JPS585974Y2 - Sample collector for measuring hydrogen content in molten metal - Google Patents

Sample collector for measuring hydrogen content in molten metal

Info

Publication number
JPS585974Y2
JPS585974Y2 JP1977057788U JP5778877U JPS585974Y2 JP S585974 Y2 JPS585974 Y2 JP S585974Y2 JP 1977057788 U JP1977057788 U JP 1977057788U JP 5778877 U JP5778877 U JP 5778877U JP S585974 Y2 JPS585974 Y2 JP S585974Y2
Authority
JP
Japan
Prior art keywords
hydrogen
thin
molten metal
sample
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977057788U
Other languages
Japanese (ja)
Other versions
JPS53152688U (en
Inventor
寛 原
山口勝
松本巌
成田貴一
谷口政行
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to JP1977057788U priority Critical patent/JPS585974Y2/en
Publication of JPS53152688U publication Critical patent/JPS53152688U/ja
Application granted granted Critical
Publication of JPS585974Y2 publication Critical patent/JPS585974Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【考案の詳細な説明】 本考案は溶融釜層中の水素含有量を迅速且つ正確に測定
する為の試料採取器に関するものであ乞。
[Detailed Description of the Invention] The present invention relates to a sample collector for quickly and accurately measuring the hydrogen content in a molten tank layer.

金属材料中に金層される水素は、その金属の性質に大き
な影響を与える。
Hydrogen deposited in a gold layer in a metal material has a great influence on the properties of the metal.

例えば鉄鋼材料中の水素含有量が高くなると、単に脆化
を招くだけでなく、白化やクラッチ等の重大欠陥を発生
させる原因にもなる。
For example, when the hydrogen content in a steel material increases, it not only causes embrittlement, but also causes serious defects such as whitening and clutching.

従ってこれら金属材料の溶製段階例えば溶鉄や溶鋼中の
水素の挙動を正確に把握し、水素含有量を適正範囲内に
制御することが極めて重要になっている。
Therefore, it is extremely important to accurately understand the behavior of hydrogen in, for example, molten iron or molten steel during the melting process of these metal materials, and to control the hydrogen content within an appropriate range.

その前提として、溶融金属中の水素量を正確に測定する
技術を確立しなければならないが、その為には、測定対
象の溶融金属浴から水素の散逸や混入を起さない状態で
代表性のある試料を迅速に採取することが絶対的な前提
条件になる。
As a premise, it is necessary to establish a technology to accurately measure the amount of hydrogen in molten metal, but in order to do so, it is necessary to obtain representativeness without causing hydrogen dissipation or mixing from the molten metal bath to be measured. It becomes an absolute prerequisite to collect a certain sample quickly.

この様なところから、これ迄にも種々の試料採取器が開
発されてきたが、同完全なものとは言い難い。
From this point of view, various sample collectors have been developed up to now, but it is difficult to say that they are perfect.

ところで溶融金属殊に溶鋼を対象とする公知の試料採取
技術としては、次の2種に大別できる。
By the way, known sampling techniques for molten metal, particularly molten steel, can be roughly divided into the following two types.

(1)採取試料を可及的急速に冷却し溶鋼中の水素を試
料的に凍結する方法。
(1) A method of cooling the collected sample as quickly as possible and freezing the hydrogen in the molten steel.

具体的には■ひしやく汲み出し金型鋳込法、■スポイト
吸上法、■減圧石英パイプによる吸引法等があり、作業
性の面で優れているので広く実用化され゛ているが、冷
却操作を手ぎわよく行なわないと水素の放散が起り、水
素の完全回収ができ難いため、水素レベルや合金種にも
よるが真の値よりもかなり低い測定値が得られる。
Specifically, there are ■ pumping mold casting method, ■ dropper suction method, ■ suction method using a reduced pressure quartz pipe, etc. These methods are widely put into practical use because they are superior in terms of workability, but cooling If the operation is not performed carefully, hydrogen will dissipate and it will be difficult to recover the hydrogen completely, so the measured value will be much lower than the true value, depending on the hydrogen level and the type of alloy.

(2)採取器の内部に、試料の冷却・凝固中に放出され
る水素を貯留する空間を設けておく方法。
(2) A method in which a space is provided inside the sampler to store the hydrogen released during cooling and solidification of the sample.

具体的には真空採取法や金属製絶対真空鋳型法等があり
、理論的には真の水素値が得られるはずである。
Specifically, there are vacuum sampling methods, metal absolute vacuum molding methods, etc., and theoretically, true hydrogen values should be obtained.

しかしこの方法では、ガス状の水素と凝固試料Φの残留
水素を別々に測定しな′□ければならず、作業性が悪い
だけでなく測定誤差も大きくなる。
However, with this method, gaseous hydrogen and residual hydrogen in the solidified sample Φ must be measured separately, which not only results in poor workability but also increases measurement errors.

又採取器の構造が複雑で採取操作の成功率も低い為余り
実用化されていない様である。
In addition, the structure of the collector is complicated and the success rate of the collection operation is low, so it seems that it is not put into practical use very often.

これらの方法に対しイマージョン・モールド法(Imn
ereion Mould法)又はジエー・ジー・バセ
シト法(J −G −Ba5sett法)と称される方
法が提案されている。
In contrast to these methods, the immersion mold method (Imn
A method called the J.G. Mold method) or the G.G. Ba5sett method has been proposed.

この方法は第1図に示す様な器具を使用するもので、石
英管1内に銅製鋳型2を挿入している。
This method uses an instrument as shown in FIG. 1, in which a copper mold 2 is inserted into a quartz tube 1.

尚3は封鎖具、5は薄肉部であり、鋳型内部4は必要に
より減圧とする。
Note that 3 is a sealing device, 5 is a thin wall portion, and the inside of the mold 4 is reduced in pressure if necessary.

本器具を使用すると溶融金属は薄肉部5を突き破って鋳
型内部4に流入する。
When this device is used, molten metal penetrates through the thin walled portion 5 and flows into the mold interior 4.

従ってスプーンによる汲み出し操作を行なう必要がない
ので試料採取時の水素放散量が少なくなる。
Therefore, since there is no need to perform a pumping operation using a spoon, the amount of hydrogen released during sample collection is reduced.

又鋳型2は銅製であるから溶融金属の冷却効果は高く、
冷却凝固した金属は鋳型から取り外した試料片について
水素量の測定を行なう。
Also, since the mold 2 is made of copper, it has a high cooling effect on the molten metal.
After cooling and solidifying the metal, the amount of hydrogen is measured on a sample piece removed from the mold.

その為採取時の水素ロスは少ないけれども、冷却凝固過
程で放出した水素は測定対象に入らず、真の水素値より
も低いめの値しか得られないという欠点がある。
Therefore, although hydrogen loss during collection is small, the hydrogen released during the cooling and solidification process is not included in the measurement target, and the disadvantage is that only a lower value than the true hydrogen value can be obtained.

この様に溶融金属からの試料採與測定に当っては、試料
温度の急激な低下に伴なう水素の溶解度の減少が原因に
なって過飽和の水素が放出される。
In this manner, when taking a sample from molten metal for measurement, supersaturated hydrogen is released due to a decrease in the solubility of hydrogen accompanying a rapid drop in sample temperature.

即ち試料採取時の水素放出は避は難いところであり、前
記公知方法ではこの放出水素について無視せざるを得な
いのが実状になっている。
That is, hydrogen release during sample collection is unavoidable, and the actual situation is that the above-mentioned known methods have no choice but to ignore this released hydrogen.

本考案はこの様な事情に着目してなされたものであって
、その目的は、試料採取時の水素放出を防止する。
The present invention was developed in view of these circumstances, and its purpose is to prevent hydrogen release during sample collection.

と共に、採取後測定する塩の間に放出される水素をも測
定の対象にし得、る様な器具であって、しかも凝固金属
中の残留水素と放出水素を同一レベルにおいて測定、シ
正確な水素量を与え得る様な試料採取器を提供しようと
するものである。
In addition, it is a device that can also measure the hydrogen released during the measurement of the salt after it has been collected, and can measure residual hydrogen in the solidified metal and released hydrogen at the same level, making it possible to accurately measure hydrogen. The aim is to provide a sample collector that can give a large amount of water.

かかる目的を達成し得た本考案の採取器とは、水、素難
拡散性又は水素阜溶解性金属が剥離自在に内張り、され
ると共に内部が減圧下にμ鎖され、一部に薄肉部の形成
された耐熱性容器が、前記薄肉部を除いて保護材製容器
中に収納保持されてなる点に要旨が存在する。
The collector of the present invention that has achieved the above purpose is lined with water, a metal that is difficult to diffuse, or a metal that is soluble in hydrogen so that it can be peeled off, the inside is μ-chained under reduced pressure, and there are some thin-walled parts. The gist lies in that the heat-resistant container formed with is housed and held in a container made of a protective material, except for the thin wall portion.

従って本採取器を溶融金属中に挿入すると、溶融金属中
へ挿入する時の衝撃力や溶融金属の外圧等によって薄肉
部が破られ、溶融金属は容器内に吸引される。
Therefore, when this collector is inserted into molten metal, the thin wall portion is ruptured by the impact force when inserted into the molten metal, the external pressure of the molten metal, etc., and the molten metal is sucked into the container.

そして試料は溶融金属外に引き出されて冷却凝固される
が、この過程で溶融金属と前記内張金属が融着若しくは
密着−1水素の拡散を防止するか或は放出される水素を
内張材で吸収・固定するので、これら試料金属及び内張
材を一体的に測定対象とすることにより、元の溶融金属
中の水素量はほぼ全量が検出されることになる。
The sample is then pulled out of the molten metal and cooled and solidified. During this process, the molten metal and the lining metal are fused or adhered to each other to prevent the diffusion of hydrogen or to absorb the released hydrogen into the lining material. Therefore, by measuring the sample metal and the lining material together, almost the entire amount of hydrogen in the original molten metal can be detected.

以下実施例を示す図面に基づいて本考案の構成及び作用
効果を説明するが、下記は本考案を限定する主旨のもの
ではなく、前・後記の趣旨に沿って変更実施することは
本考案の技術的範囲を逸脱するものではない。
The configuration and effects of the present invention will be explained below based on drawings showing embodiments, but the following is not intended to limit the present invention, and it is within the scope of the present invention to make changes in accordance with the spirit of the preceding and following. It does not go beyond the technical scope.

第2図は本考案の一実施例で、紙製の保護材6(例えば
紙スリーブ)内に、耐熱容器たる石英管1を挿入し、該
石英管1の内部には、石英管1の内径よりわずかに小さ
い外径の金属製薄肉管Tが内張すされている。
FIG. 2 shows an embodiment of the present invention, in which a quartz tube 1 serving as a heat-resistant container is inserted into a protective material 6 made of paper (for example, a paper sleeve). A thin-walled metal tube T having a slightly smaller outer diameter is lined inside.

従って石英管1と薄肉管Tの間にはわずかな隙間が形成
されることになるが、この隙間は試料採取凝固後石英管
1を冷却破砕した時の薄肉管7からの剥離性を良好にす
る。
Therefore, a slight gap will be formed between the quartz tube 1 and the thin-walled tube T, but this gap will improve the peelability from the thin-walled tube 7 when the quartz tube 1 is cooled and crushed after sample collection and solidification. do.

耐熱容器の材質としては石英を使用したが、これ以外の
耐熱材に代えてもよい。
Although quartz was used as the material for the heat-resistant container, other heat-resistant materials may be used instead.

又薄肉管7の材質としては前述の如く比較的水素が拡散
しにくいか若しくは水素溶解度の高いものが実用され、
代表的には、高クロム合金鋼、T I % Z r %
N b % T a等が例示され、これらの金属中に
予め台筐れている水素量を約2ppm以下にしておくと
測定精度を高めることができる。
In addition, as the material of the thin-walled tube 7, as mentioned above, a material in which hydrogen is relatively difficult to diffuse or has a high hydrogen solubility is used.
Typically, high chromium alloy steel, T I % Z r %
Examples include Nb% Ta, and measurement accuracy can be improved by setting the amount of hydrogen contained in these metals to about 2 ppm or less in advance.

この理由は本考案の採取器では薄肉管も水素量測定の対
象にされるからである。
The reason for this is that in the sampler of the present invention, even thin-walled pipes are subject to hydrogen content measurement.

尚薄肉管1の大きさも測定精度に影響を与えるものであ
り、図示の如き管体を使用する時には、外径(R1)と
内径(R2)の関係が なる式を満足する様なものであることが好ましい。
The size of the thin-walled tube 1 also affects the measurement accuracy, and when using a tube like the one shown in the figure, it should satisfy the equation for the relationship between the outer diameter (R1) and the inner diameter (R2). It is preferable.

またこの薄肉管の全長は、本採取器の適用対象によって
若干相違するが、一般的に、は100〜200間好1し
くは60〜1201m1呈度に形成される。
Although the total length of this thin-walled tube differs slightly depending on the object to which the present collector is applied, it is generally formed to have a diameter of 100 to 200 m, preferably 60 to 1201 m1.

又図示した薄肉管7は両側共に開放されたものを使用し
ているが、吸引部の反対側(図では上側)を封鎖し試験
管状にしてもよいことは当然である。
Further, although the illustrated thin-walled tube 7 is open on both sides, it is of course possible to close the side opposite to the suction portion (the upper side in the figure) to form a test tube shape.

又石英管1内の真空又は威圧の程度は、本考案を格別限
定するものではないが、溶融金属の吸引充填を円滑に行
なう為には0.3気圧以下程度にすることが軽重しい。
The degree of vacuum or pressure inside the quartz tube 1 is not particularly limited to the present invention, but in order to smoothly perform suction and filling of molten metal, it is recommended to keep it at about 0.3 atmospheres or less.

又第2図においてはモルタル11を表面にコーティング
した紙スリーブ6と石英管10間にわずかな隙間が残さ
れており、試料採牛後の石英管1の取出しを容易、にし
ているが、試料採取中の離脱を防止する為に、アスベス
ト8が充填されると共に、紙スリーブ6の先端には固定
用のセメント製のヘッド9が形成され、また不使用時の
薄肉部5を保護する為のAl製キャップ10が装着され
る。
In addition, in Fig. 2, a slight gap is left between the paper sleeve 6 whose surface is coated with mortar 11 and the quartz tube 10, making it easy to take out the quartz tube 1 after sample collection. In order to prevent separation during sampling, asbestos 8 is filled, and a cement head 9 for fixation is formed at the tip of the paper sleeve 6, and a head 9 made of cement is formed to protect the thin wall part 5 when not in use. An Al cap 10 is attached.

又Al製のキャップを着用した渣1で溶鋼中に挿入する
と、溶鋼表面のスラグによって薄肉部5が汚染されるの
を防ぐばかりでなく、挿入後人lが溶融し薄肉部5が露
出して破損する迄の時間を若干遷延化できるので、溶鋼
中の任意の場所における試料採取を行なう上で有利であ
る。
In addition, when inserting the scrap 1 with an Al cap into molten steel, it not only prevents the thin wall portion 5 from being contaminated by slag on the surface of the molten steel, but also prevents the thin wall portion 5 from being exposed due to melting after insertion. Since the time until breakage can be slightly delayed, it is advantageous in collecting samples at any location in molten steel.

第1図に示した採取器は、溶鉱炉中、取鍋中或いは鋳型
内等に訃ける溶鋼採取が便利な様に垂直型に形成されて
いるが、造塊中の溶鋼注入流より試料を採取する場合に
は第3図の如く石英管1の先端を折り曲げ、注入流に対
して水平方向に挿入して試料採取を行なう様にすればよ
い。
The sampler shown in Figure 1 is vertically shaped to conveniently collect molten steel from a blast furnace, ladle, or mold. In this case, the tip of the quartz tube 1 may be bent as shown in FIG. 3, and the sample may be collected by inserting it horizontally into the injection flow.

尚第2図の採取器を使用する時には溶鋼中に深く浸漬す
ることができるので薄肉部5は溶触金属圧によって容易
に破損される。
When using the collector shown in FIG. 2, it can be immersed deeply in molten steel, so the thin walled portion 5 is easily damaged by the pressure of the molten metal.

しかし第3図の採取器では深く侵入させないので、第3
図の場合における薄肉部5は第2図の場合より大きめに
して外圧により破損し易くしてかくことが推奨される。
However, since the collector shown in Figure 3 does not penetrate deeply,
It is recommended that the thin wall portion 5 in the case shown in the figure be made larger than in the case shown in FIG. 2 so that it is easily damaged by external pressure.

かくして溶融金属の、採取が完了すると、以後は従来法
に準じれば□呈 ″、例えば採取器は水等によって常温
迄急冷され □更に液体窒素、あるいはドライアイス−
アルコニル中で冷却しながら測定迄待機させる。
Once the collection of the molten metal is completed, the following steps can be taken according to the conventional method: For example, the collector is rapidly cooled to room temperature with water, etc., and then cooled with liquid nitrogen or dry ice.
Let stand by while cooling in Alconyl until measurement.

尚石英 1は水冷時に水中で破砕し、試料を内蔵した薄
肉管7(−次試料)を露出して冷却するのが車重し こ
とは当然である。
Naturally, the quartz 1 is crushed in water during water cooling, and the thin-walled tube 7 containing the sample (-next sample) is exposed and cooled, which makes the vehicle heavier.

測定に当っては試料及び薄肉管7を室温に戻し適当量を
切管し、二次試料と ・ればよい。
For measurements, the sample and thin-walled tube 7 may be returned to room temperature, and an appropriate amount is cut to serve as a secondary sample.

溶鋼中の水素含有量を測定するに当・ては、二次試料切
断長さ、薄肉管7の外径、肉厚、密度等から薄肉管の重
量を求め補正項とすれ よく、牛の場合未使用段階での
薄肉管7中の水 量を予め求めておくべきであることは
当然であ 。
When measuring the hydrogen content in molten steel, the weight of the thin-walled tube is calculated from the cutting length of the secondary sample, the outer diameter of the thin-walled tube 7, its wall thickness, density, etc., and is used as a correction factor. It goes without saying that the amount of water in the thin-walled tube 7 when it is not in use should be determined in advance.

徒つ七薄肉管7に固肴の水素量を可及的に少□くシテお
くべきであることは前述の通りであり 、予め十分な脱
水素処理を行なっておくことが推 される。
As mentioned above, the amount of hydrogen in the hard food should be kept as small as possible in the thin-walled tube 7, and it is recommended that sufficient dehydrogenation treatment be carried out in advance.

次に本考案装置を使用して0.5%C溶鋼の鋼浴中及び
注入流中の水素量を測定した結果を示す。
Next, the results of measuring the amount of hydrogen in the steel bath and injection stream of 0.5% C molten steel using the device of the present invention will be shown.

尚鋼浴中の水素量を測定する時は第2図の器具を使用し
た。
The equipment shown in Figure 2 was used to measure the amount of hydrogen in the steel bath.

但し石英管1の外径9間、内径7間、薄肉管7(ステン
レス鋼管)の外径6.5闘、内径6.0mm、長さ10
0mm、紙スリーブ6の先端から石英管1の先端1での
長さ30mmであった。
However, the outer diameter of the quartz tube 1 is 9 mm, the inner diameter is 7 mm, the outer diameter of the thin wall tube 7 (stainless steel tube) is 6.5 mm, the inner diameter is 6.0 mm, and the length is 10 mm.
The length from the tip of the paper sleeve 6 to the tip 1 of the quartz tube 1 was 30 mm.

又注入流中の水素量を測定する時は第3図の器具を使用
した。
The equipment shown in Figure 3 was used to measure the amount of hydrogen in the injected stream.

但し石英管1等の諸元は第2図と同様であり、図中のt
工及びt2u夫々15mm及び20關とした。
However, the specifications of the quartz tube 1 etc. are the same as in Figure 2, and t in the figure
The lengths were 15 mm and 20 mm, respectively.

結果は第4図に示す通りであり、従来法(減圧石英パイ
プ吸引法)に比べると本考案の採取器を使用した場合は
常に高いやの水素値が得られ、これは真の値に近いもの
と考えられる。
The results are shown in Figure 4, and compared to the conventional method (low-pressure quartz pipe suction method), using the inventive sampler always yields higher hydrogen values, which are close to the true values. considered to be a thing.

周毛5図は本採取器に盛ける一次試料内の水素偏析グラ
フの一例でありJ薄肉管中央部では極めて安定した値を
示している。
Figure 5 is an example of a hydrogen segregation graph in the primary sample that can be placed in this sampler, and shows extremely stable values in the center of the J thin-walled tube.

又採取試料における薄肉管7と凝固金属中の水素の分配
状況の一例を見ると、前者は5.16 p pin<後
者は3.89ppmであり、これらの体積些から溶鋼中
の水素濃度を計算したところ5.74ppmであった。
Also, looking at an example of the distribution of hydrogen in the thin-walled pipe 7 and the solidified metal in the collected sample, the former is 5.16 p pin < the latter is 3.89 ppm, and the hydrogen concentration in the molten steel can be calculated from these volumes. The result was 5.74 ppm.

そして本溶鋼中の水素量を従来法で測定したところ、前
記3.89ppmに近似しに値8.91ppmが得られ
た。
When the amount of hydrogen in the molten steel was measured using a conventional method, a value of 8.91 ppm was obtained, which is close to the above-mentioned 3.89 ppm.

従って薄肉管7中に放散された水素量を測定することに
よってはじめて正確な水素量に接近し得た訳である。
Therefore, by measuring the amount of hydrogen diffused into the thin-walled tube 7, it was possible to approach the exact amount of hydrogen for the first time.

本考案は以上の如く構成されているので、次の如き効果
を得ることができる。
Since the present invention is constructed as described above, the following effects can be obtained.

■ 溶鋼中の水素が、試料採取、冷却・凝固の過程で放
散し難く、より正確な水素量を得ることが可能になった
■ Hydrogen in molten steel is difficult to dissipate during the sampling, cooling and solidification process, making it possible to obtain more accurate hydrogen content.

■ 測定者の熟練度や手腕による測定値のバラツキが少
ない。
■ There is little variation in measured values due to the skill and skill of the measurer.

■ 薄肉管と凝固金属を一体的に測定すればよいので前
記真空採取法の如き2度手間が不要で、測定精度も高い
(2) Since the thin-walled tube and the solidified metal can be measured in one piece, there is no need to repeat the process twice as in the vacuum sampling method described above, and the measurement accuracy is also high.

■ 第4図に見られる如く、水素レベルの高いもの程本
採取器の有用性が大きい。
■ As seen in Figure 4, the higher the hydrogen level, the more useful this collector is.

従って水素含有量の調整に対する要求度の高い高水素レ
ベルの金属領域に釦いては特にその利用価値が高い。
Therefore, its utility value is particularly high in metal areas with high hydrogen levels, which require high hydrogen content adjustment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知の採取器を示す断面図、第2,3図は本考
案の採取器を示す断面図、第4,5図は本考案の採取器
を使用した場合の効果を示すグラフである。 1・・・・・・石英管、5・・・・・・薄肉部、7・・
・・・・薄肉管。
Figure 1 is a sectional view showing a known collector, Figures 2 and 3 are sectional views of the collector of the present invention, and Figures 4 and 5 are graphs showing the effects of using the collector of the present invention. be. 1...Quartz tube, 5...Thin wall part, 7...
...Thin-walled tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 水素難拡散性又は水素良溶解性金属が開離自在に内張す
されると共に内部が減尾乍ニ封鎖され、二部に薄肉部の
形成された耐熱性容器ふ”、前記薄肉部を除0て保護材
製容器中に収納保持されてなることを特徴とする溶融金
属中の水素含有量測定用試料採取器。
A heat-resistant container is releasably lined with a hydrogen-hardly-diffusible or hydrogen-soluble metal, and the inside is sealed while reducing tails, and a thin-walled portion is formed in two parts, excluding the thin-walled portion. A sample collector for measuring hydrogen content in molten metal, characterized in that the sample collector is housed and held in a container made of a protective material.
JP1977057788U 1977-05-06 1977-05-06 Sample collector for measuring hydrogen content in molten metal Expired JPS585974Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977057788U JPS585974Y2 (en) 1977-05-06 1977-05-06 Sample collector for measuring hydrogen content in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977057788U JPS585974Y2 (en) 1977-05-06 1977-05-06 Sample collector for measuring hydrogen content in molten metal

Publications (2)

Publication Number Publication Date
JPS53152688U JPS53152688U (en) 1978-12-01
JPS585974Y2 true JPS585974Y2 (en) 1983-02-01

Family

ID=28956000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977057788U Expired JPS585974Y2 (en) 1977-05-06 1977-05-06 Sample collector for measuring hydrogen content in molten metal

Country Status (1)

Country Link
JP (1) JPS585974Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912108B2 (en) 2020-12-11 2024-02-27 Ford Global Technologies, Llc Vehicle air vent system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58844Y2 (en) * 1975-11-22 1983-01-08 住友金属工業株式会社 You can use it to your advantage.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912108B2 (en) 2020-12-11 2024-02-27 Ford Global Technologies, Llc Vehicle air vent system

Also Published As

Publication number Publication date
JPS53152688U (en) 1978-12-01

Similar Documents

Publication Publication Date Title
US3646816A (en) Immersion molten metal sampler
US3877309A (en) Immersion sampler for molten material
US3369406A (en) Molten material sampling apparatus and method
JPH07113771A (en) Method to discriminate presence or absence of spheroidizing agent or cv making agent in molten metal of cast iron, and chilling tendency of flake graphite cast iron and sample gathering vessel used therefor
US3367189A (en) Apparatus for preparing metal test samples from molten metal baths
JPS585974Y2 (en) Sample collector for measuring hydrogen content in molten metal
RU2323423C2 (en) Probe for bath filled with melt of cryolite
US4105191A (en) Crucible for the thermal analysis of aluminum alloys
CA1101770A (en) Sampling device for analysis of molten metal for hydrogen
US4067242A (en) Molten metal sampling device and method
US2143982A (en) Collecting gases from metals
EP0114688B2 (en) Sampler and an apparatus for hydrogen determination in molten metal
JPH03172731A (en) Method and device for preparing standard sample of zinc base metal
CA1062039A (en) Molten metal sampling device and method with germanium killing agent
JPS58180950A (en) Sampling of steel sample for hydrogen gas analysis
JPS58223754A (en) Method and vessel for sampling sample from steel bath
US4624149A (en) Sampling tube
Dugic et al. An investigation of the effect of inoculants on the metal expansion penetration in grey iron
JPS59138956A (en) Quantitative determination of hydrogen in molten metal
JP2535341B2 (en) Sampling device and method for collecting gas analysis samples in molten steel
Hechu Assessment of solidification behaviour of peritectic steels
JPS5931452A (en) Method and device for determining amount of hydrogen in molten metal
JPH04113069U (en) Sampler for molten steel
SU981851A1 (en) Device for sampling liquid metal
JP2001249063A (en) Probe for collecting molten metal sample