JPH037816Y2 - - Google Patents

Info

Publication number
JPH037816Y2
JPH037816Y2 JP674883U JP674883U JPH037816Y2 JP H037816 Y2 JPH037816 Y2 JP H037816Y2 JP 674883 U JP674883 U JP 674883U JP 674883 U JP674883 U JP 674883U JP H037816 Y2 JPH037816 Y2 JP H037816Y2
Authority
JP
Japan
Prior art keywords
hydrogen
collection container
molten metal
sample
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP674883U
Other languages
Japanese (ja)
Other versions
JPS59113743U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP674883U priority Critical patent/JPS59113743U/en
Priority to EP84100607A priority patent/EP0114688B2/en
Priority to CA000445703A priority patent/CA1205651A/en
Priority to KR1019840000247A priority patent/KR870001397B1/en
Priority to DE8484100607T priority patent/DE3466286D1/en
Publication of JPS59113743U publication Critical patent/JPS59113743U/en
Priority to US06/748,134 priority patent/US4590809A/en
Application granted granted Critical
Publication of JPH037816Y2 publication Critical patent/JPH037816Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は溶融金属中の水素量定量用試料採取容
器に関するものである。 製鋼やアルミニウム製錬において溶融金属中の
水素量をできるだけ低減させることが最終製品の
機械的性質を向上させる上で肝要である。溶融金
属(以下溶湯と記す)中の水素量を定量するには
従来溶湯から直接あるいは一旦ひしやくで汲上げ
たものから石英管で吸上げ、水で急冷し直ちにあ
るいはドライアイスまたは液体窒素中に保存した
のち所定の大きさに切断し研摩してから、不活性
ガス中溶融−ガスクロマトグラフ分離−熱伝導度
検出法により定量するのが一般的である。 しかしならが、(1)溶融金属の凝固に際し水素溶
解度が大巾に低下するので、試料の凝固時に多量
の水素が大気中に放出され定量されないこと、お
よび(2)凝固後室温では水素が過飽和状態にあるた
め試料の切断、研摩等の分析準備中にも水素が逸
散することのため、上述の方法では溶融金属中の
水素量を正確に定量することが困難である。 このような難点を解決するため、二三の提案が
なされている。その第1は、肉厚の薄い円筒形の
ステンレス鋼を封入した真空石英管に溶湯を吸上
げ凝固時に放出される水素を水素溶解度の高いス
テンレス鋼に吸収させ、試料をステンレス鋼円筒
と共に切断し定量に供するものである(成田他、
鉄と鋼、65,1979,P1620)。しかし、この方法
を用いるとき凝固金属とステンレス鋼円筒との境
界に微細なすきまを生じ、水冷時にここに入つた
水が、分析のため試料を溶融する際に分解して水
素を発生し誤差を生じることが多く、また挿入さ
れるステンレス鋼円筒もあらかじめ完全に脱水素
をしておかないと誤差が大きくなるという難点が
ある。その第2は、第1図に示すように薄鋼板か
らなる細鋼管1の内部に溶鋼を一定の棒状に凝固
させる導管2を収め、真空にして封じた先端3を
溶鋼に浸漬し、先端3を溶損することにより導管
2内に溶鋼を吸引したのち、緩冷却して溶鋼中の
水素を完全に放出させ真空室4に捕集し、次に第
2図に示すようにガス分析計5に連結された捕集
容器6中で試料採取溶器7の細鋼管部1に穿孔し
て捕集された水素を熱伝導度検出法で測定し導管
部2に吸引された溶湯量で除して水素量を定量す
るものである(特公昭53−45157号公報)。この方
式によれば凝固時に放出される水素の逃散は防止
され、また試料の切断研摩が不要となつたため、
切断・研摩時の水素逸散による誤差も防止されて
いる。 しかし、この提案にもなお難点が残されてい
る。すなわち、試料採取容器7には溶湯がもつぱ
ら導管部2を通つて吸上げられ、細鋼管部1と導
管部2との中間に吸上げられることのないよう通
常は、吸上基部8を設け、まずここに吸引された
溶湯が凝固して細鋼管部1と導管部2との中間へ
至る経路を閉塞するように作られている。ところ
が、この部分から放出される水素が導管部2から
放出される水素と加算されると誤差を生じるの
で、第2図に示すように吸上基部8を捕集容器6
の外部に出して導管部2のみの水素が定量される
ように密閉することが必要であるが、先端近傍外
周には溶鋼やスラグが付着してシール部9での密
閉が不完全になり水素が逃散し低値となることが
ある。また、さきに述べた吸上基部8に吸引され
た溶湯が凝固する際に放出する水素が導管部2の
溶湯から放出される水素と共に真空室4に捕集さ
れ高目の誤差を生じる可能性もある。さらにまた
試料を採取し緩冷却するだけでは水素が完全に放
出されないことが危惧される。これに対する対策
として、採取容器7全体を加熱すると導管部2だ
けでなく吸上基部8に吸引され凝固した溶湯の水
素の一部が内部へ放出されて高値を生ずる。した
がつて、真空室4に捕集された凝固時放出水素を
定量したのちに試料採取容器7を切断し導管部2
の試料だけを取出し加熱して完全な水素抽出を図
る必要がある。 本考案は上述べたような溶湯中の水素量定量方
法の問題点を解決するために試料採取容器につい
てなされたもので、以下に本考案の詳細を説明す
る。 まず、第3図に示すような一般の真空吸引−放
出水素内部捕集型試料採取容器の外壁にBN、グ
ラフアイトなどからなりスラグや溶鋼が外壁に付
着することを防止するための離型剤を塗付する。
乾燥後、溶鋼上のスラグをかきのけて溶鋼中に浸
漬する。先端部3が溶鋼により溶損され、溶鋼が
吸引されあらかじめ脱水素された薄い鋼板で作ら
れた導管2を満たし、あらかじめ脱水素された冷
し金10に到達し通気孔11を閉塞し凝固する。
凝固冷却に際し放出される水素は直接ガスとして
あるいは導管2の肉厚方向へ拡散移動して真空室
4に捕集される。採取後直ちに採取容器を第4図
に示すような破断機構付捕集容器6に入れ、ふた
12で密閉し内部にキヤリヤー用ガスで置換ある
いは真空排気したのち外気と遮断された捕集容器
内部で採取容器7を破断し真空室中の水素を開放
しなかにあつた水素を捕集容器6内に放出させ
る。また必要に応じて試料を加熱して試料中の残
留水素も放出させる。放出された水素は、捕集容
器の弁を開閉することによつて直接質量分析計で
あるいはキヤリヤガスによつて搬送しガスクロマ
トグラフ−熱伝導度検出器などの分析計で定量す
る。 以上の定量操作において、本考案の第1の特徴
である離型剤による溶鋼およびスラグの付着を防
止することにより、第2図に示すような捕集容器
のシール部での水素逃散が防止される。また、外
部付着物がなくしたがつて外部付着物からの水素
放出が無視できるため、第2の特徴である外気と
遮断された捕集容器中に入れて破断することが可
能となり水素漏洩の可能性が完全に防止される。
また、さらに上記改善に伴つて試料採取管7全体
を再加熱して水素抽出率を高め定量の正確度を向
上させることができる。なお、離型剤の選択に当
り溶鋼、スラグと反応して溶鋼中の水素を変化さ
せないことの確認が必要である。 次に本考案の実施例によつてさらに具体的に説
明する。 実施例 第3図に示すような形状の採取容器(ただし外
部はすべて石英製で外径12mm、内径10mm、長さ
150mm、内部に脱水素した冷延薄鋼板製で板厚0.3
mm、径6mm、長さ70mmの導管と、同じく脱水素し
た軟鋼製吸上基部とを封入したもの)にエアロゾ
ルスプレーで微粉状BNを離型剤として塗付し乾
燥させたものを用いて連続鋳造用モールドにおい
てJIS SS41 相当組成の溶鋼から2試料を採取
した。それぞれの試料を冷却することなく直ちに
第5図に示すように二箇のあらかじめヒータ16
で700℃に加熱したステンレス鋼製捕集容器6
(第4図に示したもの)に入れ、ガスクロマトグ
ラフ−熱伝導度検出型ガス分析計5と接続し、そ
れぞれの捕集容器6内をArガスで置換したのち
弁17を閉じた状態で石英製容器を破断した。次
に弁17と三方弁18を開閉して順次捕集容器中
の水素をArキヤリヤーガスによつてガスクロマ
トグラフ5に搬送し熱伝導度検出によつて定量し
た。別に用意した同じ形状の採取容器で溶湯を採
取しその前後の重量変化から試料重量を求め、こ
れを用いて単位重量当り水素量を求めた。比較の
ため、同時に従来法によつてスポイト吸引式石英
管で2本の試料を採取し、直ちに水冷したあと切
断、研摩、秤量し不活性ガス中溶融−ガスクロマ
トグラフ−熱伝導度検出法により水素量を定量し
た。結果表1に示す。
The present invention relates to a sample collection container for determining the amount of hydrogen in molten metal. In steelmaking and aluminum smelting, it is important to reduce the amount of hydrogen in molten metal as much as possible in order to improve the mechanical properties of the final product. Conventionally, to quantify the amount of hydrogen in molten metal (hereinafter referred to as molten metal), the hydrogen content is conventionally measured either directly from the molten metal or by pumping it up in a quartz tube, quenching it with water, and then immediately or placing it in dry ice or liquid nitrogen. After storage, it is generally cut into a predetermined size, polished, and then quantified by a method of melting in an inert gas, gas chromatography separation, and thermal conductivity detection. However, (1) the solubility of hydrogen drastically decreases when the molten metal solidifies, so a large amount of hydrogen is released into the atmosphere during solidification of the sample and cannot be quantified, and (2) hydrogen is supersaturated at room temperature after solidification. Because of this state, hydrogen also dissipates during analysis preparations such as cutting and polishing the sample, making it difficult to accurately quantify the amount of hydrogen in the molten metal using the above method. Several proposals have been made to solve these difficulties. The first method involves sucking up the molten metal into a vacuum quartz tube filled with thin-walled cylindrical stainless steel, allowing the hydrogen released during solidification to be absorbed into the stainless steel, which has a high hydrogen solubility, and then cutting the sample along with the stainless steel cylinder. It is used for quantitative analysis (Narita et al.
Iron and Steel, 65 , 1979, P1620). However, when this method is used, a fine gap is created at the boundary between the solidified metal and the stainless steel cylinder, and water that enters the gap during water cooling decomposes and generates hydrogen when melting the sample for analysis, causing errors. In addition, the stainless steel cylinder to be inserted must be completely dehydrogenated beforehand, otherwise there will be large errors. As shown in Fig. 1, a conduit 2 for solidifying molten steel into a certain rod shape is placed inside a thin steel tube 1 made of a thin steel plate, and the tip 3 sealed in a vacuum is immersed in the molten steel. After the molten steel is sucked into the conduit 2 by melting away the molten steel, it is slowly cooled to completely release the hydrogen in the molten steel and collected in the vacuum chamber 4, and then transferred to the gas analyzer 5 as shown in Fig. 2. In the connected collection container 6, the hydrogen collected by piercing the thin steel pipe section 1 of the sample collection vessel 7 is measured by the thermal conductivity detection method and divided by the amount of molten metal sucked into the conduit section 2. It is used to quantify the amount of hydrogen (Japanese Patent Publication No. 53-45157). This method prevents the escape of hydrogen released during solidification, and eliminates the need for cutting and polishing the sample.
Errors caused by hydrogen dissipation during cutting and polishing are also prevented. However, this proposal still has some drawbacks. That is, the sample collection container 7 is normally provided with a suction base 8 to prevent the molten metal from being sucked up through the conduit part 2 and into the middle between the thin steel pipe part 1 and the conduit part 2. First, the molten metal sucked here solidifies and closes the path leading to the middle between the thin steel pipe section 1 and the conduit section 2. However, if the hydrogen released from this part is added to the hydrogen released from the conduit section 2, an error will occur, so as shown in FIG.
However, molten steel and slag adhere to the outer periphery near the tip, making the sealing at the sealing part 9 incomplete and the hydrogen leaking out. may escape and become a low value. In addition, there is a possibility that the hydrogen released when the molten metal sucked into the suction base 8 solidifies is collected in the vacuum chamber 4 together with the hydrogen released from the molten metal in the conduit section 2, resulting in a high error. There is also. Furthermore, there is a fear that hydrogen may not be completely released just by collecting a sample and slowly cooling it. As a countermeasure against this, if the entire collection container 7 is heated, a portion of the hydrogen in the molten metal that is sucked into the suction base 8 as well as the conduit portion 2 and solidified is released into the interior, resulting in a high temperature. Therefore, after quantifying the hydrogen released during solidification collected in the vacuum chamber 4, the sample collection container 7 is cut and the conduit section 2
It is necessary to take out only the sample and heat it to achieve complete hydrogen extraction. The present invention was developed for a sample collection container in order to solve the above-mentioned problems in the method for determining the amount of hydrogen in molten metal, and the details of the present invention will be explained below. First, a mold release agent made of BN, graphite, etc., is used to prevent slag and molten steel from adhering to the outer wall of a general vacuum suction/release hydrogen internal collection type sample collection container as shown in Figure 3. Apply.
After drying, scrape off the slag on the molten steel and immerse it in the molten steel. The tip 3 is eroded by the molten steel, and the molten steel is sucked in and fills the conduit 2 made of a thin steel plate that has been previously dehydrogenated, reaches the previously dehydrogenated chiller 10, closes the vent hole 11, and solidifies. .
Hydrogen released during solidification and cooling is collected in the vacuum chamber 4 either directly as a gas or by diffusion in the thickness direction of the conduit 2. Immediately after collection, the collection container is placed in a collection container 6 with a breaking mechanism as shown in Fig. 4, sealed with a lid 12, and the inside is replaced with carrier gas or evacuated, and then placed inside the collection container isolated from outside air. The collection container 7 is ruptured to release the hydrogen in the vacuum chamber, and the hydrogen contained therein is released into the collection container 6. Further, if necessary, the sample is heated to release residual hydrogen in the sample. The released hydrogen is quantified in a mass spectrometer directly by opening and closing the valve of the collection vessel, or transported by a carrier gas and quantified in an analyzer such as a gas chromatograph-thermal conductivity detector. In the above quantitative operation, by preventing the adhesion of molten steel and slag by the mold release agent, which is the first feature of the present invention, hydrogen escape at the sealing part of the collection container as shown in Figure 2 is prevented. Ru. In addition, since there are no external deposits, hydrogen release from external deposits can be ignored, so the second feature is that it can be placed in a collection container that is isolated from the outside air and ruptured, making it possible to prevent hydrogen leakage. sex is completely prevented.
Furthermore, in accordance with the above-mentioned improvement, the entire sample collection tube 7 can be reheated to increase the hydrogen extraction rate and improve the accuracy of quantitative determination. In addition, when selecting a mold release agent, it is necessary to confirm that it will not react with molten steel and slag and change the hydrogen in molten steel. Next, the present invention will be explained in more detail with reference to examples. Example: A collection container with the shape shown in Figure 3 (however, the outside is entirely made of quartz, with an outer diameter of 12 mm, an inner diameter of 10 mm, and a length of
150mm, made of cold-rolled thin steel plate with internal dehydrogenation, plate thickness 0.3
A conduit with a diameter of 6 mm, a length of 70 mm, and a suction base made of mild steel, which has also been dehydrogenated, is enclosed in a conduit that is coated with fine powdered BN as a mold release agent using an aerosol spray and dried. Two samples were taken from molten steel with a composition equivalent to JIS SS41 in a casting mold. Immediately without cooling each sample, the two heaters 16 are placed in advance as shown in
Stainless steel collection container 6 heated to 700℃
(shown in Fig. 4), connect it to a gas chromatograph-thermal conductivity detection type gas analyzer 5, replace the inside of each collection container 6 with Ar gas, and then close the valve 17 to The container was broken. Next, by opening and closing the valve 17 and the three-way valve 18, the hydrogen in the collection container was transported to the gas chromatograph 5 by the Ar carrier gas and quantified by thermal conductivity detection. The molten metal was collected in a separately prepared collection container of the same shape, and the sample weight was determined from the change in weight before and after, and the amount of hydrogen per unit weight was determined using this. For comparison, two samples were simultaneously collected using a quartz tube with a dropper suction method using the conventional method, immediately cooled with water, cut, polished, weighed, and analyzed by melting in an inert gas, gas chromatography, and thermal conductivity detection method. The amount was quantified. The results are shown in Table 1.

【表】 表1から明らかなように従来法では、本考案の容
器を用いた場合よりかなり低値を示しており、こ
れは凝固時に放出される水素の逸散や切断研摩時
の水素逸散に起因すると考えられる。また、これ
ら要因の変動のため再現性が不良である。本考案
の容器では、このような問題点が解決されている
ので定量値は正確でかつ精度も良好となつてい
る。 また、外径12mmの石英管の一端を封じ、外壁に
離型剤としてエアロゾルでBNあるいはグラフア
イトを塗付して溶鋼中に浸漬し、溶鋼やスラグが
外壁に付着するのを防止する効果をしらべた結果
を表2に示す。
[Table] As is clear from Table 1, the conventional method shows a much lower value than the case using the container of the present invention, and this is due to the dissipation of hydrogen released during solidification and hydrogen dissipation during cutting and polishing. This is thought to be due to. Furthermore, reproducibility is poor due to variations in these factors. With the container of the present invention, these problems are solved, so the quantitative value is accurate and has good accuracy. In addition, one end of a quartz tube with an outer diameter of 12 mm is sealed, and the outer wall is coated with BN or graphite as a mold release agent using an aerosol and immersed in molten steel to prevent molten steel and slag from adhering to the outer wall. The results are shown in Table 2.

【表】 表2から明らかなように離型剤を塗付すること
によつて溶鋼やスラグの付着が完全に防止され
る。すなわち離型剤を利用して外壁への付着を防
止することによつて表1に示した良好な結果を得
る定量法が可能となつたものである。 以上、実施例によつて本考案の詳細を説明した
が、離型剤の種類や塗付方法などについては、例
に示したものに限らず、SiC,TiC,TiN,
Al2O3など、溶鋼あるいはスラグのぬれ性を減じ
採取容器の外壁に付着することを防止する効果を
もち、かつ水素源とならないものを、水溶液、有
機溶媒を分散させて塗付、あるいはエアゾル、蒸
着等によりうすく皮膜結成させればよい。また、
採取容器についても、実施例では、石英製で吸上
基部付のものを示したが、外管が金属製であつて
もよく、また吸上基部や導管部の形状を如何様に
変えたものであつても有効である。 以上に述べたように、本考案の採取容器を用い
ることによつて溶湯中の水素量が正確にかつ容易
に定量することが可能であり金属材料の水素脆化
防止に寄与するところ大である。
[Table] As is clear from Table 2, by applying a mold release agent, adhesion of molten steel and slag can be completely prevented. That is, by using a mold release agent to prevent adhesion to the outer wall, it has become possible to perform a quantitative method that provides the good results shown in Table 1. Although the details of the present invention have been explained above with reference to examples, the types of mold release agents and application methods are not limited to those shown in the examples; SiC, TiC, TiN,
A material such as Al 2 O 3 , which has the effect of reducing the wettability of molten steel or slag and preventing it from adhering to the outer wall of the collection container, and does not serve as a hydrogen source, can be applied by dispersing it in an aqueous solution or organic solvent, or by applying it with an aerosol. , a thin film may be formed by vapor deposition or the like. Also,
As for the collection container, in the example, one made of quartz and equipped with a suction base is shown, but the outer tube may be made of metal, and the shape of the suction base and conduit part may be changed in any way. It is valid even if As mentioned above, by using the sampling container of the present invention, it is possible to accurately and easily quantify the amount of hydrogen in the molten metal, which greatly contributes to preventing hydrogen embrittlement of metal materials. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試料採取容器の一例、第2図は従来定
量法の一つの態様における試料採取容器と捕集さ
れた水素を定量するための捕集容器、ガス分析計
との関係を示す説明図、第3図は一般的な真空吸
引−放出水素内部捕集型試料採取容器の説明図、
第4図は破断型捕集容器の説明図、第5図は捕集
容器とガス分析計の接続説明図である。 1……細(鋼)管、2……導管、3……先端、
4……真空室、5……ガス分析計、6……捕集容
器、7……試料採取容器、8……吸上基部、9…
…シール部、10……冷し金、11……通気孔、
12……ふた、13……刃、14……ベローズ、
15……駆動ネジ、16……ヒーター、17……
弁、18……三方弁。
Figure 1 is an example of a sample collection container, and Figure 2 is an explanatory diagram showing the relationship between the sample collection container, a collection container for quantifying collected hydrogen, and a gas analyzer in one embodiment of the conventional quantitative method. , Figure 3 is an explanatory diagram of a general vacuum suction-released hydrogen internal collection type sample collection container,
FIG. 4 is an explanatory diagram of the rupture type collection container, and FIG. 5 is an explanatory diagram of the connection between the collection container and the gas analyzer. 1... thin (steel) pipe, 2... conduit, 3... tip,
4... Vacuum chamber, 5... Gas analyzer, 6... Collection container, 7... Sample collection container, 8... Suction base, 9...
... Seal part, 10 ... Cold metal, 11 ... Ventilation hole,
12...Lid, 13...Blade, 14...Bellows,
15... Drive screw, 16... Heater, 17...
Valve, 18...3-way valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 溶融金属により溶損され開口する吸上口を一端
とし、溶融金属を一定の形状に凝固させるための
水素透過性材料よりなる導管を内蔵し、あらかじ
め真空排気され凝固冷却に際し放出される水素を
収容する空間をそなえ、該空間を形成する器壁が
定量用捕集容器内で容易に破断できるような材質
と形状とからなり、かつ該器壁の外周に離型剤を
塗付したことを特徴とする溶融金属中の水素量定
量用試料採取容器。
One end is a suction port that opens when melted by molten metal, and it has a built-in conduit made of hydrogen-permeable material to solidify the molten metal into a certain shape, and is evacuated in advance to store the hydrogen released during solidification and cooling. The container wall forming the space is made of a material and shape that can be easily broken in the quantitative collection container, and the outer periphery of the container wall is coated with a mold release agent. Sample collection container for quantifying the amount of hydrogen in molten metal.
JP674883U 1983-01-22 1983-01-22 Sample collection container for quantifying the amount of hydrogen in molten metal Granted JPS59113743U (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP674883U JPS59113743U (en) 1983-01-22 1983-01-22 Sample collection container for quantifying the amount of hydrogen in molten metal
EP84100607A EP0114688B2 (en) 1983-01-22 1984-01-20 Sampler and an apparatus for hydrogen determination in molten metal
CA000445703A CA1205651A (en) 1983-01-22 1984-01-20 Sampler and an apparatus for hydrogen determination in molten metal
KR1019840000247A KR870001397B1 (en) 1983-01-22 1984-01-20 Analyzing apparatus and sampling tube for sampling of fused metal
DE8484100607T DE3466286D1 (en) 1983-01-22 1984-01-20 Sampler and an apparatus for hydrogen determination in molten metal
US06/748,134 US4590809A (en) 1983-01-22 1985-06-24 Sampler and an apparatus for hydrogen determination in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP674883U JPS59113743U (en) 1983-01-22 1983-01-22 Sample collection container for quantifying the amount of hydrogen in molten metal

Publications (2)

Publication Number Publication Date
JPS59113743U JPS59113743U (en) 1984-08-01
JPH037816Y2 true JPH037816Y2 (en) 1991-02-26

Family

ID=33307174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP674883U Granted JPS59113743U (en) 1983-01-22 1983-01-22 Sample collection container for quantifying the amount of hydrogen in molten metal

Country Status (1)

Country Link
JP (1) JPS59113743U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104192581A (en) * 2014-09-04 2014-12-10 四川省绵阳西南自动化研究所 Hopper

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731181B2 (en) * 1987-10-02 1995-04-10 新日本製鐵株式会社 Method and apparatus for hydrogen splitting in molten metal
JPH0731180B2 (en) * 1987-10-02 1995-04-10 新日本製鐵株式会社 Method and apparatus for diffusible hydrogen fractionation in molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104192581A (en) * 2014-09-04 2014-12-10 四川省绵阳西南自动化研究所 Hopper

Also Published As

Publication number Publication date
JPS59113743U (en) 1984-08-01

Similar Documents

Publication Publication Date Title
US3646816A (en) Immersion molten metal sampler
US3315529A (en) Method and apparatus for taking samples from melts in order to obtain the gases evolved during solidification
US3967505A (en) Method and means for drawing samples from melts
JPH037816Y2 (en)
US4007641A (en) Molten metal sampler with vacuum
KR870001397B1 (en) Analyzing apparatus and sampling tube for sampling of fused metal
JPH035547B2 (en)
JPS61114199A (en) Method and device for forming suction type for accepting vitrified radioactive waste
US4170139A (en) Sampling device for analysis of molten metal for hydrogen
JPH039018Y2 (en)
US4125024A (en) Molten metal sampling device
US2143982A (en) Collecting gases from metals
JPS5931452A (en) Method and device for determining amount of hydrogen in molten metal
JPH019006Y2 (en)
JP2582997Y2 (en) Molten metal sampling probe
US3251217A (en) Determination of gases in metals
GB2040750A (en) Molten metal sampler
CN205844026U (en) A kind of fluent metal loop sampler
JP2648925B2 (en) Method and apparatus for analyzing hydrogen in molten steel
Tehan et al. Break-bulb technique for sample introduction
US4624149A (en) Sampling tube
CA1052593A (en) Vacuum filled sampling device for molten metal
JPS58129258A (en) Method for determination of hydrogen contained in molten metal
JPS6322527Y2 (en)
KR960003191B1 (en) Oxide free sampler