JPH019006Y2 - - Google Patents

Info

Publication number
JPH019006Y2
JPH019006Y2 JP1982141889U JP14188982U JPH019006Y2 JP H019006 Y2 JPH019006 Y2 JP H019006Y2 JP 1982141889 U JP1982141889 U JP 1982141889U JP 14188982 U JP14188982 U JP 14188982U JP H019006 Y2 JPH019006 Y2 JP H019006Y2
Authority
JP
Japan
Prior art keywords
hydrogen
molten metal
suction port
metal
collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982141889U
Other languages
Japanese (ja)
Other versions
JPS5947869U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14188982U priority Critical patent/JPS5947869U/en
Publication of JPS5947869U publication Critical patent/JPS5947869U/en
Application granted granted Critical
Publication of JPH019006Y2 publication Critical patent/JPH019006Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【考案の詳細な説明】 本考案は鉄鋼または非鉄金属等の溶融金属中の
水素分析用試料採取器具の改良に係るものであ
る。
[Detailed Description of the Invention] The present invention relates to an improvement of a sampling device for hydrogen analysis in molten metals such as steel or non-ferrous metals.

従来公知の真空式溶湯中ガス捕集器具には、第
1図に示すように上端を封口され、下端に開口を
設けた石英管1に易溶材5よりなる帽状体4を嵌
装し内部を真空となしたもの(特公昭39−8648号
公報)や、第2図に示すように、一端が易溶材9
からなる薄鋼板製の管7の内部に挿入管8をそな
え真空封管したもの(特公昭53−45157号公報)
等があるが、前者は石英管1の径が通常6mm以上
と太いため真空部に捕集された水素を定量するこ
とに加えて、凝固金属中に残留している水素を定
量する必要があるため全水素量を知るには、採取
器具中に捕集された水素を定量したのち、試料を
切断研磨し、加熱溶融し抽出される水素量を別途
定量するので操作が繁雑であり炉前等で迅速に結
果を得ることができないという欠点がある、一
方、後者は挿入管8に溶融金属を導入し、凝固時
に大半の水素をガス状で真空部に捕集するように
作られているが、挿入管部に吸上げられた溶鋼だ
けでなく易溶材9内部の湯だまり部に吸上げられ
た溶鋼から徐々に放出される水素が定量値に誤差
を与える。
As shown in FIG. 1, a conventionally known vacuum type molten metal gas collecting device has a cap-shaped body 4 made of an easily meltable material 5 fitted into a quartz tube 1 whose upper end is sealed and whose lower end is opened. (Japanese Patent Publication No. 39-8648), and as shown in Figure 2, one end is made of easily meltable material 9.
A vacuum-sealed tube with an insertion tube 8 provided inside a tube 7 made of a thin steel plate (Japanese Patent Publication No. 1983-45157)
However, in the former case, the diameter of the quartz tube 1 is usually larger than 6 mm, so in addition to quantifying the hydrogen trapped in the vacuum section, it is necessary to quantify the hydrogen remaining in the solidified metal. Therefore, in order to determine the total amount of hydrogen, the amount of hydrogen collected in the sampling device must be determined, then the sample must be cut and polished, heated and melted, and the amount of hydrogen extracted must be determined separately, which is a complicated operation and requires a separate method such as in front of a furnace. On the other hand, the latter method introduces molten metal into the insertion tube 8 and is designed to collect most of the hydrogen in gaseous form in the vacuum section during solidification. Hydrogen gradually released not only from the molten steel sucked up into the insertion pipe section but also from the molten steel sucked up into the pool inside the easily meltable material 9 gives an error to the quantitative value.

本考案は前述のように従来公知の此種器具にお
ける欠点を改善するために提案するもので、器壁
が無機質耐火物で構成され、一方の端部に試料の
溶融金属中に浸漬した際に溶損されて開口する溶
融金属吸上口を有しかつ内部を真空とした管状体
内に、前記吸上口に連通して、吸上げられた溶融
金属が所定の形状に凝固するような空腔を形成す
る如く、水素透過性材料からなる導管を内蔵し、
かつ前記溶融金属の凝固冷却に際し放出される水
素を収容する空間を備えた溶融金属中の水素量を
定量するための試料採取器具である。
As mentioned above, the present invention is proposed to improve the drawbacks of conventionally known devices of this type. A hollow space in a tubular body having a molten metal suction port that opens when melted and is evacuated, and that communicates with the suction port so that the molten metal sucked up solidifies into a predetermined shape. It has a built-in conduit made of hydrogen permeable material to form a
and a sample collection device for quantifying the amount of hydrogen in the molten metal, which is provided with a space for accommodating hydrogen released during solidification and cooling of the molten metal.

以下に、本考案の具体例を図面によつて説明す
る。第3図は本考案の器具の一例であるが、内部
を真空にした無機質耐火物の採取管11の一部を
薄肉とした吸上口12の部分を溶湯に浸漬すると
この部分が溶損し、溶湯が吸引されあらかじめ脱
水素された薄鋼板製の導管13内を満たしあらか
じめ脱水素された冷し金14に到達して通気孔1
5を閉塞し凝固する。16は、採取管11内の一
定位置に導管13を固定するためのものである。
凝固冷却に際し放出される水素は直接ガスとし
て、あるいは導管13の肉厚方向へ拡散移動して
残留空間17に捕集される。
Hereinafter, specific examples of the present invention will be explained with reference to the drawings. FIG. 3 shows an example of the device of the present invention. When the thin-walled suction port 12 of an inorganic refractory sampling pipe 11 with a vacuum inside is immersed in molten metal, this part melts and is damaged. The molten metal is sucked and fills the pre-dehydrogenated thin steel plate conduit 13, reaches the pre-dehydrogenated chiller 14, and enters the vent hole 1.
5 is occluded and coagulated. 16 is for fixing the conduit 13 at a fixed position within the collection tube 11.
Hydrogen released during solidification and cooling is collected in the residual space 17 either directly as a gas or by diffusing in the thickness direction of the conduit 13 .

また、本考案の器具の別の態様例を示す第4図
によれば、溶湯は無機質耐火物の採取管11と薄
鋼板製導管13とで形成される二重円筒の中間部
を充填し、放出される水素は残留空間17に捕集
される。第3図に示す採取器具によれば凝固金属
の外周が、第4図の採取器具によれば凝固金属の
内部が残留空間となるが、前者は第5図に示すよ
うな、後者は第6図に示すような捕集容器に入れ
て定量に供する。
Further, according to FIG. 4 showing another embodiment of the device of the present invention, the molten metal fills the middle part of a double cylinder formed by an inorganic refractory sampling pipe 11 and a thin steel plate conduit 13, The released hydrogen is collected in the residual space 17. According to the sampling device shown in FIG. 3, the residual space is the outer periphery of the solidified metal, and according to the sampling device shown in FIG. 4, the inside of the solidified metal is the residual space. Place in a collection container as shown in the figure and use for quantitative analysis.

第5図において採取管11は捕集容器18内に
挿入され、ふた19を密閉し、容器内をキヤリヤ
ー用ガスで置換または真空に排気したのち容器に
溶接されたベローズ20を外部のネジ21によつ
て駆動し該ベローズ20の内部に設けた刃22
を、支持具23で支えられた採取管11に押しつ
けて破断し残留空間17を開放し内部にあつた水
素を開放し、該容器内の水素をガスクロマトグラ
フ、質量分析計などの分析計で定量する。第6図
においても、同様の操作により採取管11中に形
成される残留空間17の壁は刃22により破断さ
れ該空間中の水素は捕集容器18中に開放されガ
ス分析計により定量される。吸引採取された溶融
金属中の水素の大部分(95%以上)を定量的に残
留空間中に捕集するためには、次の諸点に留意す
る必要がある。第1に、凝固金属中の半径すなわ
ち水素拡散距離を一定値以下に保つこと、この一
定値は溶融金属の温度、冷却速度、水素拡散係数
の温度依存性などによつて決定されるが、鋼やア
ルミニウムなどでは2.5mm以下にするとよい。こ
れを超えると金属中残留水素の割合が無視できな
くなる。第2に、第2図の9に示す易溶材内部の
湯だまり部に凝固する金属の量をできるだけ減少
せしめることが重要で、そのためには第3図ある
いは第4図に示すような湯だまり部のない採取管
を用いることが重要である。径の大きい湯だまり
部ができるとこの部分に残留する水素量による誤
差の影響が顕著となる。
In FIG. 5, the collection tube 11 is inserted into the collection container 18, the lid 19 is sealed, and the inside of the container is replaced with carrier gas or evacuated, and then the bellows 20 welded to the container is attached to the external screw 21. A blade 22 is driven by the bellows 20 and is provided inside the bellows 20.
is pressed against the collection tube 11 supported by the support 23 to break it and open the residual space 17 to release the hydrogen inside, and the hydrogen in the container is quantified with an analyzer such as a gas chromatograph or mass spectrometer. do. In FIG. 6, the wall of the residual space 17 formed in the collection tube 11 is broken by the blade 22 by the same operation, and the hydrogen in the space is released into the collection container 18 and quantified by the gas analyzer. . In order to quantitatively capture most of the hydrogen (95% or more) in the suction-collected molten metal in the residual space, it is necessary to keep the following points in mind. First, the radius in the solidified metal, that is, the hydrogen diffusion distance, must be kept below a certain value. This constant value is determined by the temperature of the molten metal, the cooling rate, the temperature dependence of the hydrogen diffusion coefficient, etc. It is recommended that the thickness be 2.5 mm or less for aluminum and other materials. If this value is exceeded, the proportion of residual hydrogen in the metal cannot be ignored. Secondly, it is important to reduce as much as possible the amount of metal that solidifies in the molten pool inside the easily meltable material, as shown in 9 in Figure 2. It is important to use a collection tube that is free of When a large-diameter pool is formed, the influence of errors due to the amount of hydrogen remaining in this portion becomes significant.

第3図、あるいは第4図において採取管11は
石英、セラミツクス等の無機質耐火物で構成さ
れ、吸上口12が溶融金属の熱で容易に溶損する
一方、他の部分は採取時に損傷を受けずまた捕集
された水素を外部へ逸散させない材質、形状であ
ることが要求される。また、導管13として薄鋼
板製のものを例示したがAl,Cuなどの金属製あ
るいはポーラスセラミツクス、ロツクウール等の
通気性に富み耐火物を用いてもよい。いづれにし
ても、高温で溶損することなくしかも水素透過性
のよいことが必要で、鋼板を用いるときは板厚
0.1〜0.5mmのものが好適である。
In FIG. 3 or 4, the collection tube 11 is made of an inorganic refractory material such as quartz or ceramics, and while the suction port 12 is easily melted away by the heat of the molten metal, other parts are damaged during collection. It is also required that the material and shape do not allow the trapped hydrogen to escape to the outside. Further, although the conduit 13 is made of a thin steel plate, it may be made of metal such as Al or Cu, or a refractory material with high air permeability such as porous ceramics or rock wool. In any case, it is necessary to have good hydrogen permeability without melting at high temperatures, and when using a steel plate, the thickness
A thickness of 0.1 to 0.5 mm is suitable.

以上、実施例によつて本考案の内容を説明した
が、要するに本考案によれば、真空空間に捕集さ
れた水素を定量するだけで、採取した金属中の水
素の大部分(95%以上)を精度よく定量すること
が可能となり溶湯中水素量を迅速にかつ正確に定
量でき金属の水素起因の諸欠陥を防止することが
でき産業上極めて有益である。
The contents of the present invention have been explained above with reference to examples, but in short, according to the present invention, most of the hydrogen (more than 95%) in the collected metal can be absorbed by simply quantifying the hydrogen collected in the vacuum space. ) can be determined with high accuracy, the amount of hydrogen in the molten metal can be determined quickly and accurately, and various defects caused by hydrogen in metal can be prevented, which is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来公知の真空式溶湯中
ガス捕集器具、第3図および第4図は本考案の実
施例を示す断面図、第5図および第6図はそれぞ
れ前記第3図および第4図に示した器具により捕
集した水素を開放し分析計に導くための捕集容器
の断面図である。 1:管状体、2:開口、3:封口部、4:帽状
体、5:薄肉部、6:接合材、7:管、8:挿入
管、9:易溶材、10:残留空間、11:採取
管、12:吸上口、13:導管、14:冷し金、
15:通気孔、16:固定材、17:残留空間、
18:捕集容器、19:ふた、20:ベローズ、
21:ネジ、22:刃、23:支持具。
1 and 2 are conventionally known vacuum type molten metal gas collection devices, FIGS. 3 and 4 are sectional views showing embodiments of the present invention, and FIGS. 5 and 6 are respectively FIG. 5 is a cross-sectional view of a collection container for releasing hydrogen collected by the apparatus shown in FIGS. and FIG. 4 and guiding it to an analyzer. 1: Tubular body, 2: Opening, 3: Sealing part, 4: Cap-shaped body, 5: Thin wall part, 6: Bonding material, 7: Pipe, 8: Insertion tube, 9: Easily soluble material, 10: Residual space, 11 : Collection pipe, 12: Suction port, 13: Conduit, 14: Cold metal,
15: ventilation hole, 16: fixing material, 17: residual space,
18: Collection container, 19: Lid, 20: Bellows,
21: Screw, 22: Blade, 23: Support.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 器壁が無機質耐火物で構成され、一方の端部に
試料の溶融金属中に浸漬した際に溶損されて開口
する溶融金属吸上口を有しかつ内部を真空とした
管状体内に、前記吸上口に連通して、吸上げられ
た溶融金属が所定の形状に凝固するような空腔を
形成する如く、水素透過性材料からなる導管を内
蔵し、かつ前記溶融金属の凝固冷却に際し放出さ
れる水素を収容する空間を備えた溶融金属中の水
素分析用試料採取器具。
In a tubular body whose wall is made of an inorganic refractory, which has a molten metal suction port at one end that is opened by melting when immersed in the molten metal of the sample, and whose interior is evacuated, the above-mentioned A conduit made of a hydrogen-permeable material is built in so as to communicate with the suction port and form a cavity in which the molten metal sucked up solidifies into a predetermined shape, and is discharged when the molten metal is solidified and cooled. A sample collection device for hydrogen analysis in molten metal, which is equipped with a space for accommodating hydrogen.
JP14188982U 1982-09-21 1982-09-21 Sample collection device for hydrogen analysis in molten metal Granted JPS5947869U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14188982U JPS5947869U (en) 1982-09-21 1982-09-21 Sample collection device for hydrogen analysis in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14188982U JPS5947869U (en) 1982-09-21 1982-09-21 Sample collection device for hydrogen analysis in molten metal

Publications (2)

Publication Number Publication Date
JPS5947869U JPS5947869U (en) 1984-03-30
JPH019006Y2 true JPH019006Y2 (en) 1989-03-10

Family

ID=30317205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14188982U Granted JPS5947869U (en) 1982-09-21 1982-09-21 Sample collection device for hydrogen analysis in molten metal

Country Status (1)

Country Link
JP (1) JPS5947869U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345157A (en) * 1976-10-06 1978-04-22 Fuji Electric Co Ltd Anti-time limit circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345157A (en) * 1976-10-06 1978-04-22 Fuji Electric Co Ltd Anti-time limit circuit

Also Published As

Publication number Publication date
JPS5947869U (en) 1984-03-30

Similar Documents

Publication Publication Date Title
JPH019006Y2 (en)
US3589199A (en) Vacuum sampler with porous mold insert
JP4965491B2 (en) Metal sampling sampler and sampling method using the same
KR870001397B1 (en) Analyzing apparatus and sampling tube for sampling of fused metal
JP2582997Y2 (en) Molten metal sampling probe
JP2744952B2 (en) Sampler for thermal analysis of cast iron melt
JPH037816Y2 (en)
JP2793131B2 (en) Apparatus for sampling molten metal and method for sampling molten metal
JP2574720B2 (en) Mold for sampling molten metal
JP2000131311A (en) Sample collecting container for thermal analysis of molten metal
JP2721647B2 (en) Apparatus and method for sampling molten metal
JPH039018Y2 (en)
JPS59138956A (en) Quantitative determination of hydrogen in molten metal
GB2040750A (en) Molten metal sampler
JPH1096722A (en) Sampling device for analytical specimen from molten metal and sampling method
JPS642210B2 (en)
JP2586634Y2 (en) Molten metal sampling probe
JPS58223754A (en) Method and vessel for sampling sample from steel bath
JPH079089Y2 (en) Block sampler for molten steel inside refining furnace
JP2535341B2 (en) Sampling device and method for collecting gas analysis samples in molten steel
JPH0525345U (en) Silicon melt sampling tool
JPS5931452A (en) Method and device for determining amount of hydrogen in molten metal
JPS585974Y2 (en) Sample collector for measuring hydrogen content in molten metal
JPS62203060A (en) Apparatus for sampling specimen of high temperature molten substance
JPH0725692Y2 (en) Coagulation temperature measuring device for both analysis sample collection