JPS59138956A - Quantitative determination of hydrogen in molten metal - Google Patents

Quantitative determination of hydrogen in molten metal

Info

Publication number
JPS59138956A
JPS59138956A JP58012649A JP1264983A JPS59138956A JP S59138956 A JPS59138956 A JP S59138956A JP 58012649 A JP58012649 A JP 58012649A JP 1264983 A JP1264983 A JP 1264983A JP S59138956 A JPS59138956 A JP S59138956A
Authority
JP
Japan
Prior art keywords
hydrogen
vessel
molten metal
molten steel
collection container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58012649A
Other languages
Japanese (ja)
Other versions
JPH035547B2 (en
Inventor
Takashi Otsubo
孝至 大坪
Hirahisa Kawase
川瀬 平久
Shunsuke Goto
後藤 俊助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58012649A priority Critical patent/JPS59138956A/en
Priority to EP84100607A priority patent/EP0114688B2/en
Priority to DE8484100607T priority patent/DE3466286D1/en
Priority to CA000445703A priority patent/CA1205651A/en
Priority to KR1019840000247A priority patent/KR870001397B1/en
Publication of JPS59138956A publication Critical patent/JPS59138956A/en
Priority to US06/748,134 priority patent/US4590809A/en
Publication of JPH035547B2 publication Critical patent/JPH035547B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • G01N33/2025Gaseous constituents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To eliminate an error in measurement by coating a release agent on the outside wall of a sampling vessel, dipping the same in a molten metal to sample the molten metal and putting the vessel in a gas capturing vessel and rupturing the vessel. CONSTITUTION:A release agent which prevents sticking of slag and molten steel is coated on the outside wall of a sampling vessel 1 of an internal capturing type of hydrogen by vacuum suction and release and is dried and thereafter the vessel is dipped in the molten steel. The top end 3 thereof is corroded by the molten steel, then the molten steel is sucked in the vessel to fill a conduit 2 and arrives at a chiller 10, thus closing a vent hole 11 and soldifying. The hydrogen to be released in the stage of cooling on solidifying is captured in a vacuum chamber 4. The sampling vessel right after the sampling is put into a capturing vessel 6 with a rupturing mechanism which is then closed hermetically with a cover 12 and the inside thereof is evacuated to vacuum or substd. with gas for carrier. The sampling vessel is ruptured to release hydrogen into the capturing vessel. The hydrogen is quantitatively determined with a mass spectrograph or a heat conductivity detector with a gas chromatograph.

Description

【発明の詳細な説明】 本発明は溶融金属中の水素量定量方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining the amount of hydrogen in molten metal.

製鋼やアルミニウム製錬において溶融金属中の水素量を
できるだけ低減させることが最終製品の機械的性質を向
上させる上で肝要である。溶融金属(以下溶湯と記す)
中の水素量を定量するには、従来溶湯から直接あるいは
一旦ひしやくで汲上げたものから石英管で吸上げ、水で
急冷し直ちにあるいはドライアイスまたは液体窒素中で
保存したのち所定の大きさに切断し研磨してから、不活
性ガス中で溶融−ガスクロマトグラフ分離−熱伝導度検
出法により定量するのが一般的である。
In steelmaking and aluminum smelting, it is important to reduce the amount of hydrogen in molten metal as much as possible in order to improve the mechanical properties of the final product. Molten metal (hereinafter referred to as molten metal)
Conventionally, to quantify the amount of hydrogen in the molten metal, it is necessary to suck it up directly from the molten metal or after pumping it up in a quartz tube, quench it with water, and then store it immediately or in dry ice or liquid nitrogen before making it into a specified size. After cutting and polishing, it is generally quantified by melting in an inert gas-gas chromatography separation-thermal conductivity detection method.

しかしながら、(1)溶融金属の凝固に際し水素溶解度
が大巾に低下するので、試料の凝固時に多量の水素が大
気中に放出され定量されないこと、および(2)凝固後
室温では水素が過飽和状態にあるため試料の切断、研磨
等の分析準備中にも水素が逸散することのために、上述
の方法では溶融金属中の水素量を正確に定量することが
困難である。
However, (1) the solubility of hydrogen drastically decreases when the molten metal solidifies, so a large amount of hydrogen is released into the atmosphere during solidification of the sample and cannot be quantified; and (2) hydrogen is supersaturated at room temperature after solidification. Therefore, it is difficult to accurately quantify the amount of hydrogen in the molten metal using the above-mentioned method because hydrogen also dissipates during preparation for analysis such as cutting and polishing the sample.

このような難点を解決するため、二三の提案がなされて
いる。その第1は、肉厚の薄い円筒形のステンレス鋼を
封入した真空石英管に溶湯を吸上げ凝固時に放出される
水素を水素溶解度の高いステンレス鋼に吸収させ、試料
をステンレス鋼円筒と共に切断し定量に供するものであ
る(成田性、「鉄と鋼」且、1979.p1620 )
。しかし、この方法を用いるとき凝固金属とステンレス
鋼円筒との境界に微細なすきまを生じ、水冷時にここに
入った水が、分析のため試料を溶融する際に分解して水
素を発生し誤差を生じることが多く、また挿入されるス
テンレス鋼円筒もあらかじめ完全に脱水素をしておかな
いと誤差が大きくなると(・う難点がある。
Several proposals have been made to solve these difficulties. The first method involves sucking up the molten metal into a vacuum quartz tube filled with thin-walled cylindrical stainless steel, allowing the hydrogen released during solidification to be absorbed into the stainless steel, which has a high hydrogen solubility, and then cutting the sample along with the stainless steel cylinder. It is used for quantitative determination (Narita Sei, "Tetsu to Hagane", 1979. p1620)
. However, when this method is used, a fine gap is created at the boundary between the solidified metal and the stainless steel cylinder, and water that enters the gap during water cooling decomposes and generates hydrogen when melting the sample for analysis, causing errors. In addition, the stainless steel cylinder to be inserted must be completely dehydrogenated beforehand, otherwise the error will become large.

その第2は、第1図に示すように薄鋼板からなる紬調管
1の内部に溶鋼を一定の棒状に凝固させる導管2を収め
、真空にして封じた先端3を溶鋼に浸漬し、導管2内に
溶鋼を吸引したのち、緩冷却して溶鋼中の水素を完全に
放出させ真空室4に捕集し、次に第2図に示すようにガ
ス分析計5に連結された捕集容器6中で試料採取容器7
の紬調管部1に穿孔して捕集された水素を熱伝導度検出
法で測定し、導管部2に吸引された溶湯量で除して水素
量を定量するものである(特公昭53−451.57号
公報)。この方式によれば凝固時に放出される水素の逃
散は防止され、また試料の切断研磨が不要となったため
、切断・研磨時の水素逸散による誤差も防止されている
。しかし、この提案にもなお難点が残されている。
As shown in Fig. 1, a conduit 2 for solidifying molten steel into a certain rod shape is placed inside a pongee pipe 1 made of a thin steel plate, and the tip 3 sealed in a vacuum is immersed in the molten steel. After the molten steel is sucked into the molten steel 2, it is slowly cooled to completely release the hydrogen in the molten steel and collected in the vacuum chamber 4, and then, as shown in FIG. Sample collection container 7 in 6
The amount of hydrogen is determined by measuring the hydrogen collected by perforating the pongee pipe section 1 using the thermal conductivity detection method, and dividing the amount by the amount of molten metal drawn into the pipe section 2 (Special Publications Publication No. 1973). -451.57). This method prevents the hydrogen released during solidification from escaping, and also eliminates the need for cutting and polishing the sample, thereby preventing errors caused by hydrogen dissipation during cutting and polishing. However, this proposal still has some drawbacks.

すなわち、試料採取容器7には溶湯がもっばら導管部2
を通って吸上げられ、紬調管部1と導管部2との中間に
吸上げられることのないよう通常は、吸上基部8を設け
まずここに吸引された溶湯が凝固して紬調管部1と導管
部2との中間へ至る経路を閉塞するように作られている
。ところが、この部分から放出される水素が導管部2か
ら放出される水素と加算されると誤差を生じるので、第
2図に示すように吸上基部8を捕集容器6の外部に出し
て導管部2のみの水素が定量されるように密閉すること
が必要であるが、先端近傍外周には溶鋼やスラグが付着
してシール部9での密閉が不完全になり、水素が逃散し
低値となることがある。
That is, most of the molten metal in the sample collection container 7 is in the conduit section 2.
Normally, a suction base 8 is not provided to prevent the molten metal from being sucked up through the pongee pipe and being sucked up between the pongee pipe part 1 and the conduit part 2. It is made so as to close the path leading to the middle of the section 1 and the conduit section 2. However, if the hydrogen released from this part is added to the hydrogen released from the conduit section 2, an error will occur, so as shown in FIG. It is necessary to seal so that only the hydrogen in section 2 can be measured, but molten steel and slag adhere to the outer periphery near the tip, making the sealing at seal section 9 incomplete, causing hydrogen to escape and resulting in low values. It may become.

また、さきに述べた吸上基部8に吸引された溶湯が凝固
する際に放出する水素が導管部2の溶湯から放出される
水素と共に真空室4に捕集され高目の誤差を生じる可能
性もある。さらにまた、試料を採取し緩冷却するだけで
は水素が完全に放出されないことが危惧される。これに
対する対策として、採取容器7全体を加熱すると導管部
2だけでなく吸上基部8に吸引され凝固した溶湯の水素
の一部が内部へ放出されて高値を生ずる。したがって、
真空室4に捕集された凝固時放出水素を定量したのちに
、試料採取容器7を切断し導管部2の試料だけを取出し
加熱して完全な水素抽出を図る必要がある。
In addition, there is a possibility that the hydrogen released when the molten metal sucked into the suction base 8 solidifies is collected in the vacuum chamber 4 together with the hydrogen released from the molten metal in the conduit section 2, resulting in a high error. There is also. Furthermore, there is a fear that hydrogen may not be completely released just by collecting a sample and slowly cooling it. As a countermeasure against this, if the entire collection container 7 is heated, a portion of the hydrogen in the molten metal that is sucked into the suction base 8 as well as the conduit portion 2 and solidified is released into the interior, resulting in a high temperature. therefore,
After quantifying the hydrogen released during solidification collected in the vacuum chamber 4, it is necessary to cut the sample collection container 7, take out only the sample in the conduit portion 2, and heat it to completely extract the hydrogen.

本発明は以上述べたような溶湯中の水素量定量方法の問
題点を解決するために試料採取方法ならびに定量方法に
ついてなされたもので、あらかじめ真空排気された採取
容器を溶融金属中に浸漬して該容器の一部を溶損し、内
部の一定部分に吸引し凝固させ凝固時に放出される水素
を内部真空空間に捕集して定量するにあたり、採取容器
の外壁に離型剤を塗付し溶融金属やスラグの付着を防止
しかつ該容器を外気と遮断されたガス捕集容器中に入れ
て破断することを特徴とする溶融金属中の水素量定量方
法に関するものである。
The present invention has been made regarding a sample collection method and a quantitative method in order to solve the above-mentioned problems in the method of quantifying the amount of hydrogen in molten metal. A part of the container is melted down, and a certain part of the container is sucked in and solidified, and the hydrogen released during solidification is collected in the internal vacuum space and quantitatively determined.A mold release agent is applied to the outer wall of the collection container and melted. This invention relates to a method for quantifying the amount of hydrogen in molten metal, which prevents the adhesion of metal and slag and is characterized in that the container is placed in a gas collection container that is isolated from the outside air and then ruptured.

以下、本発明の詳細な説明する。まず、第3図に示すよ
うな一般の真空吸引−放出水素内部捕集型試料採取容器
の外壁にBN、グラファイトなどからなりスラグや溶鋼
が外壁に付着することを防止するための離型剤を塗付す
る。乾燥後、溶鋼上のスラグをかきのけて溶鋼中に浸漬
する。先端部3が溶鋼により溶損され、溶鋼が吸引され
あらかじめ脱水素された薄い鋼板で作られた導管2を満
たし、あらかじめ脱水素された冷し金10に到達し通気
孔11を閉塞し凝固する。凝固冷却に際し放出される水
素は直接ガスとしであるいは導管2の肉厚方向へ拡散移
動して真空室4に捕集される。採取後直ちに採取容器を
第4図に示すような破断機構付捕集容器6に入れ、ふた
12で密閉し内部をキャリヤー用ガスで置換あるいは真
空排気したのち外気と遮断された捕集容器内部で採取容
器7を破断し真空室中の水素を開放しなかにあった水素
を捕集容器6内に放出させる。また必要に応じて試料を
加熱して試料中の残留水素も放出させる。放出された水
素は、捕集容器の弁を開閉することによって直接質量分
析計であるいはキャリヤガスによって搬送しガスクロマ
トグラフ−熱伝導度検出器などの分析計で定量する。
The present invention will be explained in detail below. First, a mold release agent made of BN, graphite, etc., to prevent slag and molten steel from adhering to the outer wall of a general vacuum suction/release hydrogen internal collection type sample collection container as shown in Figure 3 is applied. smear. After drying, scrape off the slag on the molten steel and immerse it in the molten steel. The tip 3 is eroded by the molten steel, and the molten steel is sucked in and fills the conduit 2 made of a thin steel plate that has been previously dehydrogenated, reaches the previously dehydrogenated chiller 10, closes the vent hole 11, and solidifies. . Hydrogen released during solidification and cooling is collected in the vacuum chamber 4 either directly as a gas or by diffusion in the thickness direction of the conduit 2. Immediately after collection, the collection container is placed in a collection container 6 with a breaking mechanism as shown in Fig. 4, sealed with a lid 12, and the inside is replaced with carrier gas or evacuated, and then placed inside the collection container isolated from outside air. The collection container 7 is ruptured to release the hydrogen in the vacuum chamber, and the hydrogen inside is released into the collection container 6. Further, if necessary, the sample is heated to release residual hydrogen in the sample. The released hydrogen is quantified by a mass spectrometer directly by opening and closing the valve of the collection vessel or by being transported by a carrier gas and quantified by an analyzer such as a gas chromatograph-thermal conductivity detector.

以上の定量操作において、本発明の第1の特徴である離
型剤による溶鋼およびスラグの付着を防止することによ
り、第2図に示すような捕集容器のシール部での水素逃
散が防止される。また、外部付着物がなくしたがって外
部付着物からの水素放出が無視できるため、第2の特徴
である外気と遮断された捕集容器中に入れて破断するこ
とカニ可能となり水素漏洩の可能性が完全に防止される
In the above quantitative operation, by preventing the adhesion of molten steel and slag by the mold release agent, which is the first feature of the present invention, hydrogen escape at the sealing part of the collection container as shown in Fig. 2 is prevented. Ru. In addition, since there is no external adhesion, hydrogen release from external adhesion can be ignored, and the second feature is that it is possible to break the collection container by placing it in a collection container that is cut off from the outside air, reducing the possibility of hydrogen leakage. Completely prevented.

また、さらに上記改善に伴って試料採取管7全(4ζを
再加熱して水素抽出率を高め定量の正確度と精度を向上
させることができる。なお、離型斉1の選択に当り溶鋼
、スラグと反応して溶鋼中の水素を変化させないことの
確認が必要である。
In addition, with the above improvements, it is possible to reheat the entire sample collection tube 7 (4ζ) to increase the hydrogen extraction rate and improve the accuracy and precision of quantitative determination. It is necessary to confirm that the hydrogen in the molten steel does not change by reacting with the slag.

次に本発明の実施例によってさらに具体的に説明する。Next, the present invention will be explained more specifically using examples.

実施例 第3図に示すような形状の採取容器(ただし外部はすべ
て石英製で外径12mm、内径10mm、長さ150間
、内部に脱水素した冷延薄鋼板製で板厚Q、3mm、径
6 rrm、長さ70 mmの導管と、同じく脱水素し
た軟鋼製吸上基部とを封入したもの)にエアロゾルスプ
レーで微粉状BNを離型剤として塗付し乾燥させたもの
を用い、連続鋳造用モールドにおいてJxs 5S41
相当組成の溶鋼から2試料を採取した。それぞれの試料
を冷却することなく直ちに第5図に示すように三筒のあ
らかじめヒーター16で700℃に加熱したステンレス
鋼製捕集容器6(第4図に示したもの)に入れ、ガスク
ロマトグラフ−熱伝導度検出型ガス分析計5と接続して
それぞれの捕集容器6内をArガスで置換したのち弁1
7を閉じた状態で石英製容器を破断した。次に弁17と
三方弁18を開閉して順次捕集容器中の水素をArキャ
リヤーガスによってガスクロマトグラフ5に搬送し熱伝
導度検出によって定1した。別に用意した同じ形状の採
取容器で溶湯を採取しその前後の重量変化から試料重量
を求め、これを用いて単位重量堝り水素量を求めた。比
較のため、同時に従来法によってスポイト吸引式石英管
で2本の試料を採取し、直ちに水冷したあと切断、研摩
、秤量し不活性ガス中溶融−ガスクロマトグラフー熱伝
導度検出法により水素量を定量した。結果を表1に示す
Example A sampling container shaped as shown in Fig. 3 (however, the outside is entirely made of quartz, with an outer diameter of 12 mm, an inner diameter of 10 mm, and a length of 150 mm; the inside is made of dehydrogenated cold-rolled thin steel plate with a plate thickness of Q, 3 mm; A conduit with a diameter of 6 rrm and a length of 70 mm and a suction base made of mild steel, which was also dehydrogenated, were coated with fine powdered BN as a mold release agent using an aerosol spray, and dried. Jxs 5S41 in casting mold
Two samples were taken from molten steel of comparable composition. Immediately, without cooling, each sample was placed in a three-cylinder stainless steel collection container 6 (shown in FIG. 4) preheated to 700°C with a heater 16, as shown in FIG. After connecting the thermal conductivity detection type gas analyzer 5 and replacing the inside of each collection container 6 with Ar gas, the valve 1
The quartz container was broken with No. 7 closed. Next, by opening and closing the valve 17 and the three-way valve 18, the hydrogen in the collection container was transported to the gas chromatograph 5 using Ar carrier gas, and was quantified by thermal conductivity detection. The molten metal was collected in a separately prepared collection container of the same shape, and the sample weight was determined from the change in weight before and after, and this was used to determine the amount of hydrogen per unit weight. For comparison, two samples were simultaneously collected using a dropper suction type quartz tube using the conventional method, immediately cooled with water, cut, polished, and weighed. Quantitated. The results are shown in Table 1.

表1 本発明法による水素分析値(単位pPm)表1か
ら明らかなように従来法では本発明法よりかなり低値を
示しており、これは凝固時に放出される水素の逸散や切
断研摩時の水素逸散に起因すると考えられる。また、こ
れら要因の変動のため再現性が不良である。本発明法で
は、このような問題点が解決されているので定量値は正
確でかつ精度も良好となっている。
Table 1 Hydrogen analysis values obtained by the method of the present invention (unit: pPm) As is clear from Table 1, the conventional method shows a much lower value than the method of the present invention, and this is due to the dissipation of hydrogen released during solidification and the dissipation of hydrogen during cutting and polishing. This is thought to be due to hydrogen dissipation. Furthermore, reproducibility is poor due to variations in these factors. Since the method of the present invention solves these problems, the quantitative values are accurate and have good accuracy.

なお、外径12闘の石英管の一端を封じ、外壁に離型材
としてエアロゾルでBNあるいはグラファイトを塗付し
て溶鋼中に浸漬し、溶鋼やスラグが外壁に付着するのを
防止する効果をしらべた結果を表2に示す。
In addition, one end of a quartz tube with an outer diameter of 12 cm was sealed, and the outer wall was coated with BN or graphite as a mold release agent using an aerosol, and the tube was immersed in molten steel to examine its effectiveness in preventing molten steel and slag from adhering to the outer wall. The results are shown in Table 2.

表2 離型剤効果確認試験 表2から明らかなように離型剤を塗付することによって
溶鋼やスラグの付着が完全に防止される。
Table 2 Mold Release Agent Effect Confirmation Test As is clear from Table 2, by applying a mold release agent, adhesion of molten steel and slag can be completely prevented.

すなわち離型剤を利用して外壁−\の付着を防止するこ
とによって表1に示した良好な結果を得る定量法が可能
となったものである。
That is, by using a mold release agent to prevent the adhesion of the outer wall -\, a quantitative method that yields the good results shown in Table 1 has become possible.

以上、実施例によって本発明の詳細な説明したが、離型
剤の種類や塗付方法などについては、例に示したものに
限らず、S+C+ TjCr TIN + A403な
ど溶鋼あるいはスラグのぬれ性を減じ採取容器の外壁に
付着することを防止する効果をもち、かつ水素源となら
ないものを、水溶液、有機溶媒に分散させて塗付、ある
いはエアロゾル、蒸着等によりうずく皮膜結成させれば
よい。また、採取容器についても、実施例では、石英製
で吸上基部材のものを示したが、外管が金属製であって
もよく、また吸上基部や導管部の形状を如何様に変えた
ものであっても有効である。さらに、吸上基部の試料重
量が導管部の試料重量に比べて無視できる場合は実施例
に示した加熱操作を省略することができる0 さらにまた、捕集容器およびガス分析方法についても、
本発明の方法を具現化するための一実施態様例を示した
が、ガスクロマトグラフ−熱伝導度検出法に代えて質量
分析法を用いるなど、本発明の範囲内で例示以外の態様
でも正しい値が精度よく得られることは云うまで゛もな
い。
The present invention has been described in detail through examples above, but the type of mold release agent and application method are not limited to those shown in the examples. A substance that has the effect of preventing adhesion to the outer wall of the collection container and does not serve as a hydrogen source may be dispersed in an aqueous solution or organic solvent and applied, or a tingling film may be formed by aerosol, vapor deposition, etc. Regarding the collection container, in the example, a quartz suction base member is shown, but the outer tube may be made of metal, and the shape of the suction base and conduit portion may be changed in any way. It is valid even if the Furthermore, if the sample weight at the suction base is negligible compared to the sample weight at the conduit section, the heating operation shown in the example can be omitted. Furthermore, regarding the collection container and the gas analysis method,
Although one embodiment example for embodying the method of the present invention has been shown, correct values may be obtained in other embodiments within the scope of the present invention, such as using mass spectrometry instead of gas chromatography-thermal conductivity detection method. Needless to say, can be obtained with high accuracy.

以上に述べたごとく、本発明によれば溶湯中の水素量の
定量にあたって従来法の難点を解決し正確で精度のよい
結果を得ることができ、金属材料の水素脆化防止に寄与
するところ大である。
As described above, according to the present invention, it is possible to solve the difficulties of conventional methods in quantifying the amount of hydrogen in molten metal, obtain accurate and accurate results, and greatly contribute to the prevention of hydrogen embrittlement of metal materials. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、試料採取容器の一例、第2図は従来定量法の
一つの態様における試料採取容器と捕集された水素を定
量するための捕集容器、ガス分析計との関係を示す説明
図、第3図は一般的な真空吸引−放出水素内部捕集型試
料採取容器の説明図、第4図は破断型捕集容器の説明図
、第5図は捕集容器とガス分析計の接続説明図である。 1・・・細(鋼)管、 2 導管、  3・・・先端、
4・・・真空室、  5・・・ガス分析計、  6・・
・捕集容器、7・・試料採取容器、 8・・・吸上基部
、 9・・・シール部、 ]O・・・冷し金、月・・・
通気孔、 12・・・ふた、]3・・刃、 14・・ベ
ロ一ズ、 15・・・駆動ネジ、16・・ヒーター1,
17・・・弁、 18・・三方弁特許出願人代理人 弁理士 矢 葺 知 之 (ばか1名) 侑1図 第 2図 笛 3 図 第4図 7 第5図
Figure 1 is an example of a sample collection container, and Figure 2 is an explanation showing the relationship between the sample collection container, a collection container for quantifying collected hydrogen, and a gas analyzer in one embodiment of the conventional quantitative method. Figure 3 is an explanatory diagram of a general vacuum suction-released hydrogen internal collection type sample collection container, Figure 4 is an explanatory diagram of a rupture type collection container, and Figure 5 is an illustration of the collection container and gas analyzer. It is a connection explanatory diagram. 1... Thin (steel) pipe, 2 Conduit, 3... Tip,
4... Vacuum chamber, 5... Gas analyzer, 6...
- Collection container, 7... Sample collection container, 8... Sucking base, 9... Seal part, ]O... Chilled gold, Moon...
Ventilation hole, 12... Lid, ] 3... Blade, 14... Bellows, 15... Drive screw, 16... Heater 1,
17... Valve, 18... Three-way valve Patent attorney Patent attorney Tomoyuki Yafuki (1 idiot) Figure 1 Figure 2 Whistle 3 Figure 4 Figure 7 Figure 5

Claims (1)

【特許請求の範囲】[Claims] あらかじめ真空排気された採取容器を溶融金属中に浸漬
して該容器の一部を溶損し、内部の一定空間に吸引し凝
固させ凝固時に放出される水素を内部真空空間に捕集し
て定量するにあたり、採取容器の外壁に離型剤を塗付し
溶融金属やスラグの付着を防止しかつ該容器を外気と遮
断されたガス捕集容器中に入れて破断することを特徴と
する溶融金属中の水素量定量方法。
A collection container that has been evacuated in advance is immersed in molten metal to melt a portion of the container, which is then sucked into a certain space inside to solidify, and the hydrogen released during solidification is collected in the internal vacuum space and quantified. In this process, a release agent is applied to the outer wall of the collection container to prevent the adhesion of molten metal and slag, and the container is placed in a gas collection container that is shut off from the outside air to break the molten metal. Method for quantifying hydrogen amount.
JP58012649A 1983-01-22 1983-01-31 Quantitative determination of hydrogen in molten metal Granted JPS59138956A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58012649A JPS59138956A (en) 1983-01-31 1983-01-31 Quantitative determination of hydrogen in molten metal
EP84100607A EP0114688B2 (en) 1983-01-22 1984-01-20 Sampler and an apparatus for hydrogen determination in molten metal
DE8484100607T DE3466286D1 (en) 1983-01-22 1984-01-20 Sampler and an apparatus for hydrogen determination in molten metal
CA000445703A CA1205651A (en) 1983-01-22 1984-01-20 Sampler and an apparatus for hydrogen determination in molten metal
KR1019840000247A KR870001397B1 (en) 1983-01-22 1984-01-20 Analyzing apparatus and sampling tube for sampling of fused metal
US06/748,134 US4590809A (en) 1983-01-22 1985-06-24 Sampler and an apparatus for hydrogen determination in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58012649A JPS59138956A (en) 1983-01-31 1983-01-31 Quantitative determination of hydrogen in molten metal

Publications (2)

Publication Number Publication Date
JPS59138956A true JPS59138956A (en) 1984-08-09
JPH035547B2 JPH035547B2 (en) 1991-01-25

Family

ID=11811210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58012649A Granted JPS59138956A (en) 1983-01-22 1983-01-31 Quantitative determination of hydrogen in molten metal

Country Status (1)

Country Link
JP (1) JPS59138956A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6491047A (en) * 1987-10-02 1989-04-10 Nippon Steel Corp Method and apparatus for analyzing hydrogen in molten metal
JPS6491046A (en) * 1987-10-02 1989-04-10 Nippon Steel Corp Method and apparatus for analyzing diffusing hydrogen in molten metal
WO2000026635A1 (en) * 1998-10-29 2000-05-11 Kawasaki Steel Corporation Method of preparing slag sample for x-ray fluorescence analysis and sampler
JP2021004728A (en) * 2019-06-25 2021-01-14 国立大学法人 東京大学 Sample processing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6491047A (en) * 1987-10-02 1989-04-10 Nippon Steel Corp Method and apparatus for analyzing hydrogen in molten metal
JPS6491046A (en) * 1987-10-02 1989-04-10 Nippon Steel Corp Method and apparatus for analyzing diffusing hydrogen in molten metal
WO2000026635A1 (en) * 1998-10-29 2000-05-11 Kawasaki Steel Corporation Method of preparing slag sample for x-ray fluorescence analysis and sampler
US6497154B1 (en) * 1998-10-29 2002-12-24 Kawasaki Steel Corporation Method of preparing slag sample for X-ray fluorescence analysis and sampler for use in the same
JP2021004728A (en) * 2019-06-25 2021-01-14 国立大学法人 東京大学 Sample processing device

Also Published As

Publication number Publication date
JPH035547B2 (en) 1991-01-25

Similar Documents

Publication Publication Date Title
US3646816A (en) Immersion molten metal sampler
US8844386B2 (en) Method and apparatus for analyzing samples of metal melts
US3315529A (en) Method and apparatus for taking samples from melts in order to obtain the gases evolved during solidification
JPS59138956A (en) Quantitative determination of hydrogen in molten metal
JPH037816Y2 (en)
US4590809A (en) Sampler and an apparatus for hydrogen determination in molten metal
US2336075A (en) Method for the rapid direct analysis of oxygen in steel
US4170139A (en) Sampling device for analysis of molten metal for hydrogen
US2143982A (en) Collecting gases from metals
US4125024A (en) Molten metal sampling device
JPH039018Y2 (en)
JP2002022732A (en) Molten metal sample sampling device and molten metal sample sampling method
GB2040750A (en) Molten metal sampler
JPS5931452A (en) Method and device for determining amount of hydrogen in molten metal
JP2582997Y2 (en) Molten metal sampling probe
US3251217A (en) Determination of gases in metals
JPH019006Y2 (en)
JPS6322527Y2 (en)
US4624149A (en) Sampling tube
JPS6213006Y2 (en)
KR960003191B1 (en) Oxide free sampler
JP2001249063A (en) Probe for collecting molten metal sample
US4815326A (en) Oxide free sampler
JP3073184B2 (en) Sample type for molten metal sampling equipment
JPS6331738B2 (en)