JP2535341B2 - Sampling device and method for collecting gas analysis samples in molten steel - Google Patents

Sampling device and method for collecting gas analysis samples in molten steel

Info

Publication number
JP2535341B2
JP2535341B2 JP61304766A JP30476686A JP2535341B2 JP 2535341 B2 JP2535341 B2 JP 2535341B2 JP 61304766 A JP61304766 A JP 61304766A JP 30476686 A JP30476686 A JP 30476686A JP 2535341 B2 JP2535341 B2 JP 2535341B2
Authority
JP
Japan
Prior art keywords
molten steel
inflow port
gas analysis
sampling pipe
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61304766A
Other languages
Japanese (ja)
Other versions
JPS63157057A (en
Inventor
正義 岡村
清 松田
裕美 梅田
雅美 冨本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61304766A priority Critical patent/JP2535341B2/en
Publication of JPS63157057A publication Critical patent/JPS63157057A/en
Application granted granted Critical
Publication of JP2535341B2 publication Critical patent/JP2535341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/12Dippers; Dredgers
    • G01N1/125Dippers; Dredgers adapted for sampling molten metals

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶鋼中の水素、酸素、窒素等のガス分析を行
なうための試料の採取方法と器具に関し、製鋼技術の向
上や品質保証に貢献しうるものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a method and an instrument for collecting a sample for analyzing gases such as hydrogen, oxygen and nitrogen in molten steel, contributing to improvement of steelmaking technology and quality assurance. It is possible.

(従来の技術) 溶鋼中のガスを定量分析するために、従来、例えば第
4図に示すような二分割構造の金型10を用い、この金型
10の凹部11にスプーンで汲み取った溶鋼を鋳込んで冷却
凝固させ、凝固体からガス分析用試料を切り出してガス
を定量する方法が知られている。
(Prior Art) In order to quantitatively analyze gas in molten steel, a mold 10 having a two-part structure as shown in FIG.
A method is known in which molten steel pumped up with a spoon is cast into the concave portion 11 of 10 and cooled and solidified, and a sample for gas analysis is cut out from the solidified body to quantify the gas.

ところで、鋼中ガスのうち、特に水素は例えば1600℃
の純鉄における平衡溶解度が25ppmであり、この平衡溶
解度は温度の低下と共に大きく低下する。したがって、
上記のような金型10内に採取した溶鋼は金型10内で冷却
凝固する間に、溶鋼中における低温側から高温側へと拡
散し、収縮孔(ひけ巣)が中心線の全体にわたって発生
し、水素はH++H+→H2の反応により分子状(ガス)とな
って収縮孔から大気中に逸出する。このため、上記のよ
うな方法では、特に水素について正確な分析値が得られ
ない。
By the way, among the gases in the steel, hydrogen, for example, is 1600 ℃
Has an equilibrium solubility of 25 ppm in pure iron, and the equilibrium solubility greatly decreases with decreasing temperature. Therefore,
The molten steel sampled in the mold 10 as described above diffuses from the low temperature side to the high temperature side in the molten steel while cooling and solidifying in the mold 10, and shrinkage holes (shrink cavities) are generated over the entire center line. However, hydrogen becomes a molecule (gas) by the reaction of H + + H + → H 2 and escapes from the contraction hole into the atmosphere. Therefore, in the above method, an accurate analysis value cannot be obtained especially for hydrogen.

一方、第5図には、石英管からなる浸漬型の溶鋼採取
管12を示している。この採取管12は、溶鋼流入口13に溶
鋼温度より低温融点材を取付けて密閉状とされ、内部を
真空にして形成されている。この採取管12を溶鋼中に上
方から浸漬することにより、上記の低温融点材が溶融
し、溶鋼流入口13を通して採取管12内に溶鋼が吸引され
る。その後、採取管12を引上げ、内部の溶鋼を冷却凝固
して、上記同様に凝固体からガス分析用試料を切り出し
ガスを定量する。
On the other hand, FIG. 5 shows an immersion type molten steel sampling tube 12 made of a quartz tube. The sampling tube 12 is formed by attaching a melting point material having a temperature lower than the molten steel temperature to the molten steel inflow port 13 so as to be hermetically sealed and evacuating the inside. By dipping the sampling pipe 12 in the molten steel from above, the low-temperature melting point material is melted, and the molten steel is sucked into the sampling pipe 12 through the molten steel inflow port 13. Thereafter, the sampling pipe 12 is pulled up, the molten steel inside is cooled and solidified, and a gas analysis sample is cut out from the solidified body in the same manner as above to quantify the gas.

この場合、採取管12を構成する石英管の肉厚は1〜2m
m程度と薄く、したがって、溶鋼採取後に冷媒中に浸漬
する等によって、採取管12内の溶鋼全体を急速に冷却凝
固することが可能となる。
In this case, the thickness of the quartz tube that constitutes the sampling tube 12 is 1-2 m.
It is as thin as about m. Therefore, it is possible to rapidly cool and solidify the entire molten steel in the sampling pipe 12 by immersing it in a refrigerant after collecting the molten steel.

しかしながら、上記した方法でも、採取管12内に溶鋼
を採取する際に、採取管12内が真空であるために溶鋼中
の水素拡散が助長されて溶鋼中から逸出し、さらに、前
記のように冷媒中に浸漬して急速に冷却凝固させる場合
に、収縮孔(ひけ巣)が中心線の全体にわたって発生
し、これら収縮孔に水素が拡散逸出する。このため、こ
のような採取管12を用いてガス分析用試料を作製して
も、それほど正確な分析値は得られない。
However, even in the method described above, when the molten steel is sampled in the sampling tube 12, the diffusion of hydrogen in the molten steel is promoted due to the vacuum inside the sampling tube 12 and escape from the molten steel. When it is immersed in a refrigerant and rapidly cooled and solidified, shrinkage holes (shrink cavities) are formed over the entire center line, and hydrogen diffuses and escapes into these shrinkage holes. For this reason, even if a sample for gas analysis is prepared using such a sampling tube 12, a very accurate analysis value cannot be obtained.

そこで、より正確な分析値を得るために、従来、第6
図に示すような溶鋼採取管が用いられている。この採取
管は、各々鉄製管から成る内管14と外管15との二重管構
造とされ、また、内管14は上記同様に内部が真空とされ
ている。これを溶鋼中に浸漬し、下端部の溶鋼流入口か
ら上記同様に内管14内に溶鋼を吸引し、冷却凝固する。
そしてこの場合には、凝固体からガスを定量する前に管
内に捕集されている逸出ガスを定量分析し得るように構
成されている。
Therefore, in order to obtain a more accurate analysis value, conventionally, the sixth
A molten steel sampling pipe as shown in the figure is used. This sampling pipe has a double pipe structure of an inner pipe 14 and an outer pipe 15 each made of an iron pipe, and the inner pipe 14 is evacuated in the same manner as described above. This is immersed in molten steel, the molten steel is sucked into the inner pipe 14 from the molten steel inflow port at the lower end portion in the same manner as described above, and is cooled and solidified.
In this case, the escape gas collected in the pipe can be quantitatively analyzed before the gas is quantitatively determined from the solidified body.

(発明が解決しようとする問題点) しかしながら、上記した二重管構造の採取管を用いて
行う溶鋼採取方法では、内部を真空にして構成される採
取管の構造が複雑で高価なものとなり、また、固体試料
中のガス分析と拡散ガス分析との双方を行う必要がある
ために分析作業が煩雑になるという問題を有している。
(Problems to be solved by the invention) However, in the molten steel collecting method using the above-mentioned double pipe structure collecting pipe, the structure of the collecting pipe configured to have a vacuum inside becomes complicated and expensive, Further, there is a problem that the analysis work becomes complicated because it is necessary to perform both gas analysis and diffusion gas analysis in the solid sample.

本発明は、上記した従来の問題点に鑑みなされたもの
で、構造が簡単でより安価に作製し得ると共に、作業労
力も軽減され、しかも、より正確な分析値を得ることが
可能な溶鋼中のガス分析用試料の採取器具と採取方法を
提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems, the structure is simple and can be produced at a lower cost, the work labor is also reduced, and moreover, it is possible to obtain a more accurate analysis value in molten steel. The object of the present invention is to provide a sampling tool and a sampling method for the sample for gas analysis of.

(問題点を解決するための手段) 上記の目的を達成するために、本発明における溶鋼中
のガス分析用試料の採取器具は、溶鋼に浸漬することに
より溶鋼流入口を通して溶鋼が内部に流入する溶鋼採取
管を備え、この溶鋼採取管は、溶鋼流入口から下方に延
びる下端密閉状の溶鋼保持部を設けて形成されると共
に、この溶鋼保持部における上下方向中途位置に設けら
れた縮径部を挟んでその下側が上側よりも小径でかつ肉
厚を薄くして形成されていることを特徴としている。
(Means for Solving the Problems) In order to achieve the above-mentioned object, in the sample collecting instrument for gas analysis in molten steel in the present invention, the molten steel flows into the inside through the molten steel inlet by being immersed in the molten steel. A molten steel collecting pipe is provided, and this molten steel collecting pipe is formed by providing a molten steel holding portion that extends downward from the molten steel inlet and has a closed bottom end, and a reduced diameter portion provided at an intermediate position in the vertical direction of the molten steel holding portion. It is characterized in that the lower side of the pin is formed to have a smaller diameter and a smaller wall thickness than the upper side.

本発明における溶鋼中のガス分析用試料の採取方法
は、溶鋼流入口から下方に延びる下端密閉状の溶鋼保持
部を有すると共にこの溶鋼保持部における上下方向中途
位置の縮径部の下側を上側よりも小径に形成した溶鋼採
取管を用いて行うガス分析用試料の採取方法であって、
上記溶鋼採取管における溶鋼流入口に連通する内部空間
を溶鋼流入口以外は溶鋼中で密閉状として溶鋼を自然流
入させ、その後、溶鋼中から引上げて冷媒により急速冷
却し、溶鋼保持部における縮径部よりも下側の凝固体を
ガス分析用試料とすることを特徴としている。
The method for collecting a sample for gas analysis in molten steel according to the present invention has a molten steel holding portion having a closed bottom end extending downward from a molten steel inflow port, and the lower side of a reduced diameter portion at a midway position in the vertical direction of the molten steel holding portion is an upper side. A method for sampling a gas analysis sample using a molten steel sampling tube formed to have a smaller diameter than
The internal space communicating with the molten steel inflow port in the molten steel sampling pipe is sealed in the molten steel except for the molten steel inflow port so that the molten steel naturally flows in, and then is pulled up from the molten steel and rapidly cooled by a refrigerant, and the diameter reduction in the molten steel holding part It is characterized in that the solidified body below the portion is used as a sample for gas analysis.

(作用) 上記した本発明の採取器具においては、溶鋼への浸漬
時に真空吸引ではなく自然流入によって溶鋼を溶鋼採取
管(以下、採取管と略記する)内に採取できる。すなわ
ち、溶鋼の液面より下側に溶鋼流入口が位置するまで採
取管を浸漬することによって溶鋼が内部に流入し、その
後、溶鋼から引き上げる際には、溶鋼流入口よりも上方
まで流入した溶鋼はこの溶鋼流入口を通して流れ出る
が、溶鋼流入口より下側の下端密閉状の溶鋼保持部内の
溶鋼は、そのまま内部に保持される。
(Operation) In the above-described collecting tool of the present invention, molten steel can be collected into a molten steel collecting pipe (hereinafter abbreviated as a collecting pipe) by natural inflow instead of vacuum suction when immersed in molten steel. That is, the molten steel flows into the inside by immersing the sampling pipe until the molten steel inlet is located below the liquid level of the molten steel, and then when the molten steel is pulled up from the molten steel, the molten steel that has flowed above the molten steel inlet Flows out through the molten steel inflow port, but the molten steel in the molten steel holding portion at the lower end closed below the molten steel inflow port is retained inside as it is.

このようにして採取管の溶鋼保持部内に採取された溶
鋼は、次いで行われる冷却凝固の操作時に、管壁側から
中心に向かって凝固が進行する。このとき、溶鋼保持部
における下側は上側よりも管径が小さく、したがって、
この下側の部分は、中心までの凝固が上側よりも早く終
了する。さらに、溶鋼保持部における下側は上側よりも
肉厚が小さく、これによって管壁を通しての放熱量も上
側より多くなるので、下側全体が上側よりもさらに早く
凝固を完了する。この結果、下側の凝固部分に収縮孔を
発生させずに、全体を冷却凝固させることが可能とな
る。
The molten steel collected in the molten steel holding portion of the sampling pipe in this way solidifies from the pipe wall side toward the center during the subsequent cooling solidification operation. At this time, the pipe diameter of the lower side of the molten steel holding portion is smaller than that of the upper side, and therefore,
In the lower part, the solidification to the center ends earlier than in the upper part. Further, since the lower side of the molten steel holding portion has a smaller wall thickness than the upper side, and the amount of heat radiation through the pipe wall is larger than that of the upper side, the entire lower side completes solidification faster than the upper side. As a result, it is possible to cool and solidify the whole without generating shrinkage holes in the solidified portion on the lower side.

このように、溶鋼保持部内の溶鋼の冷却速度が下側ほ
ど早くなるように形成されていることによって、溶鋼を
採取後に全体を急速に冷却凝固させる場合でも、採取管
の下端側には収縮孔のない凝固体を確保することができ
る。
In this way, the cooling rate of the molten steel in the molten steel holding part is formed so that it becomes faster toward the lower side, so that even if the entire molten steel is rapidly cooled and solidified after being collected, a contraction hole is formed at the lower end side of the sampling pipe. It is possible to secure a solidified body that does not have

したがって、上記の採取管を用いれば、溶鋼の採取も
真空吸引によらずに自然流入で行われることから、水素
のように拡散し易いガスでも逸出が抑えられ、さらに、
急冷凝固させても、中心部に収縮孔のない凝固体を採取
管の下端側に確実に得ることができるので、収縮孔の発
生に起因するガスの拡散逸出も抑えられる。このため、
この部分を分析用試料として切り出してガス分析を行う
ことにより、正確な分析値を得ることができる。
Therefore, if the above-mentioned sampling tube is used, the molten steel is sampled by natural inflow instead of vacuum suction, so that escape of gas that easily diffuses like hydrogen is suppressed, and further,
Even when the material is rapidly cooled and solidified, a solidified body having no shrinkage hole at the center can be surely obtained at the lower end side of the sampling tube, so that diffusion and escape of gas due to the occurrence of shrinkage hole can be suppressed. For this reason,
An accurate analysis value can be obtained by cutting out this portion as a sample for analysis and performing gas analysis.

このように、上記の採取管は、内部を予め真空にして
おく必要がなく、また、下端側を小径かつ薄肉とした形
状も、例えば石英管を用いて比較的容易に作製すること
ができ、内部を真空にして封止する加工を行う必要もな
いので、製作費をより安価にすることができ、しかも、
溶鋼中のガスの拡散逸出が抑えられるので、逸出ガスを
別途捕集して分析するなどの作業を行わずともより正確
な分析値が得られ、したがって、分析作業も容易にな
る。
As described above, the above sampling tube does not need to be evacuated in advance, and a shape having a small diameter and a thin wall on the lower end side can be relatively easily manufactured by using, for example, a quartz tube, Since it is not necessary to process the inside by vacuuming and sealing it, the manufacturing cost can be reduced, and moreover,
Since diffusion escape of gas in the molten steel is suppressed, more accurate analysis value can be obtained without performing a work such as separately collecting and analyzing the escape gas, and therefore the analysis work is also facilitated.

本発明の採取方法においては、溶鋼保持部における縮
径部よりも下側をより小径にしても、この部分に自然流
入で溶鋼を流入させることができ、この結果、この部分
全体の凝固をさらに早めて収縮孔のない凝固体をより確
実に得ることができる。
In the sampling method of the present invention, even if the diameter of the lower side of the reduced diameter portion in the molten steel holding portion is made smaller, the molten steel can be allowed to flow into this portion by natural inflow, and as a result, the solidification of the entire portion is further increased. It is possible to obtain a solidified body having no shrinkage pores more quickly.

つまり、溶鋼流入口を通して採取管内に流入した溶鋼
は表面張力が大きく、特に縮径部よりも下側の小径部へ
の流入が、この部分に残存している空気によって困難に
なる。
That is, the molten steel that has flowed into the sampling pipe through the molten steel inflow port has a large surface tension, and it becomes difficult for the molten steel to flow into the small diameter portion below the reduced diameter portion due to the air remaining in this portion.

そこで、本発明法では、採取管の内部空間を溶鋼流入
口以外は溶鋼内で密閉状とする。このとき、内部の空気
は、例えば1600℃の温度の溶鋼中に浸漬されると体積が
約7倍に膨張し、この膨張分は、浸漬する過程で溶鋼流
入口を通して採取管外に放出する。したがって、内部の
空気は密度が7分の1の希薄な状態となる。この状態
は、溶鋼流入口以外は溶鋼内で密閉状となっていること
で、溶鋼の流入中も維持され、したがって、採取管内に
流入した溶鋼がさらに縮径部より下側の小径部に流入す
るときには、残存する希薄な空気と溶鋼とのスムーズな
置換が生じ、この結果、この部分の径が小さい場合で
も、この領域に溶鋼がより確実に流入した状態とするこ
とができる。
Therefore, in the method of the present invention, the internal space of the sampling pipe is hermetically sealed in the molten steel except for the molten steel inflow port. At this time, the internal air expands about 7 times in volume when immersed in molten steel at a temperature of 1600 ° C., for example, and the expanded portion is discharged to the outside of the sampling pipe through the molten steel inflow port during the immersion process. Therefore, the internal air is in a lean state with a density of 1/7. This state is maintained inside the molten steel except for the molten steel inflow port, so that it is maintained during the inflow of molten steel, so that the molten steel that has flowed into the sampling pipe further flows into the small diameter portion below the reduced diameter portion. When this is done, a smooth replacement of the remaining lean air with the molten steel occurs, and as a result, even if the diameter of this portion is small, it is possible to ensure that the molten steel has flowed into this region.

このように、下端部側をより小径として採取管に溶鋼
を自然流入させた場合でも、下端部側に溶鋼がより確実
に流入させることができるので、採取後のこの下端部側
全体の凝固速度をさらに早めることができ、この部分
に、収縮孔のない凝固体をより確実に得ることができ
る。
As described above, even when the molten steel is allowed to naturally flow into the sampling pipe with the lower end side having a smaller diameter, the molten steel can more reliably flow into the lower end side. Can be further accelerated, and a solidified body having no shrinkage hole can be more reliably obtained in this portion.

そして、このように溶鋼を採取した溶鋼に対し、冷媒
を用いて急速冷却を行って凝固させることで、全体的な
冷却速度がさらに速くなり、この結果、組織が微細とな
って鋼中のガス拡散がさらに抑制され、これにより、さ
らに正確な分析が可能となる。
Then, the molten steel obtained in this way is rapidly cooled with a refrigerant to solidify it, and the overall cooling rate is further increased, resulting in a finer structure and gas in the steel. The diffusion is further suppressed, which allows a more accurate analysis.

(実施例) 以下、本発明の実施例を図面に基づき説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図において、1は溶鋼採取管で、耐熱性の石英に
より形成されている。本実施例では、採取管1は、下側
管部2の上端に上側管部3の下端を溶着することによ
り、下側管部2の上方に上側管部3を連設して構成され
ている。下側管部2は有底で、外径8mm、上下寸法23m
m、肉厚0.5mmである。上側管部3はその上下端が開口し
ており、その下端部を縮径して縮径部を形成し、この縮
径部の端面に下側管部2の上端が接合されている。この
上側管部3は、その外径20mm,上下寸法180mm、肉厚1.5m
mである。
In FIG. 1, reference numeral 1 denotes a molten steel sampling pipe, which is made of heat-resistant quartz. In the present embodiment, the sampling tube 1 is constructed by welding the lower end of the upper pipe portion 3 to the upper end of the lower pipe portion 2 so that the upper pipe portion 3 is continuously provided above the lower pipe portion 2. There is. The lower pipe part 2 has a bottom, the outer diameter is 8 mm, and the vertical dimension is 23 m.
m, wall thickness 0.5 mm. The upper and lower ends of the upper pipe portion 3 are open, the lower end portion is reduced in diameter to form a reduced diameter portion, and the upper end of the lower pipe portion 2 is joined to the end surface of this reduced diameter portion. The upper pipe portion 3 has an outer diameter of 20 mm, a vertical dimension of 180 mm, and a wall thickness of 1.5 m.
m.

4は溶鋼流入口で8mm径とされ、この流入口4中心か
ら上側管部3下端までの寸法は60mmで、上側管部3の上
下方向中途位置に開口されている。後述する溶鋼への浸
漬時には、この流入口4を通して溶鋼が流入し、その
後、採取管1を溶鋼中から引き上げるときには、流入口
4より上方まで流入した溶鋼は流入口4を通して流出す
る。そして、流入口4よりも下側に流入した溶鋼が、そ
のまま保持され、その後に後述する冷却装置で冷却凝固
される。したがって、上記では、溶鋼流入口4よりも下
側が溶鋼保持部として構成されている。
The molten steel inflow port 4 has a diameter of 8 mm, and the dimension from the center of the inflow port 4 to the lower end of the upper pipe part 3 is 60 mm, and the upper pipe part 3 is opened at a midway position in the vertical direction. The molten steel flows in through the inflow port 4 at the time of immersion in the molten steel, which will be described later, and thereafter, when the sampling pipe 1 is pulled up from the molten steel, the molten steel flowed in above the inflow port 4 flows out through the inflow port 4. Then, the molten steel that has flowed in below the inflow port 4 is held as it is, and then cooled and solidified by a cooling device described later. Therefore, in the above, the portion below the molten steel inflow port 4 is configured as the molten steel holding portion.

5はスラグ侵入防止材で、溶鋼より融点の低い銅製
で、環状とされて上側管部3に外嵌されることで流入口
4を閉塞し、その厚さは0.3mmとされている。
Reference numeral 5 denotes a slag intrusion prevention material, which is made of copper having a melting point lower than that of molten steel, has an annular shape, and is fitted on the upper pipe portion 3 to close the inflow port 4, and its thickness is set to 0.3 mm.

6は紙管で、上側管部3上端に外嵌されると共にビス
7と接着剤とで結合され、外径30mm、上下寸法300mm、
肉厚6.5mmである。なお、紙管6にかえてグラスファイ
バーやセラミックス製の管としてもよく、熱伝導率の低
いものであればよい。
6 is a paper tube, which is externally fitted to the upper end of the upper tube portion 3 and is joined with a screw 7 and an adhesive, and has an outer diameter of 30 mm, a vertical dimension of 300 mm,
The wall thickness is 6.5 mm. The paper tube 6 may be replaced by a glass fiber or ceramic tube, as long as it has a low thermal conductivity.

8は溶鋼の流入防止材(閉塞部材)で、上側管部3の
上方開口に詰めこまれてその開口を閉塞している。
Reference numeral 8 denotes a molten steel inflow prevention member (closing member), which is filled in the upper opening of the upper pipe portion 3 to close the opening.

そして、紙管6の上端開口に鉄棒(図示省略)を嵌着
し、その鉄棒を持って採取管1を炉中の溶鋼(約1600
℃)中に約3秒間突っ込む。これにより、スラグ侵入防
止材5は溶融して流入口4から溶鋼が採取管1中に流入
する。なお、スラグ侵入防止材5により、炉中の溶鋼表
面のスラグが採取管1に侵入するのが防止される。
Then, a steel rod (not shown) is fitted into the upper end opening of the paper tube 6, and the steel pipe is held to hold the molten steel (about 1600) in the furnace.
℃) for about 3 seconds. As a result, the slag intrusion prevention material 5 melts and molten steel flows into the sampling pipe 1 through the inflow port 4. The slag intrusion prevention material 5 prevents the slag on the molten steel surface in the furnace from invading the sampling pipe 1.

なお上記では、採取管1内は真空とすることなく、溶
鋼を自然流入させる。このとき、溶鋼内に浸漬された採
取管1内の空気は、約1600℃に加熱されることにより、
約7倍に体積が膨張する。この膨張分が、流入口4から
放出される。したがって、内部の空気は密度が7分の1
の希薄な状態となる。この状態は、採取管1の上端部が
流入防止材8で閉塞されていることによって、溶鋼の流
入中も維持され、したがって、採取管1内に流入口4を
通して流入した溶鋼は、小径の下側管部2内にも、そこ
に残留している希薄な空気と置き替わり、この部分に確
実に流入する。
It should be noted that in the above, the molten steel is allowed to naturally flow into the sampling pipe 1 without being evacuated. At this time, the air in the sampling tube 1 immersed in the molten steel is heated to about 1600 ° C.,
The volume expands about 7 times. This expanded amount is discharged from the inflow port 4. Therefore, the density of the air inside is 1/7
Becomes a sparse state. This state is maintained even during the inflow of molten steel because the upper end of the sampling pipe 1 is closed by the inflow prevention material 8, and therefore, the molten steel that has flowed into the sampling pipe 1 through the inflow port 4 has a small diameter. The lean air remaining in the side pipe portion 2 is also replaced in the side pipe portion 2 and surely flows into this portion.

こうして採取管1内に溶鋼を採取した後、次いで、採
取管1を冷媒(本実施例では0℃の水)にて冷却して凝
固させる。この際、上側管部3と下側管部2との上下位
置関係を保持した状態で冷却する。そして、第2図のよ
うに、凝固した溶鋼のうち、下側管部2で凝固した部分
をガス分析用試料9とする。
After the molten steel is collected in the sampling pipe 1 in this manner, the sampling pipe 1 is then cooled with a refrigerant (water of 0 ° C. in this embodiment) to be solidified. At this time, cooling is performed while maintaining the vertical positional relationship between the upper pipe portion 3 and the lower pipe portion 2. Then, as shown in FIG. 2, of the solidified molten steel, the portion solidified in the lower tube portion 2 is used as a gas analysis sample 9.

ガス分析に際しては、分析するガスの種類に応じて試
料9を複数に分割し、表面研磨して分析に供する。な
お、本実施例では、試料9の下端側9aを水素、その上側
9bを酸素と窒素の分析に供した。これは、下端ほど冷却
速度が速く組織が緻密化されてガス拡散がしにくいた
め、拡散し易い水素の分析に供するものである。
In the gas analysis, the sample 9 is divided into a plurality of pieces according to the type of gas to be analyzed, and the surface is polished before use. In this embodiment, the lower end side 9a of the sample 9 is hydrogen and the upper side thereof is
9b was subjected to oxygen and nitrogen analysis. This is used for the analysis of hydrogen which is easy to diffuse because the cooling rate is higher toward the lower end and the structure is densified and gas diffusion is less likely to occur.

第3図に、本実施例による水素の定量結果を、従来の
第5図及び第6図に示すものによる水素の定量結果と比
較して示す。第6図に示したものは、理論的には最良で
あると考えられるので、その分析値を基準値とする。第
3図中、横軸は基準値、縦軸は分析値で、●印は本実施
例による分析結果、◎印は第5図のものによる分析結
果、実線が第6図のものによる基準分析値を示し、二点
鎖線は基準分析値からの偏差(%)を示す。この結果、
本実施例によるものは基準値から±10%の範囲の分析値
を示すのに対し、第5図のものによる分析値は基準値か
ら20〜70%も低い値となっており、本実施例による分析
値は精度が良いのがわかる。
FIG. 3 shows the results of quantifying hydrogen according to this example in comparison with the results of quantifying hydrogen according to the conventional techniques shown in FIGS. 5 and 6. Since the one shown in FIG. 6 is considered to be theoretically the best, its analytical value is used as a reference value. In FIG. 3, the horizontal axis is the reference value and the vertical axis is the analysis value. ● indicates the analysis result according to this embodiment, ⊚ indicates the analysis result according to FIG. 5, and the solid line indicates the reference analysis according to FIG. The values are shown, and the two-dot chain line shows the deviation (%) from the standard analysis value. As a result,
The analysis value according to this example shows an analysis value within a range of ± 10% from the reference value, whereas the analysis value according to FIG. 5 is 20 to 70% lower than the reference value. It can be seen that the analysis value obtained by is highly accurate.

(発明の効果) 本発明によれば、溶鋼に溶鋼採取管を浸漬して溶鋼を
採取する場合に、真空吸引によらずに自然流入によって
溶鋼の採取を行うことができ、また、溶鋼採取管の下端
部側に収縮孔の発生が抑制された凝固体を得ることがで
き、この部分からガスの拡散逸出が抑制されたガス分析
用試料を得ることができる。
(Effect of the Invention) According to the present invention, when the molten steel collecting pipe is immersed in the molten steel to collect the molten steel, the molten steel can be collected by natural inflow without using vacuum suction, and the molten steel collecting pipe is also provided. It is possible to obtain a solidified body in which the generation of shrinkage holes is suppressed at the lower end side of the, and a gas analysis sample in which diffusion escape of gas is suppressed can be obtained from this portion.

したがって、上記の採取管は、内部を予め真空にして
おく必要がなく、また、下端側を小径かつ薄肉とした形
状も、例えば石英管を用いて比較的容易に作製すること
ができ、内部を真空にして封止する加工を行う必要もな
いので、製作費もより安価なものとなる。しかも、溶鋼
中のガスの拡散逸出が抑えられるた試料を得ることがで
きるので、逸出ガスを別途捕集して分析するなどの作業
を行わずともより正確な分析値が得られ、したがって、
分析作業も容易になる。
Therefore, it is not necessary to evacuate the inside of the sampling tube in advance, and a shape having a small diameter and a thin wall at the lower end side can be relatively easily produced by using, for example, a quartz tube. Since it is not necessary to perform a vacuuming and sealing process, the manufacturing cost can be reduced. Moreover, since it is possible to obtain a sample in which diffusion escape of gas in molten steel is suppressed, a more accurate analysis value can be obtained without performing work such as separately collecting and analyzing escape gas. ,
Analysis work becomes easy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る試料採取器具の正面
図、第2図は同ガス分析用試料、第3図は同分析結果を
示す図、第4図は従来例に係る試料採取用金型の斜視
図、第5図は他の従来例に係る試料採取管の断面図、第
6図はさらに他の従来例に係る試料採取管の斜視図であ
る。 1……溶鋼採取管、2……下側管部、3……上側管部、
4……溶鋼流入口、8……流入防止材(閉塞部材)、9
……ガス分析用試料。
FIG. 1 is a front view of a sampling device according to an embodiment of the present invention, FIG. 2 is a sample for the same gas analysis, FIG. 3 is a diagram showing the results of the same analysis, and FIG. 4 is a sampling for a conventional example. FIG. 5 is a cross-sectional view of a sample collecting tube according to another conventional example, and FIG. 6 is a perspective view of a sample collecting tube according to still another conventional example. 1 ... Molten steel sampling pipe, 2 ... Lower pipe part, 3 ... Upper pipe part,
4 ... Molten steel inlet, 8 ... Inflow prevention material (blocking member), 9
…… A sample for gas analysis.

フロントページの続き (56)参考文献 実開 昭56−9040(JP,U) 日本学術振興会編「鉄鋼迅速分析法続 付解説」丸善P.517−524(昭和41年)Continuation of the front page (56) Bibliography Sho 56-9040 (JP, U) Japan Society for the Promotion of Science "Commentary on Rapid Iron and Steel Analysis" Maruzen P. 517-524 (1966)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶鋼に浸漬することにより溶鋼流入口を通
して溶鋼が内部に流入する溶鋼採取管を備え、 この溶鋼採取管は、溶鋼流入口から下方に延びる下端密
閉状の溶鋼保持部を設けて形成されると共に、 この溶鋼保持部における上下方向中途位置に設けられた
縮径部を挟んでその下側が上側よりも小径でかつ肉厚を
薄くして形成されていることを特徴とする溶鋼中のガス
分析用試料の採取器具。
1. A molten steel sampling pipe, into which molten steel flows into the molten steel through a molten steel inflow port by immersing the molten steel in the molten steel, wherein the molten steel sampling pipe is provided with a molten steel holding portion at a lower end extending downward from the molten steel inflow port. In addition to being formed, the lower side of the molten steel holding portion is smaller in diameter and thinner than the upper side with a reduced diameter portion provided at a midway position in the up-down direction sandwiched between the molten steel holding portion. Instrument for collecting gas analysis samples.
【請求項2】溶鋼流入口から下方に延びる下端密閉状の
溶鋼保持部を有すると共にこの溶鋼保持部における上下
方向中途位置の縮径部の下側を上側よりも小径に形成し
た溶鋼採取管を用いて行うガス分析用試料の採取方法で
あって、 上記溶鋼採取管における溶鋼流入口に連通する内部空間
を溶鋼流入口以外は溶鋼中で密閉状として溶鋼を自然流
入させ、その後、溶鋼中から引上げて冷媒により急速冷
却し、溶鋼保持部における縮径部よりも下側の凝固体を
ガス分析用試料とすることを特徴とする溶鋼中のガス分
析用試料の採取方法。
2. A molten steel sampling pipe having a molten steel holding portion that is closed at the lower end and extends downward from the molten steel inflow port, and the lower side of the reduced diameter portion of the molten steel holding portion at a midway position in the vertical direction is formed to have a smaller diameter than the upper side. A method for collecting a sample for gas analysis performed by using a method in which the internal space communicating with the molten steel inflow port of the molten steel sampling pipe is made to be a closed state in the molten steel except for the molten steel inflow port, and then the molten steel is allowed to naturally flow in. A method for collecting a sample for gas analysis in molten steel, which comprises pulling up and rapidly cooling with a refrigerant, and using a solidified body below a reduced diameter portion in the molten steel holding portion as a sample for gas analysis.
【請求項3】上記溶鋼採取管が上端開口状に形成される
と共に溶鋼流入口が側壁面に設けられ、この溶鋼採取管
に上端開口を塞ぐ閉塞部材を取付けて、溶鋼中に浸漬し
溶鋼を自然流入させることを特徴とする特許請求の範囲
第2項記載の溶鋼中のガス分析用試料の採取方法。
3. The molten steel sampling pipe is formed in an upper end opening shape and a molten steel inflow port is provided on a side wall surface. A closing member for closing the upper end opening is attached to the molten steel sampling pipe, and the molten steel is immersed in the molten steel to melt the molten steel. The method for collecting a sample for gas analysis in molten steel according to claim 2, wherein the method is a natural inflow.
JP61304766A 1986-12-20 1986-12-20 Sampling device and method for collecting gas analysis samples in molten steel Expired - Lifetime JP2535341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61304766A JP2535341B2 (en) 1986-12-20 1986-12-20 Sampling device and method for collecting gas analysis samples in molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304766A JP2535341B2 (en) 1986-12-20 1986-12-20 Sampling device and method for collecting gas analysis samples in molten steel

Publications (2)

Publication Number Publication Date
JPS63157057A JPS63157057A (en) 1988-06-30
JP2535341B2 true JP2535341B2 (en) 1996-09-18

Family

ID=17936967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304766A Expired - Lifetime JP2535341B2 (en) 1986-12-20 1986-12-20 Sampling device and method for collecting gas analysis samples in molten steel

Country Status (1)

Country Link
JP (1) JP2535341B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569040U (en) * 1979-07-02 1981-01-26

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本学術振興会編「鉄鋼迅速分析法続付解説」丸善P.517−524(昭和41年)

Also Published As

Publication number Publication date
JPS63157057A (en) 1988-06-30

Similar Documents

Publication Publication Date Title
RU2666432C1 (en) Sample process for direct analysis with the heat-sink
RU2680482C1 (en) Direct analysis sampler
JP6465952B2 (en) Sampler for hot metal
US3967505A (en) Method and means for drawing samples from melts
JP7355788B2 (en) Improved molten metal sampler
RU2712618C1 (en) Molten metal samplers for applications with high and low oxygen content
JP2535341B2 (en) Sampling device and method for collecting gas analysis samples in molten steel
JP3299329B2 (en) Sampler for molten metal
KR870001397B1 (en) Analyzing apparatus and sampling tube for sampling of fused metal
US4067242A (en) Molten metal sampling device and method
JP3902512B2 (en) Metal sample rapid sampling sampler and rapid sampling method using the same
JP2004012339A (en) Metal specimen quick collection sampler and method for quick sampling using the same
KR102222231B1 (en) Sampler for molten metal, sampling device including the same, and sampling method
JPS585974Y2 (en) Sample collector for measuring hydrogen content in molten metal
JP2586634Y2 (en) Molten metal sampling probe
JPS642210B2 (en)
JP3073184B2 (en) Sample type for molten metal sampling equipment
CA1062039A (en) Molten metal sampling device and method with germanium killing agent
KR960003191B1 (en) Oxide free sampler
JPH019006Y2 (en)
JP2721647B2 (en) Apparatus and method for sampling molten metal
US4624149A (en) Sampling tube
JPH039018Y2 (en)
JPS6322527Y2 (en)
JPH08292186A (en) Molten metal sample collecting probe