although the present invention does not specify the composition of the amorphous magnetic thin film, an amorphous magnetic thin film made of cobalt-niobium-zirconium having a high saturation magnetic flux density and a zero magnetostriction composition will be selected and explained below.
The sample was formed on a glass substrate by a known high frequency sputtering method. 5 mm square niobium and zirconium pellets were uniformly arranged on a 5 inch diameter cobalt target, and a high frequency power density of 0.8 to 1.6 W/cm 2 was applied.
A magnetic thin film with a thickness of 0.2 to 0.4 μm was formed under an argon pressure of 2.5 to 10 mmTorr. Although the substrate holder is water-cooled, the surface temperature of the substrate during sputtering is 100 to 150°C. The composition of the formed film is approximately
Co 85 Nb 10.0 Zr 4.5 , the saturation magnetic flux density is 10000 Gauss, and the magnetostriction constant is a small negative value. As a result of examination by X-ray diffraction, only a halo pattern was observed, and it was confirmed that the obtained film was substantially amorphous. The crystallization temperature determined by the temperature change of magnetization is
Although the temperature was 460°C, it was confirmed by microscopic observation that local crystallization occurred when annealing at 390°C for 1 hour.
上記の方法により形成された非晶質磁性薄膜中
には地磁気などの影響による一軸性の磁気異方性
が発生しており、透磁率はほぼ磁化困難軸方向で
200程度、磁化容易軸方向では測定できない程度
に小さかつた。なお、透磁率の測定にはQメータ
ーを用い500kHzで行つた。成膜時に誘起される
磁気異方性はスパツタ時に置かれている基板の位
置によつて方向の異ることが見い出された。この
ことは磁気異方性の形成に寄与するのが地磁気の
みではないことを示している。第1図は基板とし
て用いたスライドガラスにスパツタ膜を形成した
後、6mm角に切断し、各切断片の透磁率を直交す
る2方向で測定した結果を示す図である。この試
料はスパツタ時に第2図のターゲツト1に対して
図のような位置に置かれた基板2の一部分より得
られたものである。第1図において矢印はそれぞ
れの方向で測定した透磁率の大きさを示し、最も
大きな矢印は透磁率にして約200であり、他の矢
印は比例して小さい値を示すものである。良く知
られているように、一軸磁気異方性が発生してい
る場合、透磁率は磁化容易方向で最も小さく、困
難軸方向で最も大きい。従つて第1図の結果は場
所によつて磁化容易軸の方向が異つていることを
示しており、成膜時に形成される磁気異方性は地
磁気のみの影響によるものではないことを示す。
このことはまた、スパツタ法で非晶質磁性膜を形
成する場合、広い面積に亘つて一様な方向に一軸
性の磁気異方性を形成することが難しいことを示
している。 Uniaxial magnetic anisotropy occurs in the amorphous magnetic thin film formed by the above method due to the influence of earth's magnetism, and the magnetic permeability is almost in the direction of the hard magnetization axis.
200, which was too small to be measured in the easy magnetization axis direction. Note that magnetic permeability was measured using a Q meter at 500kHz. It has been found that the direction of magnetic anisotropy induced during film formation differs depending on the position of the substrate placed during sputtering. This shows that it is not only the geomagnetism that contributes to the formation of magnetic anisotropy. FIG. 1 is a diagram showing the results of forming a sputtered film on a slide glass used as a substrate, cutting it into 6 mm square pieces, and measuring the magnetic permeability of each cut piece in two orthogonal directions. This sample was obtained from a portion of the substrate 2 placed at the position shown in the figure with respect to the target 1 in FIG. 2 during sputtering. In FIG. 1, the arrows indicate the magnitude of magnetic permeability measured in each direction, with the largest arrow indicating a magnetic permeability of about 200, and the other arrows indicating proportionally smaller values. As is well known, when uniaxial magnetic anisotropy occurs, magnetic permeability is smallest in the easy magnetization direction and largest in the hard axis direction. Therefore, the results shown in FIG. 1 show that the direction of the axis of easy magnetization differs depending on the location, indicating that the magnetic anisotropy formed during film formation is not solely due to the influence of earth's magnetism.
This also indicates that when forming an amorphous magnetic film by the sputtering method, it is difficult to form uniaxial magnetic anisotropy in a uniform direction over a wide area.
以下に本発明実施例を比較例とともに説明す
る。 Examples of the present invention will be described below along with comparative examples.
比較例 1
スパツタ法により成膜時に形成された磁化容易
方向に近い方向に3kOeの直流磁界を印加し、真
空中360℃で1時間第1回目の焼鈍を行つた後、
膜面内で試料を90゜回転し3kOeの磁界中で360℃
で2回目の焼鈍を行つた。この時の透磁率μを第
2回目の焼鈍時の磁異方向、すなわち成膜時に形
成された磁化困難軸方向に近い方向で測定し、第
2回目の焼鈍時間tに対して示したのが第3図で
ある。第2回目の焼鈍時間に対して透磁率は増加
し飽和する傾向を示している。また成膜時に形成
された磁化容易軸は、第2回目の焼鈍によつても
その方向を変えていない。他の実施例から予想さ
れるように、第2回目の焼鈍時間をもつと長くす
れば磁界方向への磁化容易軸の新たな形成が起る
はずである。第3図の透磁率はあまり高いもので
はない。Comparative Example 1 A DC magnetic field of 3 kOe was applied in a direction close to the easy magnetization direction formed during film formation by the sputtering method, and the first annealing was performed at 360°C in vacuum for 1 hour.
The sample was rotated 90° in the film plane and heated at 360°C in a 3kOe magnetic field.
A second annealing was performed. The magnetic permeability μ at this time was measured in the magnetic different direction during the second annealing, that is, in a direction close to the direction of the hard magnetization axis formed during film formation, and is shown against the second annealing time t. FIG. The magnetic permeability tends to increase and become saturated with respect to the second annealing time. Further, the axis of easy magnetization formed during film formation did not change its direction even after the second annealing. As expected from other examples, increasing the second annealing time should result in new formation of an easy axis of magnetization in the direction of the magnetic field. The magnetic permeability in Figure 3 is not very high.
実施例 1
第1回目の焼鈍を成膜時の磁化容易方向に近い
方向に3kOeの直流磁界を印加して300℃で30分行
い、しかる後に膜面内で試料を90゜回転させ
3kOeの直流磁界を印加して360℃で第2回目の焼
鈍をt分行つた。焼鈍時間tに対して2方向で測
定した透磁率を第4図に示す。実線は第2回目の
焼鈍時の磁界方向、点線はそれと直角方向での透
磁率をそれぞれ示す。実線で示される透磁率は焼
鈍時間tと伴に増大し、t=120分で2600程度と
なり、t>120分では急激に減少してt=160分で
は100程度の小さい値になつてしまう。これに対
し点線で示されている透磁率はt>120分で急激
に増大し、t=150分で2750程度となり、その後
は徐々に減少している。このような直交する2方
向の透磁率の変化は、焼鈍時間が130〜150分の間
に最後に印加した磁界方向に新たな一軸性の磁化
容易軸が形成されたことを示すものである。Example 1 The first annealing was performed at 300°C for 30 minutes by applying a DC magnetic field of 3 kOe in a direction close to the direction of easy magnetization during film formation, and then the sample was rotated 90° within the film plane.
A second annealing was performed at 360° C. for t minutes by applying a DC magnetic field of 3 kOe. FIG. 4 shows the magnetic permeability measured in two directions with respect to the annealing time t. The solid line indicates the magnetic field direction during the second annealing, and the dotted line indicates the magnetic permeability in a direction perpendicular to the magnetic field direction. The magnetic permeability shown by the solid line increases with the annealing time t, reaching about 2600 at t=120 minutes, and rapidly decreases when t>120 minutes, reaching a small value of about 100 at t=160 minutes. On the other hand, the magnetic permeability shown by the dotted line increases rapidly when t>120 minutes, reaches about 2750 at t=150 minutes, and gradually decreases thereafter. Such changes in magnetic permeability in two orthogonal directions indicate that a new uniaxial easy axis of magnetization was formed in the direction of the last applied magnetic field during the annealing time of 130 to 150 minutes.
本実施例の第2回目の焼鈍条件は、比較例1の
場合と同じであるにも拘らず、比較例1の場合よ
りはるかに大きい透磁率が得られる。これはこの
実施例では、第1回目の焼鈍温度を第2回目の焼
鈍温度より低くした効果である。 Although the second annealing conditions of this example are the same as those of Comparative Example 1, a much higher magnetic permeability than that of Comparative Example 1 is obtained. In this example, this is the effect of making the first annealing temperature lower than the second annealing temperature.
実施例 2
実施例1と全く同様な2回の焼鈍を行つた後、
第2回目の焼鈍中印加磁界と同じ方向に3kOeの
磁界を印加しておいて、温度を370℃に上げ第3
回目の焼鈍を行つた。その時の焼鈍時間t対する
透磁率μの変化の様子を第5図に示す。実線と点
線はそれぞれ第3回目の印加磁界方向およびそれ
と直角な方向の透磁率を示す。実線で示される透
磁率の最大値は3000程度であるが点線の場合の最
大値は4500近くに上昇している。この実施例の場
合にはt=50〜60分の間に第3回目の焼鈍によつ
て印加磁界方向に新たに磁化容易軸が形成されて
お、この時の磁化困難軸方向の透磁率は非常に高
い値となつている。Example 2 After performing two times of annealing in exactly the same manner as in Example 1,
A magnetic field of 3 kOe was applied in the same direction as the applied magnetic field during the second annealing, and the temperature was raised to 370°C during the third annealing.
The second annealing was performed. FIG. 5 shows how the magnetic permeability μ changes with respect to the annealing time t. The solid line and the dotted line indicate the magnetic permeability in the direction of the third applied magnetic field and in the direction perpendicular thereto, respectively. The maximum value of magnetic permeability shown by the solid line is about 3000, but the maximum value in the case of the dotted line increases to nearly 4500. In this example, a new axis of easy magnetization is formed in the direction of the applied magnetic field by the third annealing between t = 50 and 60 minutes, and the magnetic permeability in the direction of the axis of hard magnetization at this time is The value is extremely high.
第6図は1kHzの交流ヒステリシスループトレ
ーサーで測定したヒステリシスループであり、a
は第5図の焼鈍時間t=40分に、またbは焼鈍時
間t=60分に対応したものである。これらの図の
実線は最後の焼鈍時の印加磁界方向のヒステリシ
スループを、また点線はそれと直角方向のヒステ
リシスループをそれぞれ示す。上述した如く、焼
鈍時間t=60分では最後の焼鈍時印加磁界方向に
容易軸の形成がなされていることが明らかであ
る。それぞれの図における磁化困難軸方向のヒス
テリシスループより異方性磁界を求めると第6図
aで3.5Oe、bで2.5Oeであり、bの場合の方が
小さくなつている。 Figure 6 shows the hysteresis loop measured with a 1kHz AC hysteresis loop tracer.
b corresponds to the annealing time t=40 minutes in FIG. 5, and b corresponds to the annealing time t=60 minutes. In these figures, the solid line indicates the hysteresis loop in the direction of the applied magnetic field during the final annealing, and the dotted line indicates the hysteresis loop in the direction perpendicular to it. As mentioned above, it is clear that at an annealing time of t=60 minutes, an easy axis is formed in the direction of the magnetic field applied during the final annealing. When the anisotropic magnetic field is determined from the hysteresis loop in the direction of the hard magnetization axis in each figure, it is 3.5 Oe in Figure 6a and 2.5 Oe in Figure 6b, which is smaller in case b.
比較例 2
第1回目の焼鈍を成膜時の磁化容易方向に近い
方向に3kOeの磁界を印加して300℃で1時間行つ
た。その後、膜面内で試料を90゜回転し、第1回
目と直交する方向に3kOeの磁界を印加して、370
℃で第2回目の焼鈍を行つた。第2回目の焼鈍時
間tと透磁率μの関係を第7図に示す。実線と点
線は実施例1および実施例2と同様である。この
場合にはいずれの方向の透磁率もかなり小さい。
焼鈍時間t=5〜8分で印加磁界方向への磁化容
易軸の形成が起つていることがわかる。この例の
場合透磁率が低いのは、第1回目と第2回目の焼
鈍温度の差が大きく、また第2回目の焼鈍温度が
高過ぎて極めて短時間内に新たな磁化容易軸の形
成が起つてしまうことにあると考えられる。Comparative Example 2 The first annealing was performed at 300° C. for 1 hour by applying a magnetic field of 3 kOe in a direction close to the direction of easy magnetization during film formation. After that, the sample was rotated 90 degrees within the film plane, and a magnetic field of 3 kOe was applied in the direction perpendicular to the first time, and 370
A second annealing was performed at °C. FIG. 7 shows the relationship between the second annealing time t and the magnetic permeability μ. The solid lines and dotted lines are the same as in Example 1 and Example 2. In this case, the magnetic permeability in either direction is quite small.
It can be seen that an axis of easy magnetization is formed in the direction of the applied magnetic field at an annealing time of t=5 to 8 minutes. In this example, the reason for the low magnetic permeability is that there is a large difference between the first and second annealing temperatures, and the second annealing temperature was too high, causing the formation of a new axis of easy magnetization within an extremely short period of time. This is probably due to what happens.
尚、上記各実施例では、2回目の焼鈍の際に試
料が膜面内で直流磁界方向に対して90゜回転する
ように試料を回転させたが、試料を回転させずに
直流磁界を回転させてもよい。 In each of the above examples, during the second annealing, the sample was rotated by 90 degrees with respect to the direction of the DC magnetic field within the film plane, but the DC magnetic field was rotated without rotating the sample. You may let them.
比較例 3
従来公知の回転磁界中焼鈍法を実施し、本発明
による焼鈍法と比較した。本実施例においては磁
界方向を回転させる代りに直流磁界中で試料を回
転させた。試料の回転数は120rpmで、磁界強度
は3kOeとした。第8図は360℃で実施した焼鈍時
間tと透磁率μの関係を示す図である。焼鈍時間
t=120分で透磁率は最大となり3600程度の値を
示している。この値は第5図に点線で示されてい
る透磁率の最高値と同程度かそれより低い。Comparative Example 3 A conventionally known rotating magnetic field annealing method was carried out and compared with the annealing method according to the present invention. In this example, instead of rotating the direction of the magnetic field, the sample was rotated in a DC magnetic field. The rotation speed of the sample was 120 rpm, and the magnetic field strength was 3 kOe. FIG. 8 is a diagram showing the relationship between annealing time t and magnetic permeability μ performed at 360°C. At annealing time t=120 minutes, the magnetic permeability reaches its maximum and shows a value of about 3600. This value is comparable to or lower than the maximum permeability value shown by the dotted line in FIG.
第1図はスライドガラス基板上に形成した磁性
膜の各部分における2方向での透磁率の大きさを
示す図、第2図はスパツタ―ターゲツトとスライ
ドガラス基板の位置関係を示す図、第3図は焼鈍
時間tと透磁率μの関係を示す図、第4図および
第5図は実施例2に対応する3回の焼鈍を施した
ときの焼鈍時間tと膜面内で直交する2方向にて
測定した透磁率μの関係を示す図、第6図はヒス
テリシスループを示す図、第7図は焼鈍時間tと
膜面内2方向で測定した透磁率μの関係を示す
図、第8図は回転磁界中焼鈍の焼鈍時間tと透磁
率μの関係を示す図である。
Figure 1 is a diagram showing the magnitude of magnetic permeability in two directions in each part of a magnetic film formed on a slide glass substrate, Figure 2 is a diagram showing the positional relationship between the sputter target and the slide glass substrate, and Figure 3 is a diagram showing the positional relationship between the sputter target and the slide glass substrate. The figure shows the relationship between annealing time t and magnetic permeability μ, and Figures 4 and 5 show the annealing time t and two directions orthogonal to each other within the film surface when annealing was performed three times corresponding to Example 2. Figure 6 is a diagram showing the hysteresis loop, Figure 7 is a diagram showing the relationship between the annealing time t and magnetic permeability μ measured in two directions within the film surface, and Figure 8 is a diagram showing the relationship between the magnetic permeability μ measured in two directions within the film surface. The figure shows the relationship between annealing time t and magnetic permeability μ in rotating magnetic field annealing.
Claims (1)
を、磁界中で1〜2回焼鈍することにより、優れ
た軟磁気特性を示す非晶質軟磁性薄膜の製造方法
において、 まず、真空中または不活性ガス中で前記薄膜の
比較的磁化容易軸となる方向に近い方向の膜面内
方向に直流磁界を印加する焼鈍を施し、次いで同
じ膜面内で先行する印加磁界方向とは直交する方
向に、さらに1〜2回の直流磁界を印加して焼鈍
を施す際、 最初の焼鈍温度をT1とし、2回目以降の焼鈍
温度をT2,Toとし、結晶化温度をTXとすると
き、T1<T2≦To<TXの条件下で行うことを特
徴とする一軸性の磁気異方性を有する非晶質軟磁
性薄膜の製造方法。 2 上記の焼鈍に当り、最初の焼鈍温度T1と焼
鈍時間を直流磁界下でその印加磁界方向に磁化容
易軸の新たな形成が起こらないようにすることを
特徴とする特許請求の範囲第1項に記載の製造方
法。[Claims] 1. In a method for producing an amorphous soft magnetic thin film that exhibits excellent soft magnetic properties by annealing an amorphous magnetic thin film formed by a sputtering method once or twice in a magnetic field, firstly, , annealing is performed in a vacuum or inert gas by applying a DC magnetic field in the in-plane direction of the thin film in a direction close to the direction of the axis of relatively easy magnetization of the thin film, and then in the direction of the previously applied magnetic field in the same film plane. When annealing is performed by applying a DC magnetic field one or two more times in the orthogonal direction, the first annealing temperature is T1 , the second and subsequent annealing temperatures are T2 , T0 , and the crystallization temperature is 1. A method for producing an amorphous soft magnetic thin film having uniaxial magnetic anisotropy, characterized in that the process is carried out under the conditions of T 1 <T 2 ≦T o <T X , where T X . 2. In the above annealing, the initial annealing temperature T1 and the annealing time are set under a direct current magnetic field so that new formation of an axis of easy magnetization does not occur in the direction of the applied magnetic field. The manufacturing method described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7487783A JPS59200748A (en) | 1983-04-30 | 1983-04-30 | Manufacture of amorphous soft-magnetic thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7487783A JPS59200748A (en) | 1983-04-30 | 1983-04-30 | Manufacture of amorphous soft-magnetic thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59200748A JPS59200748A (en) | 1984-11-14 |
JPS6216268B2 true JPS6216268B2 (en) | 1987-04-11 |
Family
ID=13560009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7487783A Granted JPS59200748A (en) | 1983-04-30 | 1983-04-30 | Manufacture of amorphous soft-magnetic thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59200748A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0777007B2 (en) * | 1985-08-23 | 1995-08-16 | 日立マクセル株式会社 | Magnetic head manufacturing method |
JP2739574B2 (en) * | 1987-04-13 | 1998-04-15 | 富士写真フイルム株式会社 | Heat treatment method for amorphous soft magnetic material |
US4944805A (en) * | 1987-09-10 | 1990-07-31 | Fuji Photo Film Co., Ltd. | Method of heat treatment amorphous soft magnetic film layers to reduce magnetic anisotropy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55122864A (en) * | 1979-01-22 | 1980-09-20 | Allied Chem | Magnetic amorphous metal alloy sheet and annealing thereof |
-
1983
- 1983-04-30 JP JP7487783A patent/JPS59200748A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55122864A (en) * | 1979-01-22 | 1980-09-20 | Allied Chem | Magnetic amorphous metal alloy sheet and annealing thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS59200748A (en) | 1984-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zou et al. | Influence of stress and texture on soft magnetic properties of thin films | |
Shiratsuchi et al. | Control of the Interfacial Exchange Coupling Energy in Pt/Co/$\alpha $-Cr $ _ {2} $ O $ _ {3} $ Films by Inserting a Pt Spacer Layer at the Co/$\alpha $-Cr $ _ {2} $ O $ _ {3} $ Interface | |
JP2015041392A (en) | Magnetic material, vertical magnetic recording medium, magnetic storage device, manufacturing method of magnetic material, and manufacturing method of vertical magnetic recording medium | |
Hashi et al. | A large thermal elasticity of the ordered FeRh alloy film with sharp magnetic transition | |
Khan et al. | Magnetic properties of sputtered multilayers of Mo/Ni | |
JPS5810727B2 (en) | light modulator | |
JPS6216268B2 (en) | ||
Kockar | Rotation speed-induced uniaxial in-plane anisotropy in thin films deposited onto a rotating substrate | |
Zhang et al. | Structure and magnetic properties of magnetostrictive FeGa film on single-crystal (100) GaAs and (001) Si substrate fabricated by pulsed laser deposition | |
Cuomo et al. | Amorphous magnetic materials for bubble domain and magneto-optics application | |
Takahashi et al. | Magnetocrystalline anisotropy for/spl alpha/'-Fe-C and/spl alpha/'-Fe-N films | |
JPH0454367B2 (en) | ||
Liu et al. | Enhanced (200) Orientation in FeCo/SiO 2 Nanocomposite Films by Sol-Gel Spin-Coating on Al Underlayer | |
CN108251799B (en) | Magnetoelectric coupling heterojunction structure based on amorphous SmCo and preparation method and application thereof | |
Aboaf et al. | Magnetic properties of thin films of 3d transition metals alloyed with Cr | |
Wang et al. | High moment soft amorphous CoFeZrRe thin‐film materials | |
JPH03265104A (en) | Soft magnetic alloy film | |
Nago et al. | Magnetic properties of Fe-Ta-(B)-N films | |
Wiegert et al. | Temperature dependence and annealing effects on magnetoelastic SAW attenuation and magnetoresistance in Ni films | |
JPS6390025A (en) | Magnetic recording medium | |
JP2739574B2 (en) | Heat treatment method for amorphous soft magnetic material | |
Zhang et al. | Temperature-Dependence of Static Magnetic Properties of FeGa Thin Film Fabricated by Pulsed Laser Deposition | |
JP2979557B2 (en) | Soft magnetic film | |
JP3742116B2 (en) | Method for controlling magnetic anisotropy of magnetic thin film | |
JPH04228568A (en) | Production of amorphous thin film |