JPS59144167A - Semiconductor resistance device - Google Patents

Semiconductor resistance device

Info

Publication number
JPS59144167A
JPS59144167A JP58017347A JP1734783A JPS59144167A JP S59144167 A JPS59144167 A JP S59144167A JP 58017347 A JP58017347 A JP 58017347A JP 1734783 A JP1734783 A JP 1734783A JP S59144167 A JPS59144167 A JP S59144167A
Authority
JP
Japan
Prior art keywords
layer
type
region
conductive type
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58017347A
Other languages
Japanese (ja)
Inventor
Isao Shimizu
勲 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58017347A priority Critical patent/JPS59144167A/en
Publication of JPS59144167A publication Critical patent/JPS59144167A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/8605Resistors with PN junctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce an element in size by forming the first conductive type semiconductor layer of high density directly under the second conductive type layer, thereby forming a high resistance of small pattern without altering a diffusing process. CONSTITUTION:A high density n<+> type buried layer 6 in which n type impurity is previously diffused is formed between an Si substrate 5 and an n type Si layer 1. A doner having large diffusion velocity is diffused in the layer 1 from the layer 6 to form a high density n type layer 7, and part is superposed and formed in a p type region 2. In this manner, the depth of the region 2 is substantially reduced in depth to increase the pinch resistance.

Description

【発明の詳細な説明】 本発明は半導体拡散抵抗、特にピンチ型抵抗装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor diffused resistors, and more particularly to pinch type resistor devices.

バイポーラ形ICにおいて、第1図に示すようにエピタ
キシャル成長したn型半導体層1にnpnトランジスタ
のベース拡散を利用したp型頭域2を形成し、その表面
の一部にエミッタ拡散を利用した浅い高濃度n+型領領
域を形成して、p型頭域2を上下のn型層ではさんで高
抵抗化した拡散抵抗が一般にピンチ抵抗として知られて
いる。このピンチ抵抗では同図に示すようにn+型領領
域3電圧V。Cをかけることによってp型領域2内で空
乏層4がのびて矢印(電流の流れる方向)の通過路を狭
くし電流を制御することができる。
In a bipolar IC, as shown in Fig. 1, a p-type head region 2 is formed in an epitaxially grown n-type semiconductor layer 1 using base diffusion of an npn transistor, and a shallow height is formed on a part of its surface using emitter diffusion. A diffused resistor which has a high resistance by forming a concentration n+ type region and sandwiching the p-type head region 2 between upper and lower n-type layers is generally known as a pinch resistor. In this pinch resistor, the n+ type region 3 voltage is V as shown in the figure. By applying C, the depletion layer 4 extends within the p-type region 2, narrowing the passage in the direction of the arrow (current flow direction) and controlling the current.

このピンチ抵抗をさらに高抵抗化するには、(1)p型
頭域を浅くする、(2)n型領域を深くする、(3)p
型頭域の濃度を小さくする、(4)p型頭域の寸法を長
くする等の手段が考えられるがこれらは拡散の仕様やパ
ターンを変更するものであって、npnトランジヌタの
ベース拡散、エミッタ拡散をそ   −のまま利用する
ものである限り上記仕様変更には問題があ一部、(4)
の場合は抵抗領域のためのチップ面積が増加することに
なった。
In order to further increase this pinch resistance, (1) make the p-type region shallower, (2) make the n-type region deeper, (3) p
Possible measures include reducing the concentration of the type head region and (4) increasing the size of the p-type head region, but these methods change the diffusion specifications and patterns, and the base diffusion and emitter of the npn transistor As long as diffusion is used as is, there are some problems with the above specification changes, (4)
In this case, the chip area for the resistor region has increased.

本発明は上記した問題点を解決するためになされたもの
であり、その目的は通常のnpn)ランジスタの拡散仕
様等を変えることなく、チップ面積を増加することのな
い高抵抗な提供することにある。
The present invention was made to solve the above-mentioned problems, and its purpose is to provide a high resistance transistor without changing the diffusion specifications of a normal NPN transistor and without increasing the chip area. be.

上記目的を達成するためのピンチ型抵抗は、エミッタ拡
散によるn+型領領域直下のp型領域又はその一部に下
部又は上部よりのn型不純物の導入により高比抵抗領域
をつくり高抵抗化したものである。
To achieve the above purpose, the pinch type resistor is made by creating a high resistivity region by introducing n-type impurities from below or above into the p-type region directly under the n+-type region or a part thereof by emitter diffusion, and increasing the resistance. It is something.

以下、実施例にそって具体的に説明する。Hereinafter, a detailed explanation will be given along with examples.

第3図において本発明によるピンチ型抵抗の一つの例が
示される。同図において1は低濃度のエピタキシャルn
型Si層で、2はnpn)ランジスタのベース拡散を利
用したp型領域で例えば拡散深さd、を2,7μmとす
る。3は同じトランジスタのエミッタ拡散を利用したn
+型領領域、拡散深さd、は1,7μm程度とするう5
はp−型Si基板で、このSi基板5とn型Si層1と
の間にあらかじめsb等のn型不純物を拡散した高濃度
n++埋込層6が形成されている。7はn++埋込層6
よりn型S1層1内にP(’Jン)等の拡散速度の大き
いドナー(n型不純物)を拡散した高濃度n型層でその
一部はp型領域2内に例えばd3=0.2μm程度重な
っている。
In FIG. 3, one example of a pinch type resistor according to the present invention is shown. In the same figure, 1 is a low concentration epitaxial n
In the Si layer, 2 is a p-type region using base diffusion of an npn transistor, and the diffusion depth d is, for example, 2.7 μm. 3 uses the emitter diffusion of the same transistor.
The + type region and diffusion depth d are approximately 1.7 μm5.
is a p-type Si substrate, and a high concentration n++ buried layer 6 in which n-type impurities such as sb are diffused in advance is formed between the Si substrate 5 and the n-type Si layer 1. 7 is n++ buried layer 6
It is a highly doped n-type layer in which a donor (n-type impurity) with a high diffusion rate such as P ('Jn) is diffused into the n-type S1 layer 1, and a part of it is in the p-type region 2, for example, d3=0. They overlap by about 2 μm.

このように本発明によればp型領域の下方よりのn型不
純物の導入、拡散によってp型領域2の深さを実質的に
浅くし、それによってp型領域やn+型領領域拡散仕様
を変更することなくピンチ抵抗の抵抗を大きくすること
ができる。第4図は第3図に対応する不純物の濃度プロ
ファイルを示す。
As described above, according to the present invention, the depth of the p-type region 2 is made substantially shallow by introducing and diffusing the n-type impurity from below the p-type region, thereby meeting the specifications for diffusion of the p-type region and the n+-type region. The resistance of the pinch resistor can be increased without modification. FIG. 4 shows an impurity concentration profile corresponding to FIG. 3.

第5図は下からの不純物の拡散に代ってn 型領域3の
ある表面でP(リン)不純物を深くイオン打込みするこ
とによりn+型領領域3直下p型領域2の上側に高濃度
n型層8を形成した場合の例を示す。この場合もp型領
域2への高濃度n型層8の重なりd4によってp型領域
2の実質的な深さが浅くなり、p型領域やn+型領領域
拡散の仕様を変更することなくピンチ抵抗を大きくする
ことができる。第6図は第5図に対応する不純物濃度プ
ロファイルを示す。
FIG. 5 shows that instead of diffusing impurities from below, P (phosphorous) impurities are ion-implanted deeply into the surface of the n-type region 3, so that the upper side of the p-type region 2 directly below the n+-type region 3 has a high concentration of n An example in which a mold layer 8 is formed will be shown. In this case as well, the substantial depth of the p-type region 2 becomes shallow due to the overlap d4 of the highly doped n-type layer 8 on the p-type region 2, and the pinch can be applied without changing the specifications of the p-type region or n+ type region diffusion. The resistance can be increased. FIG. 6 shows an impurity concentration profile corresponding to FIG.

近年バイポーラ素子を主体とするリニア部とIIL(注
入集積論理)の共存するプロセスが一般的となっており
、IILにおけるβi(逆hFE)を高めるためにn+
+埋込層にP (リン)を埋込むか、又はエピタキシャ
ル層表面からP(リン)を深くイオン打込みする技術が
用いられている。本発明はこのようなIILリニア共存
プロセスに適用することによって既存のプロセスに変更
、付加を行なうことなく、極めて高抵抗のピンチ抵抗を
実現できるものである。因みにn+型領領域直下下より
の不純物拡散や上からのイオン打込みを行なったピンチ
抵抗はそれを行わない従来のピンチ抵抗に比べて同じ面
積でも5〜10倍の高抵抗が得られる。さらにn++埋
込層よりのリンの拡散や上からのイオン打込みのドーズ
量を選ぶことにより、同一パターンで種々の抵抗値をも
つピンチ抵抗が得られる。
In recent years, a process in which a linear section mainly consisting of bipolar elements and IIL (injection integrated logic) coexist has become common, and n+
+ A technique is used in which P (phosphorus) is buried in a buried layer or P (phosphorus) is ion-implanted deeply from the surface of an epitaxial layer. By applying the present invention to such an IIL linear coexistence process, an extremely high pinch resistance can be realized without changing or adding to the existing process. Incidentally, a pinch resistor that performs impurity diffusion from directly below the n+ type region or ion implantation from above can provide a resistance 5 to 10 times higher than a conventional pinch resistor that does not do this even with the same area. Furthermore, by selecting the dose of phosphorus diffusion from the n++ buried layer and the ion implantation from above, pinch resistors having various resistance values can be obtained with the same pattern.

第7図は一つの半導体基板上にnpn)ランジスタ、ピ
ンチ抵抗、IILを形成した場合を示すものである。こ
の場合、n++埋込層からのP(リン)抵抗を利用する
ことで、npn)ランジスタではコレクタ取出し部のシ
リーズ抵抗を小さくすることになり、ピンチ抵抗ではさ
らに高抵抗が得られ、IILでは逆方向npn)ランジ
スタの逆hFE (βi)を大きくすることができる。
FIG. 7 shows a case where an npn (npn) transistor, a pinch resistor, and an IIL are formed on one semiconductor substrate. In this case, by using the P (phosphorus) resistance from the n++ buried layer, the series resistance of the collector extraction part of the npn) transistor can be reduced, a higher resistance can be obtained with the pinch resistance, and the opposite is achieved with the IIL. (npn) transistor's inverse hFE (βi) can be increased.

以上実施例で述べた本発明によればn型不純物の補償効
果によってp型領域の深さを規制し、他の素子形成のた
めの拡散プロセスをかえることなく小さいパターンで高
抵抗ができ、素子サイズの縮小(2分の1程度以上)で
き、その結果回路設計が容易となる等の諸効果がもたら
される。
According to the present invention described in the embodiments above, the depth of the p-type region is regulated by the compensation effect of the n-type impurity, and high resistance can be achieved with a small pattern without changing the diffusion process for forming other elements. The size can be reduced (by about half or more), resulting in various effects such as easier circuit design.

本発明は特にリニアIIL共存ICに適用して最も有効
である。
The present invention is particularly effective when applied to linear IIL coexistence ICs.

【図面の簡単な説明】 第1図はピンチ抵抗の一例を示す縦断面図、第2図は平
面図でそのA−A’断面が第1図に対応する。 第3図は本発明によるピンチ抵抗の一例を示す縦断面図
、 第4図は第3図のB−B切断面における不純物濃度分布
曲線図である。 第5図は本発明によるピンチ抵抗の他の例な示す縦断面
図、 第6図は第5図のc−c’切断面における不純物濃度分
布曲線図である6 第7図は本発明をリニア・IIL共存ICに適用した場
合の実施例の模型断面図である。 1・・・nWsi層(エピタキシャル層)、2・・・p
型頭域(ベース)、3・・・n+型領領域エミッタ)、
4・・・空乏層、5・・・p−型Si基板、6・・・n
++埋込層、7・・・高濃度n型層、8・・・n型ウェ
ル。 ゛(し′ 第  1  図 第  2 図 第  3  図 一β・ 第  4  図 δ゛珊板表面−仰鞘離
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing an example of a pinch resistor, and FIG. 2 is a plan view, the AA' cross section of which corresponds to FIG. 1. FIG. 3 is a longitudinal sectional view showing an example of a pinch resistor according to the present invention, and FIG. 4 is an impurity concentration distribution curve diagram at the BB section in FIG. 3. FIG. 5 is a vertical cross-sectional view showing another example of the pinch resistor according to the present invention. FIG. 6 is an impurity concentration distribution curve diagram at the c-c' section of FIG. - It is a model sectional view of an example when applied to an IIL coexistence IC. 1...nWsi layer (epitaxial layer), 2...p
Type head area (base), 3...n+ type area emitter),
4... Depletion layer, 5... P-type Si substrate, 6... n
++buried layer, 7...high concentration n-type layer, 8...n-type well. Figure 1 Figure 2 Figure 3 Figure 1 β, Figure 4 δ

Claims (1)

【特許請求の範囲】 1、第1導電型半導体層上に第2導電型半導体層が形成
されその第2導電型半導体層の領域の一部に第1導電型
半導体層が形成され、第2導電型半導体両端を端子とし
第1導電型半導体層をもウ一つの端子とする半導体抵抗
装置において、前記第2導電型層直下に高濃度の第1導
電型半導体層を持つ前記半導体抵抗装置。 2、上記特許請求の範囲第1項記載の半導体抵抗装置に
おいて、上記第2導電型層の一部に上記第1導電型層と
より深い第1導電型層を形成した半導体抵抗装置。
[Claims] 1. A second conductive type semiconductor layer is formed on a first conductive type semiconductor layer, a first conductive type semiconductor layer is formed in a part of the region of the second conductive type semiconductor layer, and a second conductive type semiconductor layer is formed on a second conductive type semiconductor layer. A semiconductor resistance device in which both ends of a conductive type semiconductor are terminals and a first conductive type semiconductor layer is also used as one terminal, the semiconductor resistive device having a highly concentrated first conductive type semiconductor layer directly below the second conductive type layer. 2. The semiconductor resistance device according to claim 1, wherein the first conductivity type layer and a deeper first conductivity type layer are formed in a part of the second conductivity type layer.
JP58017347A 1983-02-07 1983-02-07 Semiconductor resistance device Pending JPS59144167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58017347A JPS59144167A (en) 1983-02-07 1983-02-07 Semiconductor resistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58017347A JPS59144167A (en) 1983-02-07 1983-02-07 Semiconductor resistance device

Publications (1)

Publication Number Publication Date
JPS59144167A true JPS59144167A (en) 1984-08-18

Family

ID=11941510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58017347A Pending JPS59144167A (en) 1983-02-07 1983-02-07 Semiconductor resistance device

Country Status (1)

Country Link
JP (1) JPS59144167A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203347A (en) * 1986-03-04 1987-09-08 Hamamatsu Photonics Kk Semiconductor position detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973985A (en) * 1972-11-16 1974-07-17
JPS55132053A (en) * 1979-03-31 1980-10-14 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device
JPS5698856A (en) * 1980-01-11 1981-08-08 Hitachi Ltd Semiconductor resistance device
JPS58197760A (en) * 1982-05-12 1983-11-17 Nec Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973985A (en) * 1972-11-16 1974-07-17
JPS55132053A (en) * 1979-03-31 1980-10-14 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device
JPS5698856A (en) * 1980-01-11 1981-08-08 Hitachi Ltd Semiconductor resistance device
JPS58197760A (en) * 1982-05-12 1983-11-17 Nec Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203347A (en) * 1986-03-04 1987-09-08 Hamamatsu Photonics Kk Semiconductor position detector

Similar Documents

Publication Publication Date Title
US4826780A (en) Method of making bipolar transistors
JP3202785B2 (en) Monolithic semiconductor device and method of manufacturing the same
US20040248389A1 (en) Method of making semiconductor device
JPS59144167A (en) Semiconductor resistance device
GB1593937A (en) I2l integrated circuitry
US4197147A (en) Method of manufacturing an integrated circuit including an analog circuit and an I2 L circuit utilizing staged diffusion techniques
JPH0526342B2 (en)
US5880001A (en) Method for forming epitaxial pinched resistor having reduced conductive cross sectional area
JPS6133261B2 (en)
JPH03227054A (en) Complementary type bipolar transistor compatible with cmos process
JPH03502987A (en) Semiconductor device with integrated circuit having vertical transistors
JPS61161761A (en) Semiconductor device
JPH02154428A (en) Junction separation semiconductor region structure for integrated circuit device
JPH0216018B2 (en)
KR900000818B1 (en) Complemental transistor manufacturing method
JPS60123062A (en) Manufacture of semiconductor integrated circuit
KR900008818B1 (en) Manufacture method of a particle in bipolar integrated circuit
JPH04305936A (en) Manufacture of transistor
JPS608629B2 (en) semiconductor equipment
JP2558472B2 (en) Semiconductor integrated circuit
JPS63107162A (en) Vertical type pnp transistor
JPH02137334A (en) Bipolar transistor for building-in in integrated circuit device
JPS6012755A (en) Semiconductor device
JPS6218763A (en) Bipolar transistor
JPS6393154A (en) Semiconductor device