JPS62203347A - Semiconductor position detector - Google Patents

Semiconductor position detector

Info

Publication number
JPS62203347A
JPS62203347A JP61046582A JP4658286A JPS62203347A JP S62203347 A JPS62203347 A JP S62203347A JP 61046582 A JP61046582 A JP 61046582A JP 4658286 A JP4658286 A JP 4658286A JP S62203347 A JPS62203347 A JP S62203347A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
type
resistance layer
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61046582A
Other languages
Japanese (ja)
Other versions
JPH0658974B2 (en
Inventor
Tadaaki Kokubo
小久保 肇朗
Yukio Inose
伊野瀬 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP4658286A priority Critical patent/JPH0658974B2/en
Publication of JPS62203347A publication Critical patent/JPS62203347A/en
Publication of JPH0658974B2 publication Critical patent/JPH0658974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To suppress the effect of the surface of a semiconductor inflicting on a resistance layer by a method wherein the P-N junction between a semiconductor base and the resistance layer is used by biasing reversely. CONSTITUTION:A P-type high resistivity region 2 is formed on the main surface on the upper side of an N-type high resistivity Si substrate 1, and N-type or N<+> type surface region 6 is formed thereon. Both ends of the region 2 are contacted to P<+> type low resistivity regions 4 and 5. A current lead-out structure, to be used for photo detection, is formed on the electrodes 14 and 15 located on the regions 4 and 5. The main surface of the substrate 1 is protected by an insulating film 7. An N<+> type low resistivity region 3 is formed on the back surface of the surface 1, and an electrode 13 is formed thereon. The P-N junction between the resistance layer 2 and the semiconductor substrate 1 is reversely biased when the position detecting device is used, and a light spot is made incident from the surface of a semiconductor. A depletion layer is developed in the vicinity of the P-N junction by the reverse bias, but almost no electric field is generated, because the resistance layer 2 is buried in the semiconductor by an isolation layer 6. Even when an electrification is generated on the surface of the semiconductor, the effect inflicted by the resistance layer 2 is small, because the isolated layer 6 performs the function as a shielding against the resistance layer 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置検出装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a semiconductor device detection device.

(従来の技術) 装置検出装置の代表的なものとして、たとえばシリコン
などの半導体基体内に不純物ドープ層からなる抵抗層を
形成し、この抵抗層内に光励起のキャリヤを生じさせ、
このキャリヤを抵抗層両端から引き抜くことにより、光
の入射装置を検出する半導体装置検出装置が知られてい
る。
(Prior art) As a typical device detection device, a resistive layer made of an impurity-doped layer is formed in a semiconductor substrate such as silicon, and optically excited carriers are generated in this resistive layer.
A semiconductor device detection device is known that detects a light incident device by extracting these carriers from both ends of a resistive layer.

1次元装置検出装置を例にとって説明する。A one-dimensional device detection device will be explained as an example.

たとえば、N形高抵抗率シリコン基体の表面内に高抵抗
率のP形紙抗層を形成する。このP形紙抗層の両端部に
電極形成用のP+形形成抵抗率領域設け、その上に電流
取り出し両電極を形成する。
For example, a high resistivity P-type paper layer is formed within the surface of an N-type high resistivity silicon substrate. P+ type formation resistivity regions for forming electrodes are provided at both ends of this P-shaped paper layer, and both current extraction electrodes are formed thereon.

N形基体の裏面には電極形成用のN+形低抵抗率領域を
設け、バイアス用電極をその上に形成する。
An N+ type low resistivity region for electrode formation is provided on the back surface of the N type substrate, and a bias electrode is formed thereon.

P形紙抗層は1次元装置検出の用途に適した細長い形状
とする。
The P-shaped paper layer has an elongated shape suitable for one-dimensional device detection applications.

N形基体とP形紙抗層との間のPN接合を逆バイアスし
た状態で、このPN接合近傍に信号光を入射する。光励
起されたキャリヤは、逆バイアスに従って正孔はP形紙
抗層に、電子はN形基体に流れろ。P形紙抗層はその両
端部に電流取り出し電極があるので、光入射装置から各
電極までの抵抗値に逆比例した正孔電流が両電極に流れ
る。
With the PN junction between the N-type substrate and the P-type paper layer being reverse biased, signal light is incident on the vicinity of this PN junction. The photo-excited carriers flow according to the reverse bias, with holes flowing to the P-type paper layer and electrons flowing to the N-type substrate. Since the P-shaped paper layer has current extraction electrodes at both ends thereof, a hole current flows through both electrodes in inverse proportion to the resistance value from the light incident device to each electrode.

抵抗層の抵抗分布が均一であれば、光入射装置から各電
極での抵抗は、その距離’l+  I2に比例する。し
たがって、各電極から取り出される電流をr、、I2と
すると、 1+ / I2−/!2 /l11 となる。いま、全長11+!2=1.とし、中央からの
距離を符号を含めてXで表すと、 11= (L/ 2) 4− x /!2=(L/2)   x とあられせる。すると x=(β+   12)I2 となり、(II   I2 ) / (11+ 12 
)=(11−I2 ) / (7!1+j!2 )の関
係を用いて、 x= ((it +12 )I2)  ・ ((ItT
2)/ (II +12)) −L/2・ [(It   I2)/(II+12)〕 と表せる。
If the resistance distribution of the resistive layer is uniform, the resistance at each electrode from the light incidence device is proportional to its distance 'l+I2. Therefore, if the current taken out from each electrode is r,,I2, then 1+/I2-/! 2/l11. Now total length 11+! 2=1. If the distance from the center is represented by X including the sign, then 11= (L/2) 4- x/! 2=(L/2) x. Then, x=(β+12)I2, and (II I2) / (11+12
)=(11-I2)/(7!1+j!2), x=((it+12)I2)・((ItT
2)/(II +12)) -L/2・[(It I2)/(II+12)] It can be expressed as follows.

このような装置検出装置の装置検出精度は、■)形抵抗
層の抵抗が装置検出方向に沿って一様に分布すること、
電流が抵抗に逆比例して流れることに依存する。
The device detection accuracy of such a device detection device is as follows: ■) The resistance of the shaped resistive layer is uniformly distributed along the device detection direction;
It relies on current flowing in inverse proportion to resistance.

このような抵抗層形成には高精度の不純物ドーピングが
必要である。また、装置検出の分解能は、一対の電流の
差動検出能力に依存するため、抵抗層の値はある程度高
いことが望まれる。イオン打ち込み技術は単位面債当り
の不純物ドープ■を正確に制御できる点でこの目的に通
している。
Forming such a resistance layer requires highly accurate impurity doping. Furthermore, since the resolution of device detection depends on the ability to differentially detect a pair of currents, it is desirable that the value of the resistance layer be high to some extent. Ion implantation technology serves this purpose in that it allows precise control of impurity doping per unit area.

(発明が解決しようとする問題点) 前述したような半導体装置検出装置において、抵抗層の
抵抗率が変化すると、装置検出精度が変化してしまうこ
とになる。
(Problems to be Solved by the Invention) In the semiconductor device detection device as described above, if the resistivity of the resistive layer changes, the device detection accuracy will change.

半導体表面は不安定で汚染に影響されやすく1、通学酸
化膜等のパッシベーション膜や封止樹脂で保護している
。しかし、これらのパッシベーション膜や封止樹脂にも
、イオン性不純物等の微量の不純物が含まれる。半導体
装置検出装置のPN接合を数ボルト以上の電圧で逆バイ
アスすると、正電位に保ったN影領域から負電位に保っ
たP影領域に電気力線が形成される。
Semiconductor surfaces are unstable and susceptible to contamination1, so they are protected with passivation films such as oxide films and sealing resins. However, these passivation films and sealing resins also contain trace amounts of impurities such as ionic impurities. When the PN junction of a semiconductor device detection device is reverse biased with a voltage of several volts or more, lines of electric force are formed from the N shadow region kept at a positive potential to the P shadow region kept at a negative potential.

この電気力線はパッシベーション膜や封止樹脂中を通過
し、そこに存在する不純物(たとえばNaCj2)を正
負のイオン(たとえばNa+と東r)に分離し、正イオ
ンをP影領域近傍に、負イオンをN影領域近傍に配列さ
せることになる。この結果、半導体表面上に配列した電
荷が、逆境性のキャリヤをパッシベーション膜下の半導
体領域表面に誘起する。
These electric lines of force pass through the passivation film and sealing resin, separating the impurities present there (e.g. NaCj2) into positive and negative ions (e.g. Na+ and Tor). The ions are arranged near the N shadow region. As a result, the charges arranged on the semiconductor surface induce adverse carriers to the surface of the semiconductor region under the passivation film.

このため抵抗層の抵抗率が不純物濃度と関係なく変化し
てしまい、半導体装置検出袋τの装置検出精度が低下し
てしまう。
Therefore, the resistivity of the resistive layer changes regardless of the impurity concentration, and the device detection accuracy of the semiconductor device detection bag τ decreases.

また、半導体表面(絶縁膜との界面)は、結晶性が悪く
、表面準位等が存在して雑音等の原因となりやすい。
Further, the semiconductor surface (interface with the insulating film) has poor crystallinity and the presence of surface states, etc., which tends to cause noise and the like.

上に述べた問題点は、抵抗層およびその周囲のPN接合
が半導体表面に露出していることに原因する。
The above-mentioned problem is caused by the fact that the resistive layer and the PN junction around it are exposed to the semiconductor surface.

本発明は抵抗層が半導体表面のif−’Jを受けにくい
半導体装置検出装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device detection device in which a resistance layer is less susceptible to if-'J on a semiconductor surface.

(問題点を解決するための手段) 本発明による半導体装置検出装置は、半導体基体の表面
と抵抗層との間に抵抗とは逆の導電形の離隔層を設け、
抵抗層を半導体表面から離隔する構成となっている。
(Means for Solving the Problems) A semiconductor device detection device according to the present invention provides a separation layer of a conductivity type opposite to that of the resistance between the surface of the semiconductor substrate and the resistance layer,
The structure is such that the resistance layer is separated from the semiconductor surface.

これは別の見地から見ると、抵抗層を不安定な半導体表
面を含まない内部領域から形成することを意味する。
From another point of view, this means that the resistive layer is formed from internal regions that do not contain unstable semiconductor surfaces.

さらに、本発明では前記離隔層を前記半導体基体と電気
的に接続する。すなわち、同導電形の半導体基体と離隔
層とを重ねて連続する領域とする。
Furthermore, in the present invention, the separation layer is electrically connected to the semiconductor substrate. That is, the semiconductor substrate and the separation layer of the same conductivity type are overlapped to form a continuous region.

これにより離隔層は半導体基体と同電位に保たれる。This keeps the separation layer at the same potential as the semiconductor substrate.

したがって、離隔層下のPN接合が逆バイアスされても
電気力線が半導体表面上に漏れることが防止される。
Therefore, even if the PN junction under the separation layer is reverse biased, electric lines of force are prevented from leaking onto the semiconductor surface.

抵抗層と離隔層とは半導体基体の同一表面からの二重不
純物ドーピングで形成してもよく、また抵抗層を形成し
た下地半導体基体上に離隔層を形成するエピタキシャル
層を成長させてもよい。
The resistive layer and the spacing layer may be formed by double impurity doping from the same surface of the semiconductor substrate, or the epitaxial layer forming the spacing layer may be grown on the underlying semiconductor substrate on which the resistive layer is formed.

21ト“−ピングは拡散、イオン打ち込み等が通し、特
にイオン打ち込みが制御性の点で通している。
21. Diffusion, ion implantation, etc. are suitable for 21-ping, and ion implantation is particularly suitable for its controllability.

エピタキシャル層を用いる場合は離隔層の不純物濃度を
自由に選択できる利点がある。
When an epitaxial layer is used, there is an advantage that the impurity concentration of the separation layer can be freely selected.

使用においては抵抗層と半導体基体(および離隔層)と
の間のPN接合を逆バイアスし、半導体表面から光スポ
ットを入射する。
In use, the PN junction between the resistive layer and the semiconductor body (and standoff layer) is reverse biased and the light spot is incident from the semiconductor surface.

逆バイアスによってPN接合近()には空乏層が発達す
るが、抵抗層は離隔層によって半導体内に埋込まれてい
るため、半導体表面上にはほとんど電界は生じない。
A depletion layer develops near the PN junction () due to the reverse bias, but since the resistance layer is buried within the semiconductor by the separation layer, almost no electric field is generated on the semiconductor surface.

抵抗層の両端部には電流取り出し構造があり、そこでは
PN接合が半導体表面に露出するが、そのことによって
抵抗層が受ける影響は少ない。
There is a current extraction structure at both ends of the resistance layer, where the PN junction is exposed to the semiconductor surface, but this has little effect on the resistance layer.

たとえ、離隔層上の半導体表面上に帯電が生じても、抵
抗層に対して離VA層がシールドの役を果たすので、抵
抗層が受ける影響は少ない。
Even if charging occurs on the semiconductor surface on the separation layer, the separation VA layer serves as a shield for the resistance layer, so the resistance layer is not affected much.

離隔層も半導体基体と同一材料で作られ、入射光を吸収
する。特に不純物濃度が高い場合はそうである。逆バイ
アスによる電界が生じない場合で発生する光励起キャリ
ヤは、出力信号にあまり寄与しないので、離隔層の不純
物濃度と厚さとは無効光吸収を大きくしないように選ぶ
のが好ましい。
The spacing layer is also made of the same material as the semiconductor body and absorbs incident light. This is especially true when the impurity concentration is high. Since optically excited carriers generated when no electric field is generated due to a reverse bias do not contribute much to the output signal, the impurity concentration and thickness of the separation layer are preferably selected so as not to increase ineffective light absorption.

たとえば、不純物濃度は高く、厚さは十分薄くする。逆
バイアスによって離隔層が完全に空乏化すると電界が半
導体表面に達するので好ましくない。
For example, the impurity concentration is high and the thickness is sufficiently thin. If the isolation layer is completely depleted due to reverse bias, the electric field will reach the semiconductor surface, which is undesirable.

一方、抵抗層を半導体内に埋込んだことにより、抵抗層
の上下にPN接合が形成され、光検出に有効な領域が増
大する。このため光検出出力は増加でき、離隔層内での
無効光吸収を十分補えることになる。
On the other hand, by embedding the resistive layer in the semiconductor, PN junctions are formed above and below the resistive layer, increasing the effective area for photodetection. Therefore, the photodetection output can be increased, and the ineffective light absorption within the separation layer can be sufficiently compensated for.

とくに、離隔層をエピタキシャル層で形成した場合は、
離隔層の不純物濃度を自由に選択できるので抵抗層上側
のPN接合の特性も光検出に最適のものとすることがで
きる。
In particular, when the separation layer is formed from an epitaxial layer,
Since the impurity concentration of the separation layer can be freely selected, the characteristics of the PN junction above the resistance layer can also be optimized for photodetection.

(実施例) 本発明を図面等を参照して、さらに詳しく説明する。(Example) The present invention will be explained in more detail with reference to the drawings and the like.

第1図(a)、第1図(b)に本発明による半導体装置
検出装置の実施例を示す。
FIGS. 1(a) and 1(b) show an embodiment of a semiconductor device detection apparatus according to the present invention.

第1導電形の半導体基体であるN層高抵抗率シリコン基
体1の上側主表面には、第2導電形抵抗層であるP形高
抵抗率領域2が形成され、さらにその上に第1導電形離
隔層であるN形もしくはN+形裏表面領域6形成されて
いる。
A P-type high resistivity region 2, which is a second conductivity type resistance layer, is formed on the upper main surface of the N-layer high resistivity silicon substrate 1, which is a semiconductor substrate of the first conductivity type. An N type or N+ type back surface region 6 which is a type separation layer is formed.

P影領域2の両端はP+形低抵抗率領域4,5に接して
いる。これらのP+形領J54.5はその上の電極14
.15と共に光検出用の電流取り出し構造を形成してい
る。
Both ends of the P shadow region 2 are in contact with the P+ type low resistivity regions 4 and 5. These P+ shaped areas J54.5 are connected to the electrode 14 thereon.
.. Together with 15, it forms a current extraction structure for photodetection.

シリコン基体1の主表面は酸化シリコン等の絶縁1!J
7で保護されている。この絶縁膜7は少なくとも抵抗r
FJ2の上部では入射光に対して透明な材料で作られる
。シリコン基体1の下側主表面(裏面)にはN+形低抵
抗率領域3が形成され、その上には電極13が形成され
る。
The main surface of the silicon substrate 1 is an insulator 1 such as silicon oxide! J
7 is protected. This insulating film 7 has at least a resistance r
The upper part of FJ2 is made of a material that is transparent to the incident light. An N+ type low resistivity region 3 is formed on the lower main surface (back surface) of the silicon substrate 1, and an electrode 13 is formed thereon.

第1図(1)lの上面パターンに示すように、N形離隔
層6は抵抗層2の全面を覆い、N形シリコン基体1と連
続するように形成するのが好ましい。
As shown in the upper surface pattern of FIG. 1(1)l, the N-type separation layer 6 is preferably formed to cover the entire surface of the resistance layer 2 and to be continuous with the N-type silicon substrate 1.

P形抵抗層2の全面をN形離隔層で覆うことにより、P
形抵抗層周囲のPN接合12は第1図<C1に示すよう
に完全に半導体内に埋込まれる。
By covering the entire surface of the P-type resistance layer 2 with the N-type separation layer,
The PN junction 12 around the shaped resistive layer is completely embedded in the semiconductor as shown in FIG. 1<C1.

抵抗層2の周囲のN形シリコン基体1およびN(N”)
形離隔層が一定電位に保たれるので、PN接合12周辺
の電界が半導体表面上に漏れることがない。
N-type silicon substrate 1 and N (N”) around resistive layer 2
Since the separation layer is kept at a constant potential, the electric field around the PN junction 12 does not leak onto the semiconductor surface.

電流取り出し用のP+形領領域45は半導体表面に露出
しており、その周囲のPN接合も半導体表面に露出して
いる。したがって電流取り出し構造(4,14>(5,
15)近傍では半導体表面上に電界が生じ、電気力線が
発生する。
The P+ type region 45 for current extraction is exposed on the semiconductor surface, and the PN junction around it is also exposed on the semiconductor surface. Therefore, the current extraction structure (4, 14>(5,
15) An electric field is generated on the semiconductor surface in the vicinity, and electric lines of force are generated.

しかし、抵抗層2とこれらのPN接合露出端は離れてい
るので、抵抗層2に与える影響は少ない。
However, since the resistive layer 2 and the exposed ends of these PN junctions are separated, the influence on the resistive layer 2 is small.

さらに、たとえわずかな電気力線の漏れによって抵抗層
2の上部にイオンが移動しても、本実施例の場合それら
はN形離隔屓6上の負イオンであり、それらのγ響もN
形離隔層6によって電気的にシールドされてしまう。
Furthermore, even if ions move to the upper part of the resistance layer 2 due to a slight leakage of electric lines of force, in this embodiment, they are negative ions on the N-type separator 6, and their γ-effects are also N-type.
It is electrically shielded by the shape separation layer 6.

したがって、長期間逆バイアスを印加しても、それによ
って抵抗層2の抵抗が変化することはほとんどない。な
お、第1b図に示すように、N+形離隔層6をP+形領
領域45内に入り込むように形成すること等によりPN
接合露出端部の影響を低減することもできる。
Therefore, even if a reverse bias is applied for a long period of time, the resistance of the resistance layer 2 hardly changes. Note that, as shown in FIG. 1b, by forming the N+ type separation layer 6 so as to penetrate into the P+ type region 45, the PN
It is also possible to reduce the effects of exposed joint edges.

シリコン基体lは、たとえばN形、5xl□+tcm4
のものとして十分空乏層が延びるようにする。
The silicon substrate l is, for example, N type, 5xl□+tcm4
The depletion layer should be extended sufficiently.

一次元検出装置の抵抗層2の上面形状は、長方形が好ま
しく、たとえばlmmX3mmの長方形とする。抵抗層
2の深さと不純物濃度とは逆バイアスで完全には空乏化
せず、適当な抵抗値(例えば、100にΩのオーダ)を
与え、かつ十分広い有効光吸収領域を与えるように選ぶ
のがよい。例えば、0、3 p mの厚み、5 X I
 015cm−3を用イル。
The upper surface shape of the resistance layer 2 of the one-dimensional detection device is preferably rectangular, for example, a rectangle of 1 mm x 3 mm. The depth and impurity concentration of the resistance layer 2 are selected so that it is not completely depleted by reverse bias, provides an appropriate resistance value (for example, on the order of 100Ω), and provides a sufficiently wide effective light absorption region. Good. For example, 0.3 p m thickness, 5 X I
015cm-3 is used.

離隔J’56は抵抗層2を実質上覆い、電気的にシール
ドするとともに、あまり無効な光吸収を生じさせないも
のとする。たとえば、不純物濃度l Q” cm−3,
深さ0.2.17 mのものとする。
The spacing J'56 substantially covers the resistive layer 2, shielding it electrically and causing less ineffective light absorption. For example, impurity concentration l Q” cm−3,
The depth shall be 0.2.17 m.

裏面のコンタクト用N+形層3は電極をその上に形成す
るための領域であり、十分低抵抗率なものにすればよい
。たとえば表面側不純物ドープ領域の形成後または形成
前に拡散で作ることができる。
The N+ type contact layer 3 on the back surface is a region on which an electrode is formed, and may be made to have a sufficiently low resistivity. For example, it can be created by diffusion after or before the formation of the front side impurity doped region.

表面側のP+形低抵抗率領域4.5もその上に電極を形
成するための領域であるが、同時にP形抵抗I′i2の
両端を画定する領域となる。
The P+ type low resistivity region 4.5 on the front side is also a region for forming an electrode thereon, but at the same time it becomes a region defining both ends of the P type resistor I'i2.

たとえば、拡散で抵抗Ft2、離隔層6の形成前に作る
ことができる。
For example, the resistor Ft2 and the separation layer 6 can be formed by diffusion.

抵抗層2、離#1層6は抵抗層2の抵抗を決めるもので
精密に制御して作ることが好ましい。
The resistive layer 2 and #1 layer 6 determine the resistance of the resistive layer 2, and are preferably formed under precise control.

たとえば、抵抗Fj2はボロンのイオン打ち込み、離隔
層6はリンまたは砒素のイオン打ち込みで作ることがで
きる。
For example, the resistor Fj2 can be made by boron ion implantation, and the separation layer 6 can be made by phosphorus or arsenic ion implantation.

より浅い屡を作るには不活性ガス雰囲気中でのレーザに
よる半導体表面の溶融によるレーザアニール等を利用し
てもよい。
To create a shallower layer, laser annealing or the like may be used in which the semiconductor surface is melted using a laser in an inert gas atmosphere.

シリコン基体内の不純物分布の例を第2図に示す。横軸
は表面から裏面への深ざ、縦軸は不純物濃度を示す。N
形離隔層6はリンのイオン打ち込み層で表面濃度I Q
’ 8cm−”、深さ0.2 p m、P形抵抗層2は
ポロンのイオン打ち込み層で表面濃度5X 1016c
m−3,深さ0.5μm、N形基体1は厚さ200μm
、不純物濃度5X101”cm−3のシリコンウェーハ
のドープされなかった領域N+形領領域3はリンの拡散
層で表面濃度5×1019cm′″3.深さ0.8 p
 mである。
An example of impurity distribution within a silicon substrate is shown in FIG. The horizontal axis indicates the depth from the front surface to the back surface, and the vertical axis indicates the impurity concentration. N
The shape separation layer 6 is a phosphorus ion-implanted layer with a surface concentration of IQ.
'8cm-'', depth 0.2pm, P-type resistance layer 2 is a poron ion implantation layer with a surface concentration of 5X 1016c.
m-3, depth 0.5 μm, N type substrate 1 thickness 200 μm
, the undoped N+ type region 3 of the silicon wafer with an impurity concentration of 5 x 101'' cm-3 is a phosphorous diffusion layer with a surface concentration of 5 x 1019 cm'''3. Depth 0.8p
It is m.

製造方法の例を以下に述べる。N形高抵抗シリコン基体
1の表面内にP+形領領域45を拡散で形成した後、マ
スクを介してボロンイオンを加速電圧150KeV、線
1R2X10”cm  ’で打ち込み、900℃で30
分間アニールしてP形抵抗層2を形成する。
An example of the manufacturing method will be described below. After forming a P+ type region 45 in the surface of the N type high-resistance silicon substrate 1 by diffusion, boron ions were implanted through a mask at an acceleration voltage of 150 KeV and a line of 1R2 x 10" cm ' at 900°C for 30 minutes.
The P-type resistance layer 2 is formed by annealing for a minute.

そのfA P形抵抗層2を包む形状のマスクを作り、こ
のマスクを介してリンイオンを加速電圧150KeV、
線量2x 1014cm−2で打ち込み、850℃で3
0分間アニールする。これによってN形&11隔層6で
覆われたP形抵抗層2が形成される。
A mask with a shape that wraps around the fAP type resistance layer 2 is made, and phosphorus ions are accelerated through this mask at a voltage of 150 KeV.
Implant with dose 2x 1014 cm-2, 3 at 850℃
Anneal for 0 minutes. As a result, a P-type resistance layer 2 covered with an N-type &11 barrier layer 6 is formed.

その後、通常の電極付は工程を行って、第1図(a)。After that, a normal electrode attaching process is performed, as shown in FIG. 1(a).

第1図(b)の半導体装置検出装置を得る。The semiconductor device detection device shown in FIG. 1(b) is obtained.

このようにして得た半導体装置検出装置を温度85℃、
湿度85%、バイアス電圧15Vで2000時間のテス
トを行った結果、従来のものに認められたような装置検
出精度の劣化、電掻間抵抗の変化はほとんど認められな
かった。
The thus obtained semiconductor device detection device was heated to a temperature of 85°C.
As a result of testing for 2000 hours at a humidity of 85% and a bias voltage of 15V, there was hardly any deterioration in the detection accuracy of the device or any change in the resistance between the electrodes, which was observed in conventional devices.

第3図に、別の実施例による半導体装置検出装置を示す
FIG. 3 shows a semiconductor device detection apparatus according to another embodiment.

第1図(a)、第1図(blの実施例では半導体表面か
らの不純物ドーピングによって離隔層を形成したが、本
実施例ではP形抵抗Fi2を形成後、その上にN形エピ
タキシャル層を成長させることによって離隔Pi6を形
成する。
In the embodiment of FIG. 1(a) and FIG. 1(bl), the isolation layer was formed by doping impurities from the semiconductor surface, but in this embodiment, after forming the P-type resistor Fi2, an N-type epitaxial layer was formed on it. The separation Pi6 is formed by growing.

その後電極取り出し領域4.5をP形不純物を拡散する
ことによって形成する。他の部分は第1図(a)、第1
図C:b)の実施例と同様である。
Thereafter, electrode extraction regions 4.5 are formed by diffusing P-type impurities. The other parts are shown in Figure 1(a).
Similar to the embodiment in Figure C: b).

本実施例の場合は、N形離隔Fi6をエピタキシャル成
長で形成するので、離隔層6の不純物濃度を抵抗層2の
不純物濃度よりも低くすることができる。
In the case of this embodiment, since the N-type separation Fi 6 is formed by epitaxial growth, the impurity concentration of the separation layer 6 can be lower than the impurity concentration of the resistance layer 2 .

P形抵抗層2を低不純物濃度のN影領域でほぼ完全に取
り囲み、その周囲のPN接合全面を有効な光検出領域と
することができる。
The P-type resistance layer 2 is almost completely surrounded by the N shadow region with a low impurity concentration, and the entire surrounding PN junction can be used as an effective photodetection region.

また、離隔層6の不純物濃度が低くでき、無効な光吸収
を低減することにも有効である。
Furthermore, the impurity concentration of the separation layer 6 can be lowered, which is effective in reducing ineffective light absorption.

(発明の効果) 以上詳しく説明したように、本発明による半導体装置検
出装置は、半導体基体表面と抵抗層との間に抵抗とは逆
の離隔層を設け、抵抗層を半導体表面から離隔する構成
となっている。
(Effects of the Invention) As described above in detail, the semiconductor device detection device according to the present invention has a configuration in which a separation layer opposite to the resistance is provided between the semiconductor substrate surface and the resistance layer, and the resistance layer is separated from the semiconductor surface. It becomes.

したがって、抵抗層が半導体表面の影響を受けにくくな
り、安定な動作をする。
Therefore, the resistance layer is less affected by the semiconductor surface and operates stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、第1図(b)は本発明による半導体装置
検出装置の実施例の断面図および上面パターン図である
。 第2図は不純物濃度プロフィールの例を示すグラフであ
る。 第3図は本発明による半導体装置検出装置の他の実施例
の断面図である。 1・・・・・・N形半導体基体 2・・・・・・P形抵抗屓 3・・・・・・N+形低抵抗率領域 4.5・・・・・・P+形形紙抵抗率領域6・・・・・
N形離隔石 7・・・・・・絶縁膜 特許出願人 浜松ホトニクス株式会社 代理人 弁理士  井 ノ ロ  溝 片1図 (a) 第2図          第3.l 手続補正書(方力 ■mロ61年 6月 3日
FIGS. 1(a) and 1(b) are a sectional view and a top pattern view of an embodiment of a semiconductor device detection apparatus according to the present invention. FIG. 2 is a graph showing an example of an impurity concentration profile. FIG. 3 is a sectional view of another embodiment of the semiconductor device detection apparatus according to the present invention. 1...N type semiconductor substrate 2...P type resistor layer 3...N+ type low resistivity region 4.5......P+ type paper resistivity Area 6...
N-type separation stone 7... Insulating film patent applicant Hamamatsu Photonics Co., Ltd. Agent Patent attorney Inoro Groove piece 1 (a) Figure 2 Figure 3. l Procedural amendment (Holiki M Ro June 3, 1961)

Claims (7)

【特許請求の範囲】[Claims] (1)第1の導電形の半導体基体と、前記半導体基体の
主表面内に形成された第2の導電形の抵抗層と、前記抵
抗層の両端部に形成された一対の電流取り出し構造と、
前記半導体基体の主表面内で前記抵抗層と前記主表面と
の間に形成された第1の導電形の離隔層とを含み、前記
半導体基体と前記抵抗層との間のPN接合を逆バイアス
して使用することを特徴とする半導体装置検出装置。
(1) A semiconductor substrate of a first conductivity type, a resistance layer of a second conductivity type formed within the main surface of the semiconductor substrate, and a pair of current extraction structures formed at both ends of the resistance layer. ,
a separation layer of a first conductivity type formed within the main surface of the semiconductor substrate between the resistance layer and the main surface, the PN junction between the semiconductor substrate and the resistance layer being reverse biased; A semiconductor device detection device characterized in that it is used as a semiconductor device.
(2)前記離隔層が前記半導体基体の第1導電形部分に
まで延在し、電気的に接続されている特許請求の範囲第
1項記載の半導体装置検出装置。
(2) The semiconductor device detection device according to claim 1, wherein the separation layer extends to and is electrically connected to the first conductivity type portion of the semiconductor substrate.
(3)前記離隔層の深さが約数μmである特許請求の範
囲第1項または第2項記載の半導体装置検出装置。
(3) The semiconductor device detection device according to claim 1 or 2, wherein the separation layer has a depth of about several μm.
(4)前記第1の導電形がN形であり、前記第2の導電
形がP形であり、前記抵抗層および前記離隔層がともに
イオン打ち込みにより不純物をドープした層である特許
請求の範囲第1項ないし第3項記載の半導体装置検出装
置。
(4) The first conductivity type is N type, the second conductivity type is P type, and both the resistance layer and the separation layer are layers doped with impurities by ion implantation. A semiconductor device detection device according to any one of items 1 to 3.
(5)前記離隔層が前記抵抗層上に形成されたエピタキ
シャル層である特許請求の範囲第1項ないし第3項記載
の半導体装置検出装置。
(5) The semiconductor device detection device according to any one of claims 1 to 3, wherein the separation layer is an epitaxial layer formed on the resistance layer.
(6)前記離隔層が前記抵抗層よりも不純物濃度の低い
半導体領域である特許請求の範囲第5項記載の半導体装
置検出装置。
(6) The semiconductor device detection device according to claim 5, wherein the separation layer is a semiconductor region having a lower impurity concentration than the resistance layer.
(7)前記半導体基体がシリコン基体であり、前記抵抗
層が硼素をドープした層であり、前記離隔層が燐をドー
プした層である特許請求の範囲第1項ないし第6項記載
の半導体装置検出装置。
(7) The semiconductor device according to any one of claims 1 to 6, wherein the semiconductor substrate is a silicon substrate, the resistance layer is a layer doped with boron, and the separation layer is a layer doped with phosphorus. Detection device.
JP4658286A 1986-03-04 1986-03-04 Semiconductor position detector Expired - Fee Related JPH0658974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4658286A JPH0658974B2 (en) 1986-03-04 1986-03-04 Semiconductor position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4658286A JPH0658974B2 (en) 1986-03-04 1986-03-04 Semiconductor position detector

Publications (2)

Publication Number Publication Date
JPS62203347A true JPS62203347A (en) 1987-09-08
JPH0658974B2 JPH0658974B2 (en) 1994-08-03

Family

ID=12751294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4658286A Expired - Fee Related JPH0658974B2 (en) 1986-03-04 1986-03-04 Semiconductor position detector

Country Status (1)

Country Link
JP (1) JPH0658974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575098B1 (en) * 1997-10-01 2006-08-11 마츠시타 덴끼 산교 가부시키가이샤 Receiver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963776A (en) * 1982-10-01 1984-04-11 Hamamatsu Tv Kk Semiconductor device for detecting incident position
JPS59144167A (en) * 1983-02-07 1984-08-18 Hitachi Ltd Semiconductor resistance device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963776A (en) * 1982-10-01 1984-04-11 Hamamatsu Tv Kk Semiconductor device for detecting incident position
JPS59144167A (en) * 1983-02-07 1984-08-18 Hitachi Ltd Semiconductor resistance device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575098B1 (en) * 1997-10-01 2006-08-11 마츠시타 덴끼 산교 가부시키가이샤 Receiver

Also Published As

Publication number Publication date
JPH0658974B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
JP3614184B2 (en) Photodiode structure and photodiode array
US5719414A (en) Photoelectric conversion semiconductor device with insulation film
KR890004476B1 (en) Semiconductor optical detection device
GB1573309A (en) Semiconductor devices and their manufacture
JPH0734479B2 (en) Semiconductor device
US4129878A (en) Multi-element avalanche photodiode having reduced electrical noise
EP1061587B1 (en) Monolithic semiconductor particle detector and method for its manufacture
JPS62203347A (en) Semiconductor position detector
US4603342A (en) Imaging array having higher sensitivity and a method of making the same
EP0001139A1 (en) Radiation-sensitive avalanche diode and method of manufacturing same
JPH05335618A (en) Optical position detecting semiconductor device
EP0162165A2 (en) A Hall effect device and method for fabricating such a device
US5583352A (en) Low-noise, reach-through, avalanche photodiodes
JPH114012A (en) Pin photodiode
JP3621314B2 (en) Receiver
JPS6154314B2 (en)
JPS59127883A (en) Photosensitive semiconductor device
JP3681190B2 (en) High voltage planar light receiving element
US6174750B1 (en) Process for fabricating a drift-type silicon radiation detector
Wegrzecka et al. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)
EP0911881A2 (en) Semiconductor diode array having radiation degradation retardation means
EP4332529A1 (en) Method for applying a cap layer to protect electrical components of a semiconductor device from e-beam irradiation
JPH11126911A (en) Pn junction diode and method for evaluating semiconductor substrate using the same
JPH04242980A (en) Light-receiving element
US4658497A (en) Method of making an imaging array having a higher sensitivity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees