JPH039018Y2 - - Google Patents

Info

Publication number
JPH039018Y2
JPH039018Y2 JP19930284U JP19930284U JPH039018Y2 JP H039018 Y2 JPH039018 Y2 JP H039018Y2 JP 19930284 U JP19930284 U JP 19930284U JP 19930284 U JP19930284 U JP 19930284U JP H039018 Y2 JPH039018 Y2 JP H039018Y2
Authority
JP
Japan
Prior art keywords
hydrogen
molten metal
conduit
suction port
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19930284U
Other languages
Japanese (ja)
Other versions
JPS61114361U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19930284U priority Critical patent/JPH039018Y2/ja
Publication of JPS61114361U publication Critical patent/JPS61114361U/ja
Application granted granted Critical
Publication of JPH039018Y2 publication Critical patent/JPH039018Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は溶融金属中の水素定量のための試料採
取管の改良に関するものである。 (従来の技術) 製鋼やアルミニウム製錬において、溶融金属中
の水素量をできるだけ低減させることが最終製品
の機械的性質を向上させる上で肝要である。溶融
金属(以下溶湯と記す)中の水素を定量するに
は、従来、溶湯を石英管で吸上げ、水で急冷した
のち、所定の大きさに切断し研磨してから、不活
性ガス中溶融−ガスクロマトグラフ−熱伝導度検
出法により定量するのが一般的である。 しかしながら、上述の試料採取−定量法では、
溶融金属の凝固に際し水素溶解度が大巾に低下す
るので、多量の水素を放出するが、この放出され
た水素が大気中に逸散し定量されないこと、凝固
後、室温では過飽和状態にあるため試料の切断、
研磨等の分析準備作業中にも水素が逸散すること
などの理由で、溶湯中の水素を正確に定量するこ
とが困難である。 このような難点を解決するため、二三の提案が
なされている。その第1は、肉厚の薄い円筒形の
ステンレス鋼を封入した真空石英管に溶湯を吸上
げ、凝固時に放出される水素を水素溶解度の高い
ステンレス鋼に吸収させ、試料をステンレス鋼円
筒と共に切断し定量に供するものである(成田
他、鉄と鋼,65,1979,1620)。しかし、この方
法を用いるとき凝固金属とステンレス鋼円筒との
境界に微細なすきまを生じ、水冷時にここに入つ
た水が、分析のための溶融時に分解して水素を発
生し誤差を生じることが多く、また挿入されるス
テンレス鋼円筒もあらかじめ完全に脱水素をして
おかないと誤差が大きくなるという難点がある。 その第2は第5図に示すように中空体が金属の
薄肉の壁12およびカバーキヤツプ13により構
成され、試料鋳型14を内蔵する中空体の外壁の
結合部が金属材料のみを使用して真空に密閉され
ている試料採取管である(特公昭53−45157号公
報)。この採取管のカバーキヤツプ3−1を溶湯に
浸漬し内部鋳型14内に溶湯を吸引したのち冷却
して溶湯中の水素を真空室15中に放出させて捕
集し、次に第6図に示すようにガス分析計16に
連結された容器17中に一端(溶湯に浸漬したカ
バーキヤツプの他端)を挿入し入口を封じたのち
外壁12に穿孔して真空室15に捕集された水素
を定量するものである。(ここで、採取管全体を
密閉容器中に入れ壁12を穿孔すると鋳型14に
吸上げられた溶湯から真空室15に放出された水
素だけでなく吸上基部18の鋼からの放出水素の
一部も定量されるため誤差を生じる。)この方式
によれば試料凝固時に放出される水素の逃散は防
止され、また、試料の切断研磨が不要となつたた
め、切断・研磨時の水素逸散による誤差も防止さ
れている。 しかし、この提案にもなお難点が残されてい
る。すなわち、 (a) 溶湯に浸漬した際に薄肉金属で作られた壁1
1が溶損されるのを防止するため採取管の周囲
を断熱材で被覆するが、この断熱材の一部に有
機質バインダーが含まれているためにそれが燃
焼して溶湯が沸いて空気のまき込みが生じ、ま
た、その断熱材の一部が溶融してスラグを形成
し溶湯中のC,H,O,Si量および介在物量を
増加させる。スラブ鋳造直前の連続鋳造装置の
タンデイシユやモールドにおいては、この悪影
響は許容限度を越えるので、その使用はそれ以
前の工程に限定される。 (b) かりに、断熱材を取り除き、外壁11が溶損
しないように短時間だけ溶鋼中に浸漬して溶湯
を吸上げたとしても、外壁12とカバーキヤツ
プ13の外周に溶湯が付着し凝固することは避
けられない。外周に金属が付着すると、第6図
で説明したような容器17中に採取管の一端を
入れて容器17と採取管との間を密封すること
が非常に困難となり、水素定量は事実上不可能
となる。 (c) 容器17と採取管との間の密封には通常ゴム
製Oリングが使用されるが、その焼損を防止す
るために採取管は溶湯吸上げ後水冷される。鋼
の場合、鋳型内に吸上げられた鋼中に全体の約
5〜10%の水素が残留するので、真空室15中
の水素を定量したのち、鋼の入つた鋳型14の
一部を切断して加熱抽出水素定量装置により別
途残留水素を定量して合算することが必要とな
る。この操作は、分析結果を迅速に入手するう
えでは非常に大きな難点となる。 上記難点を解決するため、本発明者は、すで
に、器壁が無機質耐火物で構成され、一方の端部
に試料の溶融金属中に浸漬した際に溶損されて開
口する溶融金属吸上口を有しかつ内部を真空とし
た管状体内に、前記吸上口に連通して、吸上げら
れた溶融金属が所定の形状に凝固するような空腔
を形成する如く、水素透過性材料からなる導管を
内蔵し、かつ前記溶融金属の凝固冷却に際し放出
される水素を収容する空間を備えた溶融金属中の
水素量を定量するための試料採取管(実願昭57−
141889号(実開昭59−47869号))を提案した。こ
の試料採取管(第7図に概念図を示す)によれ
ば、さきに挙げた採取管(特公昭53−45157号)
の難点は解決された。すなわち、 (a) 薄肉金属の壁とカバーキヤツプに代えて、石
英あるいはアルミナ等の無機質耐火物を用いた
ことにより溶湯中に浸漬したときの耐熱性が大
幅に改善される(これは単に融点のちがいだけ
でなく熱伝導率の相異によつても大きく左右さ
れる)。その結果、公知採取管では必須であつ
た断熱材による被覆が不要となり、断熱材によ
る溶湯の汚染が防止されタンデイシユや連鋳モ
ールドでの使用が可能となる。 (b) この採取管によれば、採取管が吸上げ基部1
8を含まないので、先に述べた吸上げ基部によ
る誤差が防止でき、したがつて採取管の全体を
完全に捕集容器(第8図)中に挿入して定量す
ることが可能となる。さらに、この結果、捕集
容器の密閉にOリングを使用することは不要と
なり、捕集容器19とふた20との密閉には高
温用金属パツキンが使用できるので、溶湯を吸
上げた採取管を水冷することなく、直接、捕集
容器19中に挿入できる。水冷操作を省略する
ことによつて導管(鋳型)内金属から中空空間
に水素ガスとして放出される割合が大幅に上昇
し(約90%から約98%へ)凝固金属中に残留す
る水素量はほぼ無視できる水準にまで低下しま
たそのバラツキも極めて減少する。したがつ
て、残留水素の定量を省略することが可能とな
り、分析時間の短縮にも大きく寄与する。 (c) 吸上げ基部の容積が大きい公知試料管(特公
昭53−45157号公報)は、吸上げ基部での溶湯
の凝固速度を適当な値に制御するために、通常
吸上げ基部の内部に冷し金を挿入してある。こ
の冷し金の挿入により新たなトラブルが生じ
る。すなわち、例えば溶鋼温度が約1500℃にま
で低下すると吸上げられた溶鋼が鋳型部に到達
しないで吸上げ基部で凝固し、吸上げ不良によ
り溶鋼のサンプリングが不成功に終ることが多
い。一方、 この試料採取管によれば、吸上げ基部の内部
に挿入する冷し金も不要であるので約1500℃の
溶鋼でも何ら支障なく吸上げることができる。 (考案が解決しようとする問題点) 本考案者による最近の詳細な実験によれば、実
願昭57−141889号(実開昭59−47869号)の方法
にも、なお、若干問題が残されていることが明ら
かとなつた。すなわち、採取管(第7図)で溶鋼
を吸上げてから、採取容器(第8図)に入れて採
取管を破断して、残留空間7中の水素を定量する
までの間に、捕集された水素の一部が逃散するこ
とがときどき認められる。特に無機質耐火物製の
器壁1中に金属性の導管(鋳型部3)を使用した
場合、逃散が生じたときには、金属製導管3の外
表面に、酸化によるテンパーカラーを生じ、しか
も器壁1には何らき裂が認められないことから、
この原因は、溶鋼吸上げ後、溶鋼吸上げに伴つて
熱膨張した金属製導管が除冷される際に、無機耐
火物製器壁1と金属製導管3との熱膨張率の違い
により、吸上部2の開口端の器壁1と導管3の境
界面から、空気が内部へ侵入し、同時に外部へ水
素が放散するものと考えられる。したがつて、吸
上げ後の吸上部2の開口部の器壁1と導管3との
境界面からのガス移動を防止するために、吸上げ
後の境界面を密封することの可能な採取管の開発
を行なつた。 (問題を解決するための手段) 本考案は上述の問題点を有効に解決したもので
ありその要旨とするところは、器壁が無機質耐火
物で構成され、一方の端部に試料の溶融金属中に
浸漬した際に溶損されて開口する溶融金属吸上口
を有しかつ内部を真空とした管状体内に、前記吸
上口に連通して、吸上げられた溶融金属が所定の
形状に凝固するような空腔を形成する如く、水素
透過性材料からなる導管を内蔵し、かつ前記溶融
金属の凝固冷却に際し放出される水素を収容する
空間を備えた溶融金属中の水素量を定量するため
の試料採取管において、 (a) 導管の吸上口付近の外周部に突出部を形成す
る、 (b) 導管と器壁との空間に低融点物質を挿入す
る、 (c) 導管の吸上口側の端部の内部に、器壁と連接
した円筒状開口内管を設ける、 (d) 吸上口付近の器壁の外周に金属製薄板または
線を捲きつける、 以上の(a),(b),(c),(d)のいずれかを単独あるい
はいくつかを併せて施こしたことを特徴とする溶
融金属中の水素量定量用試料採取管である。 以下に図面に基づいて本考案の内容を詳述す
る。 第1図、第2図、第3図、および第4図はそれ
ぞれ本考案の試料採取管の一態様例を示すもので
あるが、第1図〜第4図において内部を真空にし
た無機質耐火物製の採取管の壁1の一部を薄肉と
した吸上口2部を溶湯に浸漬するとこの部分が溶
損し、溶湯が吸引され、あらかじめ脱水素された
薄い鋼板で作られた導管3内を満たしあらかじめ
脱水素された冷し金4に到達して通気孔5を閉塞
し凝固する。6は、採取管内の一定の位置に導管
3を固定するための固定材である。凝固ならびに
冷却による水素溶解度減少によつて放出される水
素は通気孔5を経由して、あるいは導管3を長手
方向と直角に拡散移動し残留空間7中に捕集され
る。第1図において、導管3の吸上口2近くに、
あらかじめ金属製リング8を接合またはかん合し
たのち、その上から無機質耐火物製の材料で覆つ
て採取管の壁1を形成したものである。また、導
管3の吸上口2の近くに金属製フランジを接合
し、その外部を無機質耐火物製の材料で覆つて採
取管の壁1を形成したり、また、吸上口2の近く
で導管3の長さ方向の一部を拡管し、導管3の径
を変化させたり屈曲させることも第1図と同等の
効果をもたらす手段である。第2図においては、
導管3を無機質耐火物製の器壁1との空間にソー
ダガラス、はんだ、ソルダー合金(石英と鉄の接
着合金)などの低融点物質9を挿入したものであ
る。 また、導管3の吸上口2の近くの外周に、あら
かじめ、これらの低融点物質を塗付したのち、無
機質耐火物製の材料で覆つて採取管の壁1を形成
したものも第2図と同等の効果をもたらす手段で
ある。第3図においては、導管3の吸上口側端部
の内部に、器壁と連接した円筒状開口内管10を
設けたものである。 第4図においては、吸上口2の近くで導管3と
かん合するようにしぼられた器壁1の外周に金属
製の薄板または線11を捲きつけてリングを形成
している。 (作用) 第1図の場合には、導管3と器壁1との境界面
積を大きくすることにより熱応力による隙間の形
成をなくし、ひいては捕集した水素ガスの放散速
度を遅くすることにより、通常の試料採取から分
析までの所要時間での水素放散を低減する。第2
図の場合には、挿入された低融点物質が、溶鋼採
取後の放冷時に比較的低温まで液状で存在し、金
属製導管3と器壁1のしぼり部との境界層のすき
まを充填し、捕集された水素ガスの放散を防止す
る。第3図の場合には、導管3内でかつ開口内管
10の外周にある溶鋼が凝固時の収縮に際し内管
の外周壁を強くしめつけるために、この境界面か
らの水素ガス逃散が防止される。 第4図の場合には、吸上部2の近くで導管3と
かん合するようにしぼられた器壁1の外周に捲き
つけた金属性リングに溶鋼が付着し導管3内の溶
鋼とたがいに連結して凝固し、冷却時の導管3と
器壁1との境界層の空隙を減少させ、結果とし
て、捕集された水素ガスの放散を防止する。多量
の溶鋼が付着すると結果に妨害を与えるので、こ
れを防ぐため鋼薄板あるいは細い鋼線を用いるの
が肝要である。なお、第1図ないし第4図に例示
した手段の、一部あるいは全部を併用することも
可能で、補集水素の放散の可能性が更に一層防止
され、より正確な値を、より高い確率で得られる
ことは言うまでもない。 また、本考案を補完し、水素ガスの放散を完全
に防止するために、溶融金属を採取直後に、採取
管の吸上口の周辺を鉛、ハンダなどの低融点金属
の溶融池に浸漬して被覆することも効果的であ
る。以下に本考案の実施例を示す。 (実施例) 第1図に示した本考案の採取管(石英製で外径
12mm、内径10mm、長さ150mm、内部に脱水素した
冷延薄鋼板製で板厚0.3mm、径6mm、長さ70mmで
吸上端部から5mmのところの外周に直径約1mmの
鋼線リングをはんだ付けした導管を封入して
10-2Torr以下に真空排気したもの)、第2図に示
した本考案の採取管(リングを除き上記と同様の
構成で、採取管の導管3と器壁1との間に約0.5
gのソーダガラスを封入したもの)、第3図に示
した本考案の採取管(長さ約5mmの石英製内管を
石英製器壁に溶着し、ここに薄鋼製の導管の吸上
口側の端部を固定したもの)、および、第4図に
示した本考案の採取管(リングを除き、上記第1
図の考案と同様の構成で、採取管の吸上口側端部
に巾5mm板厚0.3mmの冷延鋼板を2重に捲きつけ
たもの)を製作した。 これら本発明の採取管及び比較用に実願昭57−
141889号に記載されている第7図の採取管を用い
て、連続鋳造用モールドにおいて、JIS SM50相
当の組成の溶鋼から、それぞれ20試料ずつほぼ同
一時期に採取した。それぞれの試料を10分間放冷
したのち20箇のステンレス鋼製補集容器29(第
8図に示したものと同一構成)に入れ、第9図に
示すようにガスクロマトグラフ−熱伝導検出型ガ
ス分析計25と接続してそれぞれの捕集容器29
内をArガスで置換したのち、弁26を閉じた状
態で石英製採取管を破断した。次に弁26、三方
弁27を開閉して順次捕集容器中の水素をArキ
ヤリヤーによつてガスクロマトグラフに搬送し熱
伝導度検出によつて定量した。水素定量完了後、
試料を取り出して秤量し測定に関与しない冷し金
部と導管部との重量を差引いて試料重量とした。
放出水素量と試料重量から溶鋼中水素含有率を計
算した。 なお、通常、採取後直ちに(2分以内)定量す
るところを、放冷10分としたのは、多量の試料を
取扱うため若干時間を要したことと共に、水素漏
洩防止における本考案の効果を明らかにするため
漏洩が起りうる放冷時間を延長しておこなつたも
のである。測定結果を表1に示す。
(Field of Industrial Application) The present invention relates to an improvement of a sample collection tube for quantifying hydrogen in molten metal. (Prior Art) In steelmaking and aluminum smelting, it is important to reduce the amount of hydrogen in molten metal as much as possible in order to improve the mechanical properties of the final product. Conventionally, to quantify hydrogen in molten metal (hereinafter referred to as molten metal), the molten metal is sucked up in a quartz tube, rapidly cooled with water, cut to a specified size, polished, and then melted in an inert gas. - Gas chromatography - It is generally quantified by thermal conductivity detection method. However, in the above-mentioned sampling-quantification method,
When the molten metal solidifies, the solubility of hydrogen drastically decreases, and a large amount of hydrogen is released. However, this released hydrogen escapes into the atmosphere and cannot be quantified, and after solidification, the sample is in a supersaturated state at room temperature. cutting,
It is difficult to accurately quantify hydrogen in the molten metal because hydrogen escapes during analysis preparation work such as polishing. Several proposals have been made to solve these difficulties. The first method involves sucking up the molten metal into a vacuum quartz tube filled with thin-walled cylindrical stainless steel, allowing the hydrogen released during solidification to be absorbed into the stainless steel, which has a high hydrogen solubility, and cutting the sample along with the stainless steel cylinder. (Narita et al., Tetsu-to-Hagane, 65 , 1979, 1620). However, when this method is used, a fine gap is created at the boundary between the solidified metal and the stainless steel cylinder, and water that enters the gap during water cooling can decompose and generate hydrogen when melted for analysis, causing errors. In addition, the stainless steel cylinder that is inserted must be completely dehydrogenated beforehand, otherwise there will be large errors. The second is that, as shown in FIG. 5, the hollow body is composed of a thin metal wall 12 and a cover cap 13, and the joint part of the outer wall of the hollow body containing the sample mold 14 is vacuum-evacuated using only metal materials. (Japanese Patent Publication No. 53-45157). The cover cap 3-1 of this collection tube is immersed in the molten metal, the molten metal is sucked into the internal mold 14, and then cooled to release the hydrogen in the molten metal into the vacuum chamber 15 and collect it. As shown, one end (the other end of the cover cap immersed in the molten metal) is inserted into a container 17 connected to a gas analyzer 16 to seal the inlet, and then a hole is made in the outer wall 12 to collect the hydrogen collected in the vacuum chamber 15. It is used to quantify. (Here, when the entire collection tube is placed in a sealed container and the wall 12 is perforated, not only the hydrogen released into the vacuum chamber 15 from the molten metal sucked into the mold 14 but also part of the hydrogen released from the steel of the suction base 18) ) This method prevents the escape of hydrogen released during sample solidification, and also eliminates the need for cutting and polishing the sample. Errors are also prevented. However, this proposal still has some drawbacks. (a) Walls made of thin metal when immersed in molten metal 1
In order to prevent 1 from being eroded and damaged, the sampling tube is covered with a heat insulating material, but since part of this heat insulating material contains an organic binder, it burns and the molten metal boils, causing air to escape. The entrainment occurs, and part of the heat insulating material melts to form slag, increasing the amount of C, H, O, Si and inclusions in the molten metal. In the tundish or mold of a continuous casting machine immediately before slab casting, this adverse effect exceeds the permissible limit, so its use is limited to the previous process. (b) Even if the heat insulating material is removed and the outer wall 11 is immersed in molten steel for a short time to suck up the molten metal to prevent melting damage, the molten metal will adhere to the outer periphery of the outer wall 12 and cover cap 13 and solidify. That is inevitable. If metal adheres to the outer periphery, it becomes very difficult to put one end of the sampling tube into the container 17 as explained in FIG. 6 and seal the gap between the container 17 and the sampling tube, making hydrogen determination virtually impossible. It becomes possible. (c) A rubber O-ring is usually used to seal between the container 17 and the sampling tube, but to prevent it from burning out, the sampling tube is cooled with water after sucking up the molten metal. In the case of steel, about 5 to 10% of the total hydrogen remains in the steel sucked into the mold, so after quantifying the hydrogen in the vacuum chamber 15, a part of the mold 14 containing the steel is cut. Then, it is necessary to separately quantify the residual hydrogen using a heated extracted hydrogen quantitative device and add it up. This operation poses a significant difficulty in obtaining analytical results quickly. In order to solve the above-mentioned difficulties, the present inventor has already proposed a method in which the vessel wall is made of an inorganic refractory, and one end has a molten metal suction port that is eroded and opened when the sample is immersed in the molten metal. made of a hydrogen-permeable material so as to form a cavity in which the molten metal sucked up solidifies into a predetermined shape by communicating with the suction port in a tubular body having a vacuum inside. A sample collection tube for quantifying the amount of hydrogen in molten metal, which has a built-in conduit and a space for accommodating the hydrogen released during solidification and cooling of the molten metal (Utility Application 1983-
No. 141889 (Utility Model Publication No. 59-47869)) was proposed. According to this sample collection tube (the conceptual diagram is shown in Figure 7), the sample collection tube mentioned earlier (Special Publication No. 53-45157)
difficulties have been resolved. Namely, (a) the use of inorganic refractories such as quartz or alumina in place of thin metal walls and cover caps greatly improves heat resistance when immersed in molten metal (this is simply due to the (It is greatly influenced not only by the difference but also by the difference in thermal conductivity.) As a result, it is no longer necessary to cover the pipe with a heat insulating material, which is essential for known sampling pipes, and contamination of the molten metal by the heat insulating material is prevented, allowing use in tundishes and continuous casting molds. (b) According to this collection tube, the collection tube is located at the suction base 1.
8, the above-mentioned error due to the suction base can be prevented, and it is therefore possible to completely insert the entire collection tube into the collection container (FIG. 8) for quantitative determination. Furthermore, as a result, it is no longer necessary to use an O-ring to seal the collection container, and a high-temperature metal packing can be used to seal the collection container 19 and the lid 20. It can be directly inserted into the collection container 19 without water cooling. By omitting the water cooling operation, the rate of hydrogen gas released from the metal inside the conduit (mold) into the hollow space increases significantly (from about 90% to about 98%), and the amount of hydrogen remaining in the solidified metal decreases. This decreases to an almost negligible level, and its variation is also extremely reduced. Therefore, it becomes possible to omit quantitative determination of residual hydrogen, which greatly contributes to shortening analysis time. (c) Known sample tubes with large volume suction bases (Japanese Patent Publication No. 53-45157) usually have a tube inside the suction base in order to control the solidification rate of the molten metal at the suction base to an appropriate value. A chiller has been inserted. Insertion of this cooling metal causes new trouble. That is, for example, when the molten steel temperature drops to about 1500° C., the sucked up molten steel solidifies at the suction base without reaching the mold, and sampling of the molten steel often ends in failure due to poor suction. On the other hand, according to this sample collection tube, there is no need for a cooling metal to be inserted into the inside of the suction base, so even molten steel at approximately 1500°C can be suctioned without any problems. (Problems that the invention attempts to solve) According to recent detailed experiments by the inventor of the present invention, there are still some problems remaining with the method of Utility Application No. 141,889/1989 (Patent Application No. 47,869/1983). It became clear that this was the case. That is, after sucking up the molten steel in the sampling pipe (Fig. 7), before placing it in the sampling container (Fig. 8) and breaking the sampling pipe, and quantifying the hydrogen in the residual space 7, the collection is carried out. It is sometimes observed that some of the hydrogen produced escapes. In particular, when a metal conduit (mold part 3) is used in the vessel wall 1 made of inorganic refractories, when escape occurs, a temper color is generated on the outer surface of the metal conduit 3 due to oxidation, and the vessel wall Since no cracks were observed in 1,
This is due to the difference in the coefficient of thermal expansion between the inorganic refractory wall 1 and the metal conduit 3, when the metal conduit that has thermally expanded as the molten steel is sucked up is gradually cooled down. It is considered that air enters the interior through the interface between the vessel wall 1 and the conduit 3 at the open end of the suction section 2, and at the same time hydrogen diffuses to the exterior. Therefore, in order to prevent gas movement from the interface between the vessel wall 1 and the conduit 3 at the opening of the suction part 2 after suction, the collection tube is capable of sealing the interface after suction. was developed. (Means for solving the problem) The present invention effectively solves the above-mentioned problems, and its gist is that the vessel wall is made of an inorganic refractory, and one end is attached to the molten metal of the sample. The tubular body has a molten metal suction port which is opened by melting when immersed in the tubular body and has a vacuum inside. Quantifying the amount of hydrogen in a molten metal containing a conduit made of a hydrogen-permeable material so as to form a cavity for solidification, and a space for accommodating hydrogen released during solidification and cooling of the molten metal. (a) forming a protrusion on the outer periphery near the suction port of the conduit, (b) inserting a low-melting point substance into the space between the conduit and the vessel wall, (c) reducing the suction of the conduit. A cylindrical opening inner tube connected to the vessel wall is provided inside the end on the upper mouth side, (d) A metal thin plate or wire is wrapped around the outer circumference of the vessel wall near the suction opening, (a) above. , (b), (c), and (d) either singly or in combination. The content of the present invention will be explained in detail below based on the drawings. Figures 1, 2, 3, and 4 each show an example of an embodiment of the sample collection tube of the present invention. When the suction port 2, which is a thin part of the wall 1 of the collection pipe made of material, is immersed in molten metal, this part will be eroded and the molten metal will be sucked into the pipe 3 made of a thin steel plate that has been previously dehydrogenated. The water reaches the cold metal 4 which has been dehydrogenated in advance, closes the vent hole 5, and solidifies. 6 is a fixing member for fixing the conduit 3 at a certain position within the collection tube. Hydrogen released due to reduction in hydrogen solubility due to solidification and cooling diffuses through the vent 5 or through the conduit 3 at right angles to the longitudinal direction and is collected in the residual space 7. In FIG. 1, near the suction port 2 of the conduit 3,
After a metal ring 8 is joined or fitted in advance, it is covered with an inorganic refractory material to form the wall 1 of the collection tube. In addition, a metal flange may be joined near the suction port 2 of the conduit 3 and the outside thereof may be covered with an inorganic refractory material to form the wall 1 of the sampling pipe. Expanding a portion of the conduit 3 in the length direction, changing the diameter of the conduit 3, or bending the conduit 3 is also a means for producing the same effect as shown in FIG. 1. In Figure 2,
A low melting point substance 9 such as soda glass, solder, or solder alloy (adhesive alloy of quartz and iron) is inserted into the space between the conduit 3 and the vessel wall 1 made of inorganic refractory material. In addition, there is also a method in which the outer periphery of the conduit 3 near the suction port 2 is coated with these low-melting-point substances in advance and then covered with an inorganic refractory material to form the collection tube wall 1, as shown in Figure 2. It is a means to bring about the same effect. In FIG. 3, a cylindrical open inner tube 10 is provided inside the suction port side end of the conduit 3 and is connected to the vessel wall. In FIG. 4, a ring is formed by wrapping a metal thin plate or wire 11 around the outer periphery of a container wall 1 which is narrowed to fit with a conduit 3 near the suction port 2. (Function) In the case of Fig. 1, by increasing the boundary area between the conduit 3 and the vessel wall 1, the formation of gaps due to thermal stress is eliminated, and by slowing down the dissipation rate of the captured hydrogen gas, Reduces hydrogen dissipation during the typical sample collection to analysis time. Second
In the case shown in the figure, the inserted low melting point substance exists in a liquid state down to a relatively low temperature when the molten steel is left to cool after being extracted, and fills the gap in the boundary layer between the metal conduit 3 and the constriction part of the vessel wall 1. , to prevent the trapped hydrogen gas from dissipating. In the case of FIG. 3, the molten steel within the conduit 3 and around the outer circumference of the open inner tube 10 strongly compresses the outer circumferential wall of the inner tube when it contracts during solidification, preventing hydrogen gas from escaping from this interface. Ru. In the case of Fig. 4, the molten steel adheres to the metal ring wrapped around the outer circumference of the vessel wall 1 which is squeezed so as to fit with the conduit 3 near the suction part 2, and the molten steel in the conduit 3 is mixed with the molten steel. It connects and solidifies to reduce the gap in the boundary layer between the conduit 3 and the vessel wall 1 during cooling, thereby preventing the trapped hydrogen gas from dissipating. If a large amount of molten steel adheres, it will interfere with the results, so it is important to use thin steel plates or thin steel wires to prevent this. Note that it is also possible to use some or all of the means illustrated in Figures 1 to 4 in combination, which further prevents the possibility of dissipation of collected hydrogen and provides more accurate values with a higher probability. Needless to say, what you can get from it. In addition, in order to complement the present invention and completely prevent the dissipation of hydrogen gas, the area around the suction port of the sampling tube is immersed in a molten pool of low-melting point metals such as lead and solder immediately after sampling the molten metal. It is also effective to cover the surface with water. Examples of the present invention are shown below. (Example) The collection tube of the present invention shown in Fig. 1 (made of quartz with an outer diameter of
12mm, inner diameter 10mm, length 150mm, made of cold-rolled thin steel plate with dehydrogenated inside, plate thickness 0.3mm, diameter 6mm, length 70mm, with a steel wire ring about 1mm in diameter on the outer periphery 5mm from the suction end. Enclose the soldered conduit
10 -2 Torr), the collection tube of the present invention shown in Figure 2 (same configuration as above except for the ring, with a gap of about 0.5
g), the collection tube of the present invention shown in Figure 3 (a quartz inner tube with a length of about 5 mm is welded to the wall of the quartz vessel, and a thin steel conduit is attached to the suction tube). (the mouth end is fixed), and the collection tube of the present invention shown in Figure 4 (excluding the ring, the above-mentioned
With the same configuration as the one shown in the figure, a cold-rolled steel plate with a width of 5 mm and a thickness of 0.3 mm was wrapped around the end of the suction port side of the sampling tube in two layers. These collection tubes of the present invention and the Utility Application for Comparison
Using the sampling tube shown in Figure 7 described in No. 141889, 20 samples were each sampled at approximately the same time from molten steel having a composition equivalent to JIS SM50 in a continuous casting mold. After each sample was allowed to cool for 10 minutes, it was placed in 20 stainless steel collection containers 29 (same configuration as shown in Figure 8), and as shown in Figure 9, it was placed in a gas chromatograph - thermal conduction detection type gas. Each collection container 29 is connected to the analyzer 25.
After replacing the inside with Ar gas, the quartz sampling tube was broken with the valve 26 closed. Next, by opening and closing the valve 26 and the three-way valve 27, hydrogen in the collection container was transported to a gas chromatograph by an Ar carrier and quantified by thermal conductivity detection. After completing hydrogen determination,
The sample was taken out and weighed, and the weight of the chiller part and conduit part, which were not involved in the measurement, was subtracted to obtain the sample weight.
The hydrogen content in molten steel was calculated from the released hydrogen amount and the sample weight. The reason why we decided to leave the sample to cool for 10 minutes instead of the usual method of quantifying it immediately after collection (within 2 minutes) was because it took some time to handle a large amount of sample, and also because it clearly demonstrated the effectiveness of this invention in preventing hydrogen leakage. In order to prevent leakage, the cooling time during which leakage could occur was extended. The measurement results are shown in Table 1.

【表】 い値。
表1から明らかなように、公知採取管では、捕
集水素量の相当量が大気中に放散したことによる
異常低値の発生率が25%に対し、本考案採取管で
は5%に低下している。表1には示していない
が、第1図〜第4図の考案を併用した結果では、
二つ以上の併用でいずれも異常低値発生率(20試
料に対する)は0%となつている。また、本考案
の採取管による測定値は水素放散の影響を受け
ず、従来の公知採取管による測定値より高く、か
つ標準偏差が低値である。 (考案の効果) 本考案の採取管を使用することにより、溶鋼吸
上げ後の放冷時の、吸上げられた溶鋼あるいは金
属製導管の熱収縮に伴う無機質耐火物器壁と金属
製導管との境界層に生じるすきまを経由する、捕
集水素の放散は防止され、高い確率で正しい水素
定量値を得ることが出来、金属精錬、ひいては、
金属材料の品質向上に寄与するところ大である。
[Table] Value.
As is clear from Table 1, the occurrence rate of abnormally low values due to a considerable amount of captured hydrogen dissipating into the atmosphere was 25% in the conventional sampling tube, but this decreased to 5% in the sampling tube of the present invention. ing. Although not shown in Table 1, the results of combining the ideas shown in Figures 1 to 4 are as follows:
When two or more are used together, the incidence of abnormally low values (for 20 samples) is 0%. Furthermore, the measured values using the sampling tube of the present invention are not affected by hydrogen dissipation, are higher than the measured values using conventional known sampling tubes, and have a lower standard deviation. (Effect of the invention) By using the sampling pipe of the present invention, it is possible to prevent the inorganic refractory wall and the metal conduit from collapsing due to thermal contraction of the sucked up molten steel or the metal conduit during cooling after sucking up the molten steel. This prevents the trapped hydrogen from dissipating through the gaps that occur in the boundary layer, making it possible to obtain accurate hydrogen quantitative values with a high probability, which is useful for metal refining and, ultimately, for metal refining.
This greatly contributes to improving the quality of metal materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,c、第2図、第3図および第4
図a,bは本考案の水素量定量用試料採取管の概
略図、第5図は従来の試料採取管の一例を示す
図、第6図は第5図の試料採取管に捕集された水
素を定量するガス分析装置の一例を示す概略図、
第7図は、従来の試料採取管の他の一例を示す
図、第8図は、第7図a,bの試料採取管に捕集
された水素をとり出し分析計に送るための捕集容
器を示す図、第9図は、第8図の捕集容器と分析
計とからなる水素分析装置の一例を示す概略図で
ある。なお、第1図a,第2図,第3図,第4図
a,第6図,第7図aは、いずれも縦断面図で、
第1図b,cはそれぞれ第1図aのA−A線、B
−B線に沿う横断面図、第4図bは、第4図aの
C−C線に沿う横断面図、第7図bは、第7図a
のD−D線に沿う横断面図である。 1……無機耐火物製器壁、2……吸上口、3…
…金属製導管、4……冷し金、5……通気孔、6
……固定材、7……残留空間、8……金属製リン
グ、9……低融点物質、10……円筒状開口内
管、11……金属製リング、12……薄肉金属
壁、13……カバーキヤツプ、14……鋳型、1
5……真空室、16……ガス分析計、17……捕
集容器、18……吸上基部、19……捕集容器、
20……ふた、21……ベローズ、22……駆動
ネジ、23……刃、24……固定具、25……ガ
スクロマトグラフ−熱伝導度検出型ガス分析計、
26……弁、27……三方弁、28……加熱器、
29……捕集容器。
Figure 1 a, b, c, Figure 2, Figure 3 and Figure 4.
Figures a and b are schematic diagrams of the sample collection tube for quantifying the amount of hydrogen of the present invention, Figure 5 is a diagram showing an example of a conventional sample collection tube, and Figure 6 shows the amount of hydrogen collected in the sample collection tube of Figure 5. A schematic diagram showing an example of a gas analyzer for quantifying hydrogen,
Figure 7 is a diagram showing another example of a conventional sample collection tube, and Figure 8 is a collection tube for taking out the hydrogen collected in the sample collection tubes shown in Figures 7a and b and sending it to an analyzer. FIG. 9, which shows a container, is a schematic diagram showing an example of a hydrogen analyzer comprising the collection container and analyzer shown in FIG. 8. In addition, FIG. 1a, FIG. 2, FIG. 3, FIG. 4a, FIG. 6, and FIG. 7a are all longitudinal cross-sectional views.
Figure 1b and c are lines A-A and B in Figure 1a, respectively.
4b is a cross-sectional view taken along line C-C of FIG. 4a, and FIG. 7b is a cross-sectional view taken along line C-C of FIG. 4a.
FIG. 3 is a cross-sectional view taken along line DD of 1... Inorganic refractory wall, 2... Suction port, 3...
...Metal conduit, 4...Cold metal, 5...Vent hole, 6
... Fixed material, 7 ... Residual space, 8 ... Metal ring, 9 ... Low melting point substance, 10 ... Cylindrical opening inner tube, 11 ... Metal ring, 12 ... Thin metal wall, 13 ... ...Cover cap, 14...Mold, 1
5... Vacuum chamber, 16... Gas analyzer, 17... Collection container, 18... Suction base, 19... Collection container,
20... Lid, 21... Bellows, 22... Drive screw, 23... Blade, 24... Fixture, 25... Gas chromatograph-thermal conductivity detection type gas analyzer,
26... Valve, 27... Three-way valve, 28... Heater,
29... Collection container.

Claims (1)

【実用新案登録請求の範囲】 器壁が無機質耐火物で構成され、一方の端部に
試料の溶融金属中に浸漬した際に溶損されて開口
する溶融金属吸上口を有しかつ内部を真空とした
管状体内に、前記吸上口に連通して、吸上げられ
た溶融金属が所定の形状に凝固するような空腔を
形成する如く、水素透過性材料からなる導管を内
蔵し、かつ前記溶融金属の凝固冷却に際し放出さ
れる水素を収容する空間を備えた溶融金属中の水
素量を定量するための試料採取管において、 (a) 導管の吸上口付近の外周部に突出部を形成す
る、 (b) 導管と器壁との空間に低融点物質を挿入す
る、 (c) 導管の吸上口側の端部の内部に、器壁と連接
した円筒状開口内管を設ける、 (d) 吸上口付近の器壁の外周に金属製薄板または
線を捲きつける、 以上の(a),(b),(c),(d)のいずれかを単独あるい
はいくつかを併せて施こしたことを特徴とする溶
融金属中の水素量定量用試料採取管。
[Scope of Claim for Utility Model Registration] The container wall is made of an inorganic refractory, and one end has a molten metal suction port that is eroded and opened when immersed in the molten metal of the sample, and the inside is open. A conduit made of a hydrogen permeable material is built into the evacuated tubular body so as to communicate with the suction port and form a cavity in which the sucked up molten metal solidifies into a predetermined shape, and In the sampling tube for quantifying the amount of hydrogen in the molten metal, which has a space for accommodating the hydrogen released during solidification and cooling of the molten metal, (a) a protrusion is provided on the outer periphery near the suction port of the conduit; (b) Inserting a low melting point substance into the space between the conduit and the vessel wall; (c) Providing a cylindrical opening inner tube connected to the vessel wall inside the end of the conduit on the suction port side; (d) Wrapping a metal thin plate or wire around the outer periphery of the vessel wall near the suction port; any of the above (a), (b), (c), and (d) alone or in combination; A sample collection tube for quantifying the amount of hydrogen in molten metal, characterized by the following:
JP19930284U 1984-12-28 1984-12-28 Expired JPH039018Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19930284U JPH039018Y2 (en) 1984-12-28 1984-12-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19930284U JPH039018Y2 (en) 1984-12-28 1984-12-28

Publications (2)

Publication Number Publication Date
JPS61114361U JPS61114361U (en) 1986-07-19
JPH039018Y2 true JPH039018Y2 (en) 1991-03-06

Family

ID=30759097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19930284U Expired JPH039018Y2 (en) 1984-12-28 1984-12-28

Country Status (1)

Country Link
JP (1) JPH039018Y2 (en)

Also Published As

Publication number Publication date
JPS61114361U (en) 1986-07-19

Similar Documents

Publication Publication Date Title
US3646816A (en) Immersion molten metal sampler
US3877309A (en) Immersion sampler for molten material
CN108225847B (en) Direct analysis sampler with heat sink
SU1722218A3 (en) Casting method by vacuum suction into gas-tight mould, and device therefor
CN102788715B (en) Sampler for taking samples from melts having a melting point higher than 600c, and method for taking samples
JP4755089B2 (en) Method and apparatus for measuring the cooling curve of a molten mass
JPH039018Y2 (en)
US4428245A (en) Apparatus for sampling molten metal
KR870001397B1 (en) Analyzing apparatus and sampling tube for sampling of fused metal
JPH0333212B2 (en)
US4170139A (en) Sampling device for analysis of molten metal for hydrogen
JP4965491B2 (en) Metal sampling sampler and sampling method using the same
JPH037816Y2 (en)
JPS59138956A (en) Quantitative determination of hydrogen in molten metal
RU120772U1 (en) LIQUID METAL SAMPLE
JP2005337386A (en) Vacuum seal construction method for vacuum heat-insulation type double-pipe, and vacuum heat-insulation type double-pipe
JPH019006Y2 (en)
JP2000131311A (en) Sample collecting container for thermal analysis of molten metal
GB2086040A (en) Molten metal sampler
JP2535341B2 (en) Sampling device and method for collecting gas analysis samples in molten steel
US4624149A (en) Sampling tube
JPS585974Y2 (en) Sample collector for measuring hydrogen content in molten metal
JP3088272B2 (en) Ladle for bottom tap type hot water supply of pressure casting machine
US4815326A (en) Oxide free sampler
EP0435365B1 (en) Procedure for the measurement of a gas content of molten metal and probe used thereby