JPS5931452A - Method and device for determining amount of hydrogen in molten metal - Google Patents

Method and device for determining amount of hydrogen in molten metal

Info

Publication number
JPS5931452A
JPS5931452A JP57140496A JP14049682A JPS5931452A JP S5931452 A JPS5931452 A JP S5931452A JP 57140496 A JP57140496 A JP 57140496A JP 14049682 A JP14049682 A JP 14049682A JP S5931452 A JPS5931452 A JP S5931452A
Authority
JP
Japan
Prior art keywords
hydrogen
vessel
collection container
molten metal
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57140496A
Other languages
Japanese (ja)
Inventor
Takashi Otsubo
孝至 大坪
Hirahisa Kawase
川瀬 平久
Shunsuke Goto
後藤 俊助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57140496A priority Critical patent/JPS5931452A/en
Publication of JPS5931452A publication Critical patent/JPS5931452A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • G01N33/2025Gaseous constituents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To decrease errors, by sampling molten metal into a part of a sampling vessel which is beforehand evacuated to a vacuum, putting the vessel into a gas capturing vessel which is shielded from the amt. air and breaking the vessel wall in the space formed of the drawing vessel and the solidified metal. CONSTITUTION:When the part of a suction port 10 formed by decreasing the thickness in a part of an internally evacuated drawing vessel 9 is dipped in molten metal, said part is eroded, and molten metal is sucked into the vessel where the molten metal fills the inside of a conduit 11 made of a preliminarily dehydrogenated thin steel plate and arrives at a preliminarily dehydrogenated chiller 12 solidifies by closing vent holes 13. The molten metal is drawn in a part of the vessel 9 and the vessel 9 is put into a gas capturing vessel which is shielded from the atm. air. The vessel wall in the space formed of the vessel 9 and the solidified metal is broken. The amt. of the hydrogen captured in the space and the hydrogen released from the solidified metal are determined, whereby the exact result of the analysis is obtd. with good accuracy.

Description

【発明の詳細な説明】 本発明は浴融金属中の水嵩定綴方法およびその装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for water evacuation in bath molten metal.

製鋼やアルミニウム製針において、浴融金属中の水*石
をできるだけ低減させることが最終製品の機体的性質を
向上させる上で肝要である。浴融金属(以下溶湯と8己
す)中の水素を定限するには、従来、溶湯からIH接あ
るいは、一旦ひしやくで汲んだものから石莢管で吸上げ
、水で急冷し肉゛ちに必るーは)パライアイスまたは液
体窒素中に保存したのち、所定の大きさシこ切断°し研
磨してから、不活性ガス中俗融−がスクロマトグラフー
熱伝導度検出法により定ht°するのが一般的である。
In steel making and aluminum needle making, it is essential to reduce water*stone in the bath molten metal as much as possible in order to improve the mechanical properties of the final product. In order to limit the amount of hydrogen in bath molten metal (hereinafter referred to as molten metal), conventional methods have been to heat the molten metal by IH, or to pump it up with a stone pod, then quench it with water and then boil it. After storing it in Paray ice or liquid nitrogen, cutting it into a predetermined size and polishing it, it is melted in an inert gas and then measured by chromatographic thermal conductivity detection method. It is common to do so.

一部では、MF&の定祉に貞空加熱一定容ii+1+圧
法を用いている。
In some cases, the chaste air heating constant volume ii+1+pressure method is used to determine the MF&.

しかしながら、上述の試料採取一定駐法では、溶融金属
中の水素を正確に示針することが困畦である。その理由
の笛1は鉄についての例を第1図に示すように、浴融金
属が凝固に際し水素溶解度が大巾に低下するので、多鎗
の水素を放出するが、この放出された水菜が大気中に逸
散し定量されないことである。理由の第2は、凝固後、
室温では過飽和状態にあるため試料の切断、イS+暦等
の分析準備作業中にも水素が政敵することである。
However, with the above-mentioned constant sampling method, it is difficult to accurately indicate the hydrogen in the molten metal. The reason for this is as shown in Fig. 1, which is an example of iron.When the bath molten metal solidifies, the hydrogen solubility decreases drastically, so a large amount of hydrogen is released, but this released mizuna is It dissipates into the atmosphere and cannot be quantified. The second reason is that after solidification,
Hydrogen is in a supersaturated state at room temperature, so hydrogen becomes a political enemy during analysis preparation work such as sample cutting and IS+ calendaring.

この、しうな9511点を解決するため、二重の提案が
なされている。その・i!】け、肉厚の博い円1m形の
ステンレス鋼全封入した真生石英管に78潟を吸上げ、
凝固時に放出される水素を水素溶解度の高いステンレス
鋼に吸収さφ、試料をステンレスー円筒と共に切断し定
量に供するものである(υZlil他、鉄と箱1 、6
51979.1620 )。しかし、この方法を用いる
とき凝固哉属とステンレス鋼円筒との境界に倣細なすき
まを生じ、水冷時にここに入った水が、分析のための溶
融時に分解して水素全発生し誤差を生じることが多く、
また押入されるステンレス−円偕)もあらかじめ完全に
脱水素をしておかないと誤差が大きくなるという難点が
ある。その第2(・j第2図に示すように薄銅板からな
る細体j管1の内部にm鋼を一定の棒状に凝固させる容
器2を収め、蕗仝にして封じた試料採取管の先端3を溶
鋼に、シ偵し、容器2内に俗−1を吸引したのち、緩冷
却して溶鋼中の水素を完全に放出させ真空室4に捕集し
、次に第3図に示すようにガス分析115に連結された
密閉容器6中で試料採取管7のMl鋼管1に穿孔して捕
集された水素を分析するものである(特公昭53−45
157月公報)。この方式によれば試料凝固時に放出さ
れる水素の逃散は防11−され−まだ、試料の切断研磨
が不快となったため、切断・イυ[磨時の水素逸散によ
る誤差も防止されている。しかし、この提案にもなお難
点が残されている。すなわち、試料を採取し緩冷却する
だけではill:材中の水素が完全に回収できないこと
がしばしば経験されることである。したがって、凝固時
放出水素全定情(7たのちに細鋼管1部全切断してこの
部分だけを加熱して残留水素を定量することが必要であ
る。°まだ、真空室4への水素放出に寄与しない吸上基
部8の鋼の水素が先端3から放出され加算されると誤差
を生じるので吸上基部8を密閉′8器6の外部に出して
密閉することが必要であるが吸上基部8には溶鋼やスラ
グ等が付着して密閉が不完全になり水素が逃散して低値
となる。
In order to solve this problem of 9511 points, two proposals have been made. Its・i! 】 78 lagoons are sucked up into a 1 meter wide round stainless steel tube completely encapsulated with pure quartz.
Hydrogen released during solidification is absorbed into stainless steel with high hydrogen solubility, and the sample is cut together with the stainless steel cylinder and subjected to quantitative analysis (υZlil et al., Iron and Box 1, 6).
51979.1620). However, when this method is used, a narrow gap is created at the boundary between the solidified metal and the stainless steel cylinder, and water that enters the gap during water cooling decomposes during melting for analysis and generates hydrogen, causing errors. Often,
Furthermore, there is a problem in that the stainless steel (Enkaku) that is pressed in must be completely dehydrogenated beforehand, otherwise the error will become large. As shown in Fig. 2, a container 2 for solidifying steel into a certain rod shape is placed inside a narrow tube 1 made of a thin copper plate, and the tip of the sample collection tube is sealed with a lid. 3 is poured into the molten steel, and after suctioning the molten steel into the container 2, it is slowly cooled to completely release the hydrogen in the molten steel and collected in the vacuum chamber 4, and then as shown in Fig. 3. This is to analyze the hydrogen collected by perforating the Ml steel pipe 1 of the sampling tube 7 in a closed container 6 connected to a gas analyzer 115.
15 July Publication). With this method, the escape of hydrogen released during sample solidification is prevented, and errors due to hydrogen dissipation during cutting and polishing are also prevented, since cutting and polishing the sample is uncomfortable. . However, this proposal still has some drawbacks. That is, it is often experienced that it is not possible to completely recover the hydrogen in the material simply by taking a sample and slowly cooling it. Therefore, it is necessary to completely cut one part of the thin steel tube and heat only this part to quantify the residual hydrogen after the complete hydrogen release during solidification (7). If the hydrogen in the steel of the suction base 8 that does not contribute to the temperature is released from the tip 3 and added, it will cause an error, so it is necessary to take the suction base 8 out of the sealed container 6 and seal it. Molten steel, slag, etc. adhere to the base 8, making the sealing incomplete and hydrogen escaping, resulting in a low value.

本発明は以上述べたよりな溶湯中の水素炬燵方法ならび
に定量装置の問題を解決するためになされたもので、あ
らかじめ真空J、Jf気された採取容器の一部に浴融金
属を採取し外気と連断されたがス捕集容器中に入れ、採
取容器と凝固した余端とで形成された空間の器壁を、詠
捕集容器中で破断し、該空間に捕集されていた水素、な
らびに凝固金属から放出される水素を定IT:すること
全特徴とする酪融金属中の水素1i°定邦方法およびそ
の装置に関するものである。
The present invention was made in order to solve the problems of the above-mentioned hydrogen kettle method and metering device for molten metal. The hydrogen that had been continuously cut off was placed in a collection container, and the vessel wall of the space formed by the collection container and the solidified remaining end was broken in the collection container, and the hydrogen that had been collected in the space was removed. The present invention also relates to a method and apparatus for regulating hydrogen in molten metal, which is characterized in that the hydrogen released from the solidified metal is fixed.

以下、本発明の装置の−[flJにもとづいて、本発明
の詳細な説明する。
Hereinafter, the present invention will be explained in detail based on -[flJ of the device of the present invention.

第4図および第5図は、本発明のうち、採取容器の一態
様例を示すものであるが、第4図において、内部f真空
にした採取容器9の一部を薄肉とした吸上口10部を溶
湯に浸漬するとこの部分が−俗損し、ど6出が吸引され
、あらかじめ脱水素された薄い一板で作られた2与管1
1内をイ貧たしあらかじめ脱水素された冷し金12に到
達して通気孔13を閉基し凝固する。14は、採取容器
9内の一定の(V置に4管11を固定するだめの固定旧
である。
4 and 5 show one embodiment of the collection container of the present invention. In FIG. 4, a part of the collection container 9 with an internal vacuum is made into a thin suction port. When 10 parts are immersed in the molten metal, this part is damaged, and the 6 parts are sucked out, and 2 tubes made of a thin sheet that has been previously dehydrogenated are 1
The inside of the cooling metal 12 is dehydrogenated in advance, and the air hole 13 is closed to solidify. Reference numeral 14 denotes a fixing bolt for fixing the four tubes 11 in a fixed V position inside the collection container 9.

凝固ならびに冷却による水素溶解度減少によって放出さ
れる水素は通気孔13を経由して、あるいは尋′″θ1
1を直角に拡散移動し残留空間15中に捕集される。ま
た、45図ではM出は採取容器9と傅−板製導管11と
で形成される二重円筒の中間部を充填し、放出される水
素は残留する空間15に捕集さ7しる。〜λ4図の捕集
容器によれは試料の外周が、第5図の容器によれば、試
料の内部が残留空間となる。試料採取後直ちに前者の場
合は第6図に一例を示すよう々捕集容器に、後者の」9
7合は第7図に一例を示す′容器に入れる。第6図にお
いて、試料は採取容器9と共に捕集容器16内に挿入さ
れふた17が密閉される。捕集容器16内の雰囲気を必
要に応じキャリヤー用力゛スで置換または、真空に排気
したのち、捕集容器16に溶接されたステンレス鋼製ベ
ローズ18を外部のネジ19によって駆ル、II Lベ
ローズ18の内部に設けた刃20を、支持共21で支え
られた採取容器9に押しつけて破断し、第4図の残留空
間を開放しなかにあった水索全捕集芥器中に放出させる
。第7図においても、はぼ同4)Rの操作により採取容
器9内に生じた残留空間の壁は刃2oにより破断され、
残留空間内にあった水素を捕集容器中に放出させる。放
出された水素ならびに時間経過と共に試料から放出さi
Lる水素は、一定時間ごとに弁を開閉して、面接′Iグ
h」分析H;゛で、あるし)は、キャリヤーガスによっ
て搬送し〃゛スクロマトダラフー熱伝導度検出H1で定
量する。なお第4図、第5図において採取容器9は、石
英、セラミックス等の無機物、あるいけ鋼板等の金属の
いずれで作ってもよいが吸上「l 10がm市の熱で1
(1時間で容易にγ容器し、一方他の部分は採取時に溶
損等の変化が生じな一程度の耐熱性をもつものであるこ
とおよび気密性をもつ材料であることが要求される。ま
た、専管として、薄鋼板製のものを例示したが、Al 
、 Cu々ど金属製あるいは、」ツーラスセラZツク、
口、フラール等の通気性に富む耐火物を用いてもよいが
、吸上口から吸上硫部を介することなく直接?、14管
に尋かれる(14造であることが重要で、゛また採取さ
れた金属の体M K対する残留空間の容積の比は通常1
より大きいことが望′ましいが浴陽中氷水ルlが低い場
合には1よシ小さい場合でも有効である。ただし01以
下では定量1+1iが低値となる。まだ、水素定石の際
、150℃−fでカ鳴して試料からの水素放出を促進し
てもよい(150nまでの加熱で猷定屓fp合計1はは
lま変らないことが知られてぃ之)。
Hydrogen released due to the decrease in hydrogen solubility due to solidification and cooling is released through the vent hole 13 or through the bottom ′′θ1.
1 diffuses and moves at right angles and is collected in the residual space 15. In addition, in FIG. 45, the M discharge fills the middle part of the double cylinder formed by the collection container 9 and the two-plate conduit 11, and the released hydrogen is collected in the remaining space 15. ~λ4 The residual space is the outer periphery of the sample in the collection container shown in FIG. 4, and the inside of the sample is the residual space in the case of the container shown in FIG. In the former case, immediately after collecting the sample, place the latter in a collection container as shown in Figure 6.
The 7th cup is placed in a 'container', an example of which is shown in Figure 7. In FIG. 6, the sample is inserted into the collection container 16 together with the collection container 9, and the lid 17 is sealed. After the atmosphere inside the collection container 16 is replaced with a carrier force or evacuated to vacuum as necessary, the stainless steel bellows 18 welded to the collection container 16 is driven by an external screw 19, and the II L bellows is removed. The blade 20 provided inside the container 18 is pressed against the collection container 9 supported by the supporter 21 to break it, and the remaining space shown in FIG. . In FIG. 7 as well, the wall of the residual space created in the collection container 9 by the operation 4)R is broken by the blade 2o,
The hydrogen in the residual space is released into the collection vessel. The released hydrogen as well as the i released from the sample over time.
The hydrogen is transported by carrier gas by opening and closing the valve at regular intervals, and the interview 'Igh' analysis H; do. In Figures 4 and 5, the collection container 9 may be made of inorganic material such as quartz or ceramics, or metal such as steel plate.
(It is required that the material can be easily converted into a gamma container in one hour, while the other parts must have a certain degree of heat resistance so as not to undergo changes such as melting and loss during collection, and be made of an airtight material. In addition, although we have shown examples of products made of thin steel sheets as exclusive products,
, Cu and other metals,
It is possible to use highly breathable refractories such as vents and fural, but is it possible to use it directly from the suction port without going through the suction sulfur part? , 14 tubes are asked (it is important that the tube is 14 in size, and the ratio of the volume of the residual space to the sampled metal body MK is usually 1).
Although it is desirable that the value be larger, a value smaller than 1 is also effective if the temperature is low. However, below 01, quantitative 1+1i becomes a low value. However, during hydrogen heating, hydrogen release from the sample may be promoted by heating at 150°C-f (it is known that heating up to 150 nm does not change the total value of fp 1 at all). ).

以上の操作により浴OAが凝固時の急激な水素溶解度変
化に伴って放出する水素ならびに凝固した試料を切断し
イυ[磨する際に放出する水素を逸失することなく、゛
まだ、試料から時間経過と共に放出される水素をもロス
することなく全畦を正しく定J汁することができる。
The above operation allows the bath OA to cut off the hydrogen released due to the rapid change in hydrogen solubility during solidification and the solidified sample. It is possible to properly soak the entire ridge without losing the hydrogen released over time.

次に本発明の実施例によってさらに具体的に説明する。Next, the present invention will be explained more specifically using examples.

実施例1 第4図に示した採取容器(石英製で外径12ヨ。Example 1 The collection container shown in Figure 4 (made of quartz, outer diameter 12 mm).

内径10 rrun r長さ150 wn、内部に脱水
素した冷延薄銅板製で板Jシ(1,3van 、径6 
ttan *長さ7o鴫の専管を封入したもの)を用−
て連続鋳造用モールドにおい−C1、丁Is 5S41
相当の5.[1成の溶鋼から2試料を抹11M L、た
。ぞ)1ぞ11の試料を冷却することなく1r1ちに、
ニーのステンレス鋼製捕集容器16(第6図に示したも
の)に入れ、第8図に示すよウニ〃スクロマトグラーノ
ー熱伝尋度検出型ガス分析d122と接続してそれぞれ
の捕集容器16内をAr力゛スでI+・1訣し/このち
、弁23’&閉じた状態でさきに述べた要領で石英jf
44’ile取′?≠器を破1iノ目、た。次に弁23
.24を開閉して順次捕集容器中の水素をArキャリヤ
ーによってガスクロマ)・グラフに搬送し熱fi”、 
L”fi度検出によって定量した。つぎにそれぞれの捕
集芥器ケヒーター25で100℃に加熱し6分ごとに4
回それぞれb(出された水素量全同様に定量した。これ
ら水素定圀値の合泪を放出水素1,1とした。水系定量
完了後、試料を取り出して’f!l” bt L 1l
ill定に関醇しない冷し金部と導管部との重1rI−
全差引いて試料?li btとした。ハ!出水素量と試
料V情から溶鋼中氷水ぼイイ4Xを計算した。なお、水
、I:’、 f41°1illl定後の試料の一部を[
J+断し不活性ガス中溶融−ガスクロマトグラフー熱伝
jij度検出法により残留水素計を定fit した。比
較のため、同時に従来法によってス、−1?イト吸引式
石英管で2本の試料を採取し、直ちに水冷したあと、切
断、(v1時、秤量し、不活性ガス中浴融−がスクロマ
トグラフー熱伝尋度検出法によυ氷水1dを定Kした(
従来法(])と略6己)。結果を表1に示す。
Inner diameter 10 rrun r length 150 wn, made of cold-rolled thin copper plate with internal dehydrogenation (1.3 van, diameter 6
ttan *Enclosed a special tube of length 7o) is used.
Continuous casting mold odor-C1, Dish 5S41
A considerable 5. [Two samples were taken from one grade of molten steel, 11M L. 1) Immediately 1r1 without cooling the 11 samples.
The stainless steel collection container 16 (shown in Figure 6) is connected to the sea urchin chromatograno thermal conductivity detection type gas analyzer D122 as shown in Figure 8, and each collection Fill the inside of the container 16 with Ar force for I+1. Then, with the valve 23'& closed, quartz jf as described above.
44'ile take'? ≠It was the 1st time I broke the vessel. Next, valve 23
.. 24 is opened and closed sequentially to transport the hydrogen in the collection container to a gas chroma (gas chroma) graph using an Ar carrier and heat it.
It was determined by L"fi degree detection. Next, each waste collection device was heated to 100°C with a heater 25, and
The amount of hydrogen emitted was determined in the same way as for each time b (all hydrogen values were quantified. The sum of these hydrogen constant values was defined as released hydrogen 1 and 1. After the aqueous system quantification was completed, the sample was taken out and 'f!l' bt L 1l
The weight between the chiller part and the conduit part is not related to illumination.
Sample after subtracting all? libt. Ha! The amount of ice water in molten steel (4X) was calculated from the amount of hydrogen released and the sample value. In addition, a part of the sample after water, I:', f41°1lll constant [
The residual hydrogen meter was determined to fit using a J+ cut-off inert gas melting-gas chromatography heat conductivity detection method. For comparison, the conventional method was also used to calculate -1? Two samples were collected using a quartz tube with suction, immediately cooled with water, cut, weighed, and melted in an inert gas bath. was set to constant K (
Conventional method (]) and approximately 6 self). The results are shown in Table 1.

表1 本発明法による水素分析値(jti位ppln)
表1から明らかなように従来法では、凝固時に放出され
る水素(本発明法による定量結果のaの一部に相当)が
定量されず、また試料中水素(本発明法による定法結果
のbK相当)の一部が切断研磨時に逸散するため低値と
なっておシ、これらの要因の変動のため再現性が不良で
ある。また第2図、第3図に示した方法では吸上基部の
シール部からの〃゛スもれて低値を示すととに加えbに
示す水素tnが回収されないで低値となる(別途ci加
初した場合)。しかし本発明では走置の1鎧害となる吸
上基部を生じないようなへり、管形状とし7、採取容器
を完全に捕集容器内に収容する方式としさらに捕集容器
のガス出入]]に弁を設けて経時放出水素の定M′f:
可能としだなどの工夫により上述の問題を原理的に月y
り除きi[確なしかも再現性のよい定縫111!!を得
ることができる。
Table 1 Hydrogen analysis values by the method of the present invention (jti position ppln)
As is clear from Table 1, in the conventional method, hydrogen released during solidification (corresponding to part of a in the quantitative results by the method of the present invention) is not quantified, and hydrogen in the sample (corresponding to part of a in the quantitative results by the method of the present invention) is not quantified. The value is low because some of the amount (equivalent) is dissipated during cutting and polishing, and the reproducibility is poor due to fluctuations in these factors. In addition, in the method shown in Fig. 2 and Fig. 3, hydrogen gas leaks from the seal part of the suction base and shows a low value, and in addition, the hydrogen tn shown in b is not recovered and the value becomes low (separately). ci addition). However, in the present invention, the rim is shaped like a tube so as not to create a suction base that would cause damage during transportation, and the collection container is completely housed within the collection container. The constant M′f of hydrogen released over time by installing a valve at:
In principle, the above problem can be solved by
[Stitch stitching 111 with good accuracy and reproducibility!] ! can be obtained.

実施例 第5図に示した採取容器(外部を0.5 mm厚のステ
ンレス鋼で吸上口10は板r=を0.1n調とした。
EXAMPLE A collection container shown in FIG. 5 (the outside was made of stainless steel with a thickness of 0.5 mm and the suction port 10 had a plate r=0.1N).

内部導管11はポーラスアルばすで製作した)を用いて
、RH脱がス操業時に溶儒岡鍋から2本の試料を11接
採取した。鋼種&−1: SM 50相当であった。第
7図に示す容器に入れて第9図の如く分析計22に接続
し・reンゾ26で頁空排気後弁23を閉じ実施例1と
同様にして残留空間壁を破断したのち、順次容器の弁2
3を開き四重極型質槌分析則を用いて水素を定着した。
Using the internal conduit 11 (made of porous aluminum), two samples were taken 11 times from the melting pot during the RH degaussing operation. Steel type &-1: Equivalent to SM 50. Place the container in the container shown in FIG. 7 and connect it to the analyzer 22 as shown in FIG. Container valve 2
3 was opened and hydrogen was fixed using the quadrupole type analysis rule.

さらに弁23を閉じ、150℃で加熱し6分毎に319
1定址した。分析結果を表2に示す。比較のため、ステ
ンレス銅管入り真空石英管で採取した試料についての分
析結果(従来法(2)と略ム己)をあわせて示す。
Furthermore, close the valve 23, heat at 150°C, and heat at 319°C every 6 minutes.
1 passed away. The analysis results are shown in Table 2. For comparison, analysis results (conventional method (2) and abbreviated method) for samples collected using a vacuum quartz tube containing a stainless steel tube are also shown.

表2から、明らかなように従来法(2)では同−試料内
の再現性が不良である。これは試料切断時にステンレス
鋼管と試料との間のすきまに侵入した水が完全に除去さ
れないで分析H[に尋人されるため、11&Ilaを呈
するからである。
As is clear from Table 2, the conventional method (2) has poor reproducibility within the same sample. This is because water that entered the gap between the stainless steel tube and the sample when cutting the sample was not completely removed and was subjected to analysis H [11 & Ila].

本発明法ではこのような雌点もなく正確で梢度のよい分
析値が得られる。
According to the method of the present invention, there are no such female points, and accurate analytical values with good accuracy can be obtained.

実施例1および2において2つの試料を併行的に分析し
たが試料から放出される氷水計ヲ周期的に定置し放出祉
がほぼ0となったときまでの放出btの総和で水素−1
゛を求めるという本発明法の原理によれば平行的に多数
の試料全それぞれ捕集容器に、入れ、弁23とガス配管
とを介してこれら捕集容器をガス分析装置に連結し、そ
れぞれの弁23全周期的に開閉することによって多数個
の試料全平行して分析することができる。また、試料を
加熱した例について述べたが常温で定線することもでき
る。
In Examples 1 and 2, two samples were analyzed in parallel, but the ice water meter released from the sample was periodically placed, and the total amount of bt released until the release amount became almost 0 was hydrogen-1.
According to the principle of the present invention's method of determining the By opening and closing the valve 23 periodically, a large number of samples can be analyzed in parallel. Further, although the example in which the sample was heated has been described, it is also possible to obtain a constant line at room temperature.

また、実施例では、溶鋼について述べたがAtをはじめ
とする各棟金属の溶湯についても適用できることはいう
才でもない。
Furthermore, in the embodiments, molten steel has been described, but it goes without saying that the present invention can also be applied to molten metals such as At.

さらに、採取容器や捕集容器およびガス分析方法につい
ても、本発明の方法および装置Mk具現化するだめの一
実施態様例を示したが、ステンレス鋼ベローズで捕集容
器をつくるなど本発明の軛囲内で例示リグlの態様でも
正しい値が鞘層よく得られることは云う−までもない。
Furthermore, regarding the sampling container, the collection container, and the gas analysis method, one embodiment of the method and apparatus Mk of the present invention was shown, but the method and apparatus Mk of the present invention were also shown. It goes without saying that correct values for the sheath layer can be easily obtained even in the embodiment of the example rig I.

以上に述べた如く、本発明によりば、浴湯中の水素1/
(の定叶にあたって従来法の難点をことごとく解決し、
正6′v、で、鞘11に゛のLい分析結果を酩率よく得
ろことができる。
As described above, according to the present invention, hydrogen in bath water is 1/
(To solve all the difficulties of the conventional method,
With positive 6'v, it is possible to obtain the L analysis result in sheath 11 with high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、水素1atmのもとにおける純鉄の水素溶解
度と1:iA度との関係図、第2図は従来の試、料採取
容器の一例、第3図はす1!2図の試料採取容器に捕集
された水素を定置するガス分析装置の一例、第4N、第
5図は本発明の実施に適した試料採取容器の65?、四
囲、2g6図、第7図は同じく本発明の実bfIiに適
した水素がス捕集容器の説明図、第8図。 第9図は同じく本発明の実施に適り、fc水素鑑定縦装
置aの説明図である。 1 ;細鉋管、2:凝固用容器、3:先端、4:真空室
、5:ガス分析計、6:奮閉容器、7:試料採取′a、
8:吸上基部、9;採取容器、1o;吸上口、11:4
リ−管、12:冷し金、13:通気孔、14:固定相、
15:残留全開、16:捕集容器、17:ふた、18:
ベローズ、19:ネノ、20:刃、21:支持具、22
:がス分析B1.23 、24 :弁、25:ヒーター
、26 : y4eンノ特許出願人  #「日本製鐵株
式會社 遥虐〔0C〕 第2図 第3図 第4図 第5ビ 隼6回 $7図 第92
Figure 1 is a diagram of the relationship between the hydrogen solubility of pure iron and the 1:iA degree under 1 atm of hydrogen, Figure 2 is an example of a conventional sample and sample collection container, and Figure 3 is a graph of squares 1 and 2. An example of a gas analyzer in which hydrogen captured in a sample collection container is placed, FIGS. 4N and 5 are 65? , 2g6 and 7 are explanatory diagrams of a hydrogen gas collection container suitable for the actual bfIi of the present invention, and FIG. 8. FIG. 9 is an explanatory diagram of the FC hydrogen identification vertical apparatus a, which is also suitable for carrying out the present invention. 1; Fine plane tube, 2: Container for coagulation, 3: Tip, 4: Vacuum chamber, 5: Gas analyzer, 6: Closed container, 7: Sample collection 'a,
8: Suction base, 9: Collection container, 1o; Suction mouth, 11:4
Lee tube, 12: cold metal, 13: ventilation hole, 14: stationary phase,
15: Residual fully open, 16: Collection container, 17: Lid, 18:
Bellows, 19: Neno, 20: Blade, 21: Support, 22
:gas analysis B1.23, 24: valve, 25: heater, 26: y4e-no patent applicant $7 Figure 92

Claims (2)

【特許請求の範囲】[Claims] (1)  あらかじめ真壁排気された採取容器の一部に
浴融金属を採取し、該容器全外気と遮断されたガス捕集
容器中に入れ、該採取容器と採取されたのち凝固した金
属とで形成された空間の器壁を、該捕集容器中で破断し
該空間にhfi集゛されていた水素、ならびに凝固金属
から放出される水素を定量することを特徴とする溶融金
属中の水素量示針方法0
(1) Collect the bath molten metal in a part of the collection container that has been completely evacuated in advance, and place it in a gas collection container that is completely shut off from the outside air, and then combine the collection container with the collected and solidified metal. The amount of hydrogen in the molten metal is characterized by breaking the vessel wall of the formed space in the collection container and quantifying the hydrogen collected in the space as HFI and the hydrogen released from the solidified metal. Pointer method 0
(2)  浴融金属からHに取さnた試料を採取容器と
共に、外気と遮断して収容する捕集容器と、該容器内に
挿入された試料と採取容器とで形成する空間を破断する
1機構と、該捕集容器のがス出入口を一定の周勘で開閉
する弁と、該捕集容器内の水素ガス全定量するガス分析
tlとからなること全特徴とする溶融金属中の水素定繊
装置0
(2) Rupture the space formed by the collection container that houses the sample taken from the bath molten metal together with the collection container while being isolated from the outside air, and the sample inserted into the container and the collection container. 1 mechanism, a valve that opens and closes the gas inlet and outlet of the collection container at a constant frequency, and a gas analyzer TL that measures the total amount of hydrogen gas in the collection container. Fixed fiber device 0
JP57140496A 1982-08-14 1982-08-14 Method and device for determining amount of hydrogen in molten metal Pending JPS5931452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57140496A JPS5931452A (en) 1982-08-14 1982-08-14 Method and device for determining amount of hydrogen in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57140496A JPS5931452A (en) 1982-08-14 1982-08-14 Method and device for determining amount of hydrogen in molten metal

Publications (1)

Publication Number Publication Date
JPS5931452A true JPS5931452A (en) 1984-02-20

Family

ID=15269973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57140496A Pending JPS5931452A (en) 1982-08-14 1982-08-14 Method and device for determining amount of hydrogen in molten metal

Country Status (1)

Country Link
JP (1) JPS5931452A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345157A (en) * 1976-10-06 1978-04-22 Fuji Electric Co Ltd Anti-time limit circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345157A (en) * 1976-10-06 1978-04-22 Fuji Electric Co Ltd Anti-time limit circuit

Similar Documents

Publication Publication Date Title
US3646816A (en) Immersion molten metal sampler
US4666494A (en) Method of preparing a suction mold for receiving vitrified radioactive waste materials and apparatus therefor
US2336075A (en) Method for the rapid direct analysis of oxygen in steel
KR870001397B1 (en) Analyzing apparatus and sampling tube for sampling of fused metal
JPS5931452A (en) Method and device for determining amount of hydrogen in molten metal
US4170139A (en) Sampling device for analysis of molten metal for hydrogen
CN108663364A (en) A kind of method that in-situ observation formulates abros continuous casting cooling system
US2143982A (en) Collecting gases from metals
US4067242A (en) Molten metal sampling device and method
JPS59138956A (en) Quantitative determination of hydrogen in molten metal
NO983538L (en) Metal alloy compound for semi-solid forming
JPH03172731A (en) Method and device for preparing standard sample of zinc base metal
JPS585974Y2 (en) Sample collector for measuring hydrogen content in molten metal
Gregory et al. An improved apparatus for the determination of gaseous elements in metals by vacuum fusion on a micro scale
JP2582997Y2 (en) Molten metal sampling probe
JPH019006Y2 (en)
JPH039018Y2 (en)
US3251217A (en) Determination of gases in metals
Anyalebechi Techniques for determination of the Hydrogen Content in Aluminium and its Alloys—A Review
CA1062039A (en) Molten metal sampling device and method with germanium killing agent
JP2744952B2 (en) Sampler for thermal analysis of cast iron melt
JPS62203060A (en) Apparatus for sampling specimen of high temperature molten substance
JPS59113743U (en) Sample collection container for quantifying the amount of hydrogen in molten metal
JP2721647B2 (en) Apparatus and method for sampling molten metal
JP2535341B2 (en) Sampling device and method for collecting gas analysis samples in molten steel