JP2004012339A - Metal specimen quick collection sampler and method for quick sampling using the same - Google Patents

Metal specimen quick collection sampler and method for quick sampling using the same Download PDF

Info

Publication number
JP2004012339A
JP2004012339A JP2002167320A JP2002167320A JP2004012339A JP 2004012339 A JP2004012339 A JP 2004012339A JP 2002167320 A JP2002167320 A JP 2002167320A JP 2002167320 A JP2002167320 A JP 2002167320A JP 2004012339 A JP2004012339 A JP 2004012339A
Authority
JP
Japan
Prior art keywords
sample
metal
sampler
molten metal
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002167320A
Other languages
Japanese (ja)
Other versions
JP3965081B2 (en
Inventor
Kazusane Mizukami
水上 和実
Katsuhiro Sasai
笹井 勝浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002167320A priority Critical patent/JP3965081B2/en
Publication of JP2004012339A publication Critical patent/JP2004012339A/en
Application granted granted Critical
Publication of JP3965081B2 publication Critical patent/JP3965081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sampler for collecting a specimen immediately provided for a component analysis and to provide a method for quickly sampling the same. <P>SOLUTION: The metal specimen quick collecting sampler for quickly collecting a metal specimen from a molten metal includes (a) a quenching material having at least one flat surface for quickly solidifying the molten metal provided as a core of at least one sampler, (b) a space partitioning plate of a material which repels the molten metal mounted oppositely to the flat surface, and (c) a specimen forming space for forming the metal sample by quickly solidifying the molten metal in the space between the flat surface and the space partitioning plate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属の精錬過程において、工程管理を迅速、的確に行なうために金属成分を迅速に判別するのに用いる金属試料、特に、スパーク発光分光分析装置による成分分析に好適な金属試料を迅速に採取するサンプラーと、そのサンプラーを用いるサンプリング方法に関するものである。
【0002】
【従来の技術】
金属の精錬過程においては、サンプラーで金属試料を採取し、分析機器で成分を分析し、金属の成分を管理または調整する。この管理・調整には、迅速・的確性が要求されるが、上記管理・調整を迅速・的確に行なうには、先ず、金属試料を迅速に採取し、迅速に分析に供する必要がある。
【0003】
従来、金属試料の採取には、図1に基本構造を示す円筒型サンプラー(容器1で溶融金属2を汲み上げる形式のサンプラー)を繁用しているが、採取した金属試料は円柱状であるため、該試料から分析に適する所定形状(例えば、片状)の試料を作成するのに、400秒以上の長時間を要している。
【0004】
また、従来から、分析には、スパーク発光分光分析装置が、迅速に分析できるということから多用されていて、分析自体には、それ程の時間を要しないが、試料の採取から研磨を経て分析に至るまでには、円筒型サンプラーを用いる限り、上記のとおり相当の時間を要することになる。
【0005】
それ故、試料採取から分析に至る時間の短縮を図るため、試料を迅速に採取するサンプラーが、これまで各種提案されている。
【0006】
例えば、実開平6−74964号公報には、紙管の先端部に、試料採取容器とピン試料採取容器を取り付け、ディスク試料とピン試料を同時に採取する溶融金属試料採取プローブが提案されている。また、特開平9−21795号公報には、試料採取室の他に小ブロックサンプル採取室を設け、発光分光分析または蛍光X線分析に供する試料と、燃料ガス分析に供する試料を同時に採取する溶融金属試料採取装置が提案されている。
【0007】
しかしながら、これらのサンプラーで採取される試料においては、円筒型サンプラーで採取される試料程ではないが、試料径が大きく、かつ、試料厚も厚いので、採取後冷却し、分析用試料を作成し分析に供するまでには、やはり、相当の時間を要することとなり、上記サンプラーは、分析結果を得るまでの迅速性に劣るものである。
【0008】
さらに、上記サンプラーには、冷却時の凝固速度の違いにより中心成分偏析が発生したり、凝固速度の遅延に伴い金属組織が肥大したり、また、セメンタイト等の介在物が析出して、発光分光分析時に異常発光をして分析精度を損なうという、分析時間と分析精度の両面における問題がある。
【0009】
しかし、近年の金属の精錬工程においては、成分管理・調整を迅速、的確に行なうことは不可欠のことであり、そのため、試料採取から分析結果を得るまでの時間をできるだけ短縮することが強く望まれている。
【0010】
【発明が解決しようとする課題】
本発明は、上記要望に応えるべく、成分分析に直ちに供し得る試料を採取するサンプラーと、それを用いて試料を迅速に採取するサンプリング方法を提供することを課題とする。
【0011】
【課題を解決するための手段】
本発明者は、従来のサンプラーで採取した金属試料において、分析時間の遅延と分析精度の悪化の原因を調査した。その結果、分析時間の遅延と分析精度の悪化は、分析用試料の厚みが厚いことに原因があるということが判明した。
【0012】
即ち、溶融金属は、鋳型壁と接触した瞬間から凝固を開始するので、従来のサンプラー(例えば、円筒型サンプラー)においては、試料採取容器の奥まで溶融金属を充分に導入し、均一な成分の試料を作成しようとして、試料厚みを、どうしても厚くせざるを得なかったが、このことが、分析時間の遅延と分析精度の悪化の原因となっていることが判明した。
【0013】
本発明者は、当初、試料採取の時間を短縮するためには、溶融金属を薄片状に汲み上げ、同時に凝固せしめれば、直接、分析に供し得る薄片状試料を得ることができるのではないかとの発想のもとにサンプラーの構造を検討し、図2に示すように、急冷体3の上部に溶融金属2を収容する皿状凹部4を設けた厚底型サンプラーを試作した。
【0014】
この厚底型サンプラーにおいて、皿状凹部4に収容した溶融金属2は、急冷体3により急冷され凝固するので、試料採取に要する時間が大幅に短縮され、その点で、試料採取の迅速化に適っているが、一方で、採取した金属試料の厚みが一定せず、試料厚みが薄すぎると、分析に供するための研磨に際し試料保持が困難になり、安全上、金属試料の飛散を防止する対策が必要になる等、改善すべき点が現出した。
【0015】
しかし、急冷体3を用いることによる試料採取時間の短縮効果は極めて大きいので、本発明者は、この効果を維持しつつ、試料厚さを極限まで薄くして金属試料を採取し得るサンプラーの構造について、さらに検討した。
【0016】
その結果、本発明者は、熱衝撃に強くかつ耐熱性に優れ、金属不純物量が少なくて、溶融金属をはじく材質の板(以下「耐熱はじき板」ということがある。)を、急冷体の1つの平面に対向して、所定の間隔をもって取り付け、上記耐熱板と急冷体の平面の間に偏平な空間(以下「偏平空間」ということがある。)を画成すると、耐熱はじき板が、溶融金属を迅速かつ円滑に偏平空間内に侵入させ、そして、急冷体の平面が、侵入してくる溶融金属を急冷凝固せしめ、試料厚みが薄くてかつ表面性状が良好な金属試料を、極めて迅速に作成できることを見出した。
【0017】
本発明者は、耐熱はじき板として各種材料の板を用いて実験した結果、耐熱はじき板として、石英ガラス板の他に、ガラス板、窒化ホウ素板を用い得ること、また、金属板もしくはセラミックス板の表層に高温潤滑・離型材(例えば、窒化ホウ素、シリカ、アルミナ、ジルコニア、炭化珪素等のセラミックスパウダー)を塗布した板を用い得ることを見出した。なお、本発明者の実験結果によれば、溶融金属が溶鋼の場合、石英ガラス板が好適である。
【0018】
また、本発明者は、従来、円筒型サンプラーにおいては、鋳型(容器)と凝固金属とがしばしば溶着し、金属試料の取り出しに時間がかかり、分析の迅速性を阻害することがあることに鑑み、本発明では、逆に、溶融金属を、急冷凝固とともに急冷体の平面(壁)にわざと溶着させて金属試料を形成し、そのままの状態で(急冷体の平面(壁)から剥離しないで)分析に供し、耐熱はじき板側の平滑な試料面を分析面として分析すればよいとの発想に至り、従来、試料採取の過程では必然の工程であると考えられていた試料分離・取出し工程を省略して、全体的な試料採取時間を大幅に短縮することに成功した。
【0019】
さらに、従来は、多く試料採取の場合、試料採取容器で1個の試料しか採取していないが、このことは、採取試料が不良の場合、試料を再採取しなければならないという不便さをもたらすし、同時に、分析の迅速化を妨げる要因となるので、本発明者は、上記の不便さを解消し、かつ、分析の迅速化を妨げる要因を解消する手段について、さらに検討した。
【0020】
その結果、2個の急冷体の平面で耐熱はじき板を挟んで、左右に偏平空間を画成すれば、サンプラーの1回の浸漬で、同時に2つの試料(1つは控え試料)を作成することができるので、どちらか最適な試料を分析用として選択すればよく、また、一方の試料が不良であっても再採取する必要はなく、上記の不便さを解消できるとともに、分析の迅速化を妨げる要因を解消できるとの発想に至った。
【0021】
本発明は、上記知見および発想に基づきなされたものであり、その要旨は、以下のとおりである。
【0022】
(1) 溶融金属から金属試料を採取するサンプラーにおいて、
(a)溶融金属を急冷凝固する平面を少なくとも1つ備える急冷体を、少なくとも1つサンプラーのコア部として設け、
(b)上記平面に対向して、溶融金属をはじく材質の空間区画板を取り付け、
(c)上記平面と空間区画板の間の空間を、溶融金属が急冷凝固して金属試料を形成する試料形成空間とした、
ことを特徴とする金属試料迅速採取サンプラー。
【0023】
(2) 前記急冷体が、抜熱能力の高い材料で構成されていることを特徴とする前記(1)に記載の金属試料迅速採取サンプラー。
【0024】
(3) 前記抜熱能力の高い材料が、鉄、鋼、アルミニウム、銅、および、ステンレス鋼のいずれか1種または2種以上からなる材料であることを特徴とする前記(2)に記載の金属試料迅速採取サンプラー。
【0025】
(4) 前記空間区画板が、耐熱衝撃性および耐熱性に優れ、金属不純物量の少ない材質の板であることを特徴とする前記(1)〜(3)のいずれかに記載の金属試料迅速採取サンプラー。
【0026】
(5) 前記金属不純物量の少ない材質の板が、石英ガラス板であることを特徴とする前記(4)に記載の金属試料迅速採取サンプラー。
【0027】
(6) 前記試料形成空間の厚さが、0.5〜20mmであることを特徴とする前記(1)〜(5)のいずれかに記載の金属試料迅速採取サンプラー。
【0028】
(7) 前記試料形成空間がガス抜き孔を有していることを特徴とする前記(1)〜(6)のいずれかに記載の金属試料迅速採取サンプラー。
【0029】
(8) 前記平面が空間区画板を間に挟んで対向するように急冷体を合体し、コア部としたことを特徴とする前記(1)〜(7)のいずれかに記載の金属試料迅速採取サンプラー。
【0030】
(9) 溶融金属にサンプラーを浸漬し、分析に供する金属試料を採取するサンプリング方法において、
(a)前記(1)〜(8)のいずれかに記載の金属試料迅速採取サンプラーを溶融金属に浸漬し、
(b)急冷体の溶融金属を急冷凝固する平面と空間区画板との間の試料形成空間内で、溶融金属を急冷凝固して金属試料を形成し、
(c)上記サンプラーを引き上げて冷却した後、空間区画板を剥離する、
ことを特徴とする迅速サンプリング方法。
【0031】
(10) 溶融金属にサンプラーを浸漬し、分析に供する金属試料を採取するサンプリング方法において、
(a)前記(1)〜(8)のいずれかに記載の金属試料迅速採取サンプラーを溶融金属に浸漬し、
(b)急冷体の溶融金属を急冷凝固する平面と空間区画板との間の試料形成空間内で、溶融金属を急冷凝固して金属試料を形成し、
(c)上記サンプラーを引き上げて冷却した後、空間区画板を剥離し、
(d)金属試料を、急冷体の上記平面に溶着したままの状態で、研磨・分析に供する、
ことを特徴とする迅速サンプリング方法。
【0032】
【発明の実施の形態】
本発明について詳細に説明する。
【0033】
本発明に係る金属試料迅速採取サンプラーは、
溶融金属を急冷凝固する平面を少なくとも1つ備える急冷体を、少なくとも1つサンプラーのコア部として設け
(a)溶融金属を急冷凝固する平面を少なくとも1つ備える急冷体の該平面に対向して、溶融金属をはじく材質の空間区画板を取り付け、
(b)上記急冷体の平面と空間区画板の間の空間を、侵入した溶融金属が急冷されて凝固して金属試料を形成する偏平な試料形成空間とした、
ことを基本思想とする。
【0034】
図3に、上記金属試料迅速採取サンプラーのコア部12の一態様を示す。図3に示すように、支持棒9の取付け面とは反対の急冷体3の上部側面に、溶融金属をはじく材質の空間区画板5が、急冷体3の一側面を覆うように、スペーサー6を間に挟み、急冷体3の上面に形成した窪み8の側壁と、スペーサー6および空間区画板5を挟むクリップ7によって取り付けられている。
【0035】
このように、急冷体3の下部側面に、溶融金属2が侵入して凝固し金属試料11を形成する偏平な試料形成空間(以下「試料形成空間」という。)が区画されている。
【0036】
この場合、試料形成空間は、幅方向、下部とも開放したものでもよいし、幅方向を閉じ下部を開放したもの、もしくは、下部を閉じ幅方向を開放したものでもよい。溶融金属の種類・特性を考慮して、いずれかを選択すればよい。
【0037】
試料形成空間の厚さは、スペーサー6の厚さを調節したり、または、図3に示すように、上記下部側面の厚みを減じたりして調整する。また、試料形成空間の高さも、適宜調整することができるが、試料形成空間の厚さおよび/または高さは、溶融金属の種類・特性を考慮して適宜設定する。
【0038】
急冷体3は、溶融金属を的確に急冷凝固せしめるため、抜熱能力の高い材料で構成する。抜熱能力の高い材料として、鉄、鋼、アルミニウム、銅、および、ステンレス鋼のいずれか1種または2種以上からなる材料を用いることができる。本発明者の実験結果によれば、溶融金属が溶鋼の場合、鉄ないし鋼が好ましい。
【0039】
本発明においては、溶融金属をはじく材質の板を、空間区画板5として使用する。この空間区画板5は、溶融金属をはじく材質の他、耐熱衝撃性および耐熱性に優れ、金属不純物量の少ない材質の板であることが望ましい。
【0040】
本発明者の実験結果によれば、空間区画板として、石英ガラス板、ガラス板、窒化ホウ素板を、また、金属板もしくはセラミックス板の表層に高温潤滑・離型材(例えば、窒化ホウ素、シリカ、アルミナ、ジルコニア、炭化珪素等のセラミックスパウダー)を塗布した板を用いることができる。
【0041】
空間区画板は、溶融金属の種類・特性に応じて、適切な材質のものを選択すればよい。溶融金属が溶鋼の場合、石英ガラス板が好適である。
【0042】
スペーサー6の材質は、耐火・耐熱性で、スペーサーとしての機能を有するものであればよいが、空間区画板5と同じ材質のものであれば、経済的でかつ好ましい。
【0043】
また、上記コア部12は、繰り返して溶融金属に浸漬されることになるので、急冷体3の全部または一部側面をセラミック潤滑材10で被覆し、長寿命化を図ることが好ましい。
【0044】
また、例えば、急冷体3とスペーサー6の間に、あるいは、スペーサー6を貫通してガス抜き孔を設けると、溶融金属を、迅速かつ円滑に試料形成空間に導入することができるので、ガス抜き孔を、何らかの態様で設けることが好ましい。
【0045】
そして、本発明においては、試料形成空間と空間区画板3が相まって重要な作用をなし、分析に直ちに供し得る金属試料を作成することができる。この作用について説明する。
【0046】
金属試料迅速採取サンプラーのコア部12を溶融金属に浸漬すると、溶融金属は試料形成空間内に侵入するが、急冷体3の対面には、溶融金属をはじく材質の空間区画板5が存在するので、溶融金属は、試料形成空間の差込み口近傍で凝固する間もなく、迅速かつ円滑に、試料形成空間の内部に侵入する。
【0047】
そして、溶融金属が試料形成空間を満たした後、溶融金属は、急冷体3により急冷されて凝固し、金属試料11が形成される。
【0048】
この金属試料11は、急冷体3の平面(側壁)に溶着したままの状態で取り扱われて、研磨・分析に供せられ、分析においては、空間区画板5の側で形成された試料面が、分析面として用いられる。
【0049】
前述したように、試料形成空間の厚さおよび/または高さは、溶融金属の種類・特性を考慮して適宜設定するが、この厚さおよび/または高さは、金属試料において、厚さ方向、高さ方向、および、幅方向の各方向にて均一な凝固組織を得る点で重要である。
【0050】
上記厚さおよび/または高さの最適範囲は、溶融金属の種類・特性によって異なるが、溶鋼の場合、厚さは0.5〜20mmが好ましい。なお、この場合、高さは適宜の高さでよい。
【0051】
上記厚さが0.5mm未満であると、試料形成空間への溶鋼の侵入が難しくなり、一方、20mmを超えると、凝固組織が不均一になったり、また、引き上げ途中で、溶鋼が脱落して平滑面が得られなかったりする。
【0052】
試料形成空間のより好ましい厚さは、1〜5mmであり、2mm程度が、試料採取の迅速性、金属試料表面の平滑性の点で、より一層好ましい。
【0053】
ここで、図4に、本発明に係る金属試料迅速採取サンプラーの全体的な一態様を示す。図4に示すサンプラーにおいては、コア部12の支持棒9が、耐火セラミックス筒13で保護されている保持用支持棒15に差し込まれ、さらに、コア部12の全体が、スラグ混入防止紙筒14で保護されている。
【0054】
上記金属試料迅速採取サンプラーを溶融金属に数秒浸漬すると、溶融金属が、溶融金属をはじく性質を有する空間区画板5の存在により、試料形成空間の差込み口で凝固することなく、迅速かつ円滑に試料形成空間の内部に侵入し、急冷体3により急冷されて凝固し、金属試料11を形成する。
【0055】
その後、上記サンプラーを引き上げて水冷し、次いで、空間区画板5とクリップ7に衝撃を加えて空間区画板3を急冷体3から剥離して、平滑面(空間区画板3の側で形成された面)を有する金属試料11を得ることができる。
【0056】
本発明の迅速サンプリング方法においては、金属試料11は、急冷体3に溶着したままの状態で扱うこととし、平滑面を研磨してさらに平滑とした後、例えば、発光分光分析装置に供し、成分を分析する。
【0057】
また、本発明の迅速サンプリング方法によれば、金属試料11を、急冷体3に溶着したままの状態で扱うので、従来、必然的な工程と考えられていた試料取出し工程を省略することができ、全体的な試料採取時間を大幅に短縮することができる。
【0058】
さらに、本発明においては、図5に示すように、2個のコア部を、空間区画板5を中心にして左右対称に合体して“2個取りコア部”を構成することができる。このように構成すると、同じ金属試料11を、冷却体3に溶着したまま、同時に2個獲得することができるので、どちらか一方を最適な分析対象試料として選択できるし、また、1つの金属試料が凝固組織の点で不良であっても、片方の金属試料を使用することができて、再度、金属試料を採取する手間を要せず、研磨・分析に至るまでの迅速性は阻害されない。
【0059】
【実施例】
次に、本発明の実施例について説明するが、本発明は、実施例で採用した条件に限定されるものではない。
【0060】
(実施例)
縦30mm×横30mm×高さ50mmの鋼製急冷体を用いて、図3に示す構造のコア部を有するサンプラーを作製し、本発明の迅速サンプリング方法(本発明法)と従来のサンプリング方法(従来法)で、溶鋼をサンプリングして、分析時間と分析精度を比較した。
【0061】
分析時間について、従来法では、試料取り出しまで約120秒を要するのに対し、本発明法では、試料の厚みを2mm程度にまで薄くできて、約20秒後に取り出すことができることを確認した。
【0062】
分析精度については、発光分光分析によりTi量を分析して比較した。その結果を図6に示す。この図に示すように、本発明法と従来法で採取した両試料中のTi量は対応関係にあるから、本発明法で採取した試料は、分析精度の点で従来法で採取した試料と遜色なく、従って、従来法で採取した試料に替わり得るものであることが解かる。
【0063】
このように、本発明のサンプリング方法によれば、発光分光分析に直ちに供し得る適正な試料を、迅速に採取することができる。
【0064】
【発明の効果】
本発明によれば、金属試料迅速採取サンプラーを引き上げた時には、試料形成空間の内部で溶融金属が急冷凝固し金属試料が形成されていて、しかも、金属試料を急冷体に溶着したままの状態で取り扱うので、試料の取出し工程を省略でき、引き上げ後、冷却し研磨に供するまでの時間を大幅に短縮できて、精錬工程における成分管理・調整に迅速・的確に対応することができる。
【0065】
また、本発明によれば、採取した金属試料の組織は、急冷凝固により微細化されているので、発光分光分析時、異常発光がなく、金属試料の成分を精度良く分析することができ、精錬工程における成分管理・調整に的確に対応することができる。
【0066】
さらに、本発明によれば、同じ金属試料を同時に2個採取することができるので、どちらか1つを、最適な分析対象試料として選択できるし、また、1つの金属試料が凝固組織の点で不良であっても、片方の金属試料を使用することができるので、精錬工程における成分管理・調整の迅速性を維持することができる。
【0067】
このように、本発明は、精錬工程における成分管理・調整において、顕著な効果をもたらすものである。したがって、本発明は、産業上の価値が極めて高いものである。
【図面の簡単な説明】
【図1】ポンプ型サンプラーの断面を示す図である。
【図2】急冷体を備える厚底型サンプラーの断面を示す図である。
【図3】本発明に係る金属試料迅速採取サンプラーのコア部の一態様を示す図である。
【図4】本発明に係る金属試料迅速採取サンプラーの全体的な一態様を示す図である。
【図5】本発明に係る金属試料迅速採取サンプラーのコア部の他の態様(2個取りの態様)を示す図である。
【図6】本発明法と従来法で採取した両試料中のTi量の対応関係を示す図である。
【符号の説明】
1…容器
2…溶融金属
3…急冷体
4…皿状凹部
5…空間区画板
6…スペーサー
7…クリップ
8…窪み
9…支持棒
10…セラミック潤滑材
11…金属試料
12…金属試料迅速採取サンプラーのコア部
13…耐火セラミックス筒
14…スラグ混入防止紙筒
15…保持用支持棒
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a metal sample used for rapid discrimination of metal components in order to perform process control quickly and accurately in a metal refining process, particularly a metal sample suitable for component analysis by a spark emission spectrometer. And a sampling method using the sampler.
[0002]
[Prior art]
In the metal refining process, a metal sample is collected by a sampler, the components are analyzed by an analytical instrument, and the components of the metal are controlled or adjusted. This management and adjustment requires quick and accurate, but in order to perform the above management and adjustment quickly and accurately, first, it is necessary to quickly collect a metal sample and quickly provide it for analysis.
[0003]
Conventionally, a cylindrical sampler (a sampler in which a molten metal 2 is pumped in a container 1) whose basic structure is shown in FIG. 1 is frequently used for collecting a metal sample. However, since the collected metal sample is cylindrical, It takes a long time of 400 seconds or more to prepare a sample of a predetermined shape (for example, flake shape) suitable for analysis from the sample.
[0004]
Conventionally, spark emission spectroscopy has been frequently used for analysis because it can be analyzed quickly, and the analysis itself does not take much time. As far as the cylindrical sampler is used, considerable time is required as described above.
[0005]
Therefore, in order to shorten the time from sampling to analysis, various samplers for quickly collecting a sample have been proposed.
[0006]
For example, Japanese Unexamined Utility Model Publication No. 6-74964 proposes a probe for collecting a molten metal sample in which a sample collecting container and a pin sample collecting container are attached to the end of a paper tube, and a disk sample and a pin sample are simultaneously sampled. Japanese Patent Application Laid-Open No. Hei 9-21795 discloses that a small block sample collection chamber is provided in addition to a sample collection chamber, and a sample to be used for emission spectroscopy or X-ray fluorescence analysis and a sample to be used for fuel gas analysis are simultaneously collected. Metal sampling devices have been proposed.
[0007]
However, the sample collected by these samplers is not as large as the sample collected by the cylindrical sampler, but the sample diameter is large and the sample thickness is large. It also takes a considerable amount of time before analysis is performed, and the sampler is inferior in obtaining the analysis results quickly.
[0008]
Furthermore, in the sampler, central component segregation occurs due to a difference in solidification rate at the time of cooling, a metal structure is enlarged with a delay in the solidification rate, and inclusions such as cementite are precipitated, and emission spectroscopy is performed. There is a problem in both analysis time and analysis accuracy that abnormal light emission occurs during analysis and analysis accuracy is impaired.
[0009]
However, in the metal refining process in recent years, it is essential that component management and adjustment be performed promptly and accurately. Therefore, it is strongly desired to minimize the time from sampling to obtaining analysis results. ing.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a sampler for collecting a sample which can be immediately subjected to component analysis and a sampling method for rapidly collecting a sample using the sampler in order to meet the above-mentioned demand.
[0011]
[Means for Solving the Problems]
The present inventors have investigated the causes of the delay in analysis time and the deterioration in analysis accuracy in metal samples collected by a conventional sampler. As a result, it was found that the delay of the analysis time and the deterioration of the analysis accuracy were caused by the thick sample for analysis.
[0012]
That is, since the molten metal starts to solidify from the moment it comes into contact with the mold wall, in a conventional sampler (for example, a cylindrical sampler), the molten metal is sufficiently introduced into the interior of the sample collection container to obtain a uniform component. In order to prepare a sample, the thickness of the sample had to be increased, but it was found that this was a cause of a delay in analysis time and a deterioration in analysis accuracy.
[0013]
The present inventor initially thought that, in order to shorten the time of sampling, if the molten metal is pumped into a flake and coagulated at the same time, a flaky sample that can be directly used for analysis could be obtained. Based on the idea described above, the structure of the sampler was examined, and as shown in FIG. 2, a thick-bottom type sampler having a dish-shaped concave portion 4 for accommodating the molten metal 2 on the upper portion of the quenching body 3 was prototyped.
[0014]
In this thick-bottom sampler, the molten metal 2 contained in the dish-shaped recess 4 is rapidly cooled by the quenching body 3 and solidified, so that the time required for sampling is greatly reduced, which is suitable for speeding up sampling. However, on the other hand, if the thickness of the collected metal sample is not constant and the sample thickness is too thin, it becomes difficult to hold the sample during polishing for analysis, and safety measures to prevent scattering of the metal sample Some points to be improved have emerged, such as the need for
[0015]
However, since the effect of shortening the sampling time by using the quenching body 3 is extremely large, the present inventor has proposed a structure of a sampler capable of collecting a metal sample by reducing the sample thickness to the minimum while maintaining this effect. Was further studied.
[0016]
As a result, the present inventor has determined that a plate made of a material that is resistant to thermal shock, has excellent heat resistance, has a small amount of metal impurities, and repels a molten metal (hereinafter, sometimes referred to as a “heat-resistant repellent plate”) is a quenched body. When a flat space (hereinafter sometimes referred to as a “flat space”) is defined between the heat-resistant plate and the plane of the quenching body, the heat-resistant repellent plate is provided. The molten metal quickly and smoothly penetrates into the flat space, and the plane of the quenching body rapidly solidifies the intruding molten metal, making it possible to extremely quickly form a thin metal sample with good surface properties. I found that I can create it.
[0017]
The present inventor has conducted experiments using plates of various materials as a heat-resistant repelling plate. As a result, in addition to a quartz glass plate, a glass plate and a boron nitride plate can be used. It has been found that a plate coated with a high-temperature lubricating / release material (for example, ceramic powder such as boron nitride, silica, alumina, zirconia, silicon carbide, etc.) on the surface layer can be used. According to the experimental results of the inventor, when the molten metal is molten steel, a quartz glass plate is suitable.
[0018]
In addition, the present inventor has considered in the past that in a cylindrical sampler, a mold (container) and a solidified metal were often welded to each other, and it took time to remove a metal sample, which hindered the speed of analysis. In the present invention, conversely, the molten metal is deliberately welded to the plane (wall) of the quenched body together with the rapid solidification to form a metal sample, and the metal sample is left as it is (without peeling off the plane (wall) of the quenched body). The idea was that analysis should be performed using the smooth sample surface on the heat-resistant repelling plate side as the analysis surface for analysis, and the sample separation / removal process that was conventionally considered to be an inevitable process in the sampling process was performed. By omitting, we succeeded in significantly reducing the overall sampling time.
[0019]
Furthermore, conventionally, in the case of many samplings, only one sample is collected in the sampling container, which causes the inconvenience that if the sample is defective, the sample must be re-sampled. At the same time, the inventor has further studied means for resolving the above-mentioned inconvenience and for resolving the factors which hinder the rapid analysis.
[0020]
As a result, if a flat space is defined on the left and right sides with the heat-resistant repelling plate interposed between the planes of the two quenching bodies, two samples (one is a copy sample) are made simultaneously by one immersion of the sampler. It is only necessary to select one of the most suitable samples for analysis, and if one of the samples is defective, it is not necessary to resample it, eliminating the above inconvenience and speeding up the analysis. The idea was that the factors that hindered could be eliminated.
[0021]
The present invention has been made based on the above findings and ideas, and the gist is as follows.
[0022]
(1) In a sampler that collects a metal sample from molten metal,
(A) providing at least one quenched body having at least one plane for rapidly solidifying a molten metal as a core part of a sampler;
(B) facing the plane, mounting a space partition plate made of a material that repels molten metal;
(C) The space between the plane and the space partition plate is a sample forming space in which the molten metal is rapidly solidified to form a metal sample.
A sampler for rapidly collecting metal samples.
[0023]
(2) The metal sample rapid sampling sampler according to the above (1), wherein the quenching body is made of a material having a high heat removal ability.
[0024]
(3) The material according to (2), wherein the material having a high heat removal ability is a material composed of one or more of iron, steel, aluminum, copper, and stainless steel. Metal sample rapid sampling sampler.
[0025]
(4) The metal sample rapid as described in any one of (1) to (3) above, wherein the space partition plate is a plate made of a material having excellent thermal shock resistance and heat resistance and having a small amount of metal impurities. Collection sampler.
[0026]
(5) The sampler according to (4), wherein the plate made of a material having a small amount of metal impurities is a quartz glass plate.
[0027]
(6) The sampler according to any one of (1) to (5), wherein the thickness of the sample forming space is 0.5 to 20 mm.
[0028]
(7) The sampler according to any one of (1) to (6), wherein the sample forming space has a gas vent hole.
[0029]
(8) The metal sample quick as described in any one of (1) to (7) above, wherein the quenching bodies are combined so that the planes face each other with a space partition plate interposed therebetween to form a core portion. Collection sampler.
[0030]
(9) In a sampling method of immersing a sampler in a molten metal and collecting a metal sample to be analyzed,
(A) immersing the metal sample rapid sampling sampler according to any of (1) to (8) above in a molten metal;
(B) quenching and solidifying the molten metal to form a metal sample in a sample forming space between the plane where the molten metal of the quenched body is rapidly solidified and the space dividing plate;
(C) peeling the space partition plate after pulling up the sampler and cooling,
A rapid sampling method characterized by the above-mentioned.
[0031]
(10) In a sampling method for immersing a sampler in a molten metal and collecting a metal sample to be analyzed,
(A) immersing the metal sample rapid sampling sampler according to any of (1) to (8) above in a molten metal;
(B) quenching and solidifying the molten metal to form a metal sample in a sample forming space between the plane where the molten metal of the quenched body is rapidly solidified and the space dividing plate;
(C) After the sampler is pulled up and cooled, the space partition plate is peeled off,
(D) subjecting the metal sample to polishing and analysis while being welded to the flat surface of the quenched body,
A rapid sampling method characterized by the above-mentioned.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described in detail.
[0033]
The metal sample rapid sampling sampler according to the present invention,
A quenched body having at least one plane for rapidly solidifying the molten metal is provided as a core portion of at least one sampler. (A) The quenched body having at least one plane for rapidly solidifying the molten metal is opposed to the plane of the quenched body, Attach a space partition plate made of material that repels molten metal,
(B) the space between the plane of the quenching body and the space partition plate is a flat sample forming space in which the intruded molten metal is quenched and solidified to form a metal sample;
That is the basic idea.
[0034]
FIG. 3 shows an embodiment of the core section 12 of the sampler for rapidly collecting metal samples. As shown in FIG. 3, a spacer 6 is formed on the upper side surface of the quenching body 3 opposite to the mounting surface of the support rod 9 so that a space partition plate 5 made of a material repelling molten metal covers one side surface of the quenching body 3. Are sandwiched between them, and are attached to the side walls of the depression 8 formed on the upper surface of the quenching body 3 and the clip 7 that sandwiches the spacer 6 and the space partition plate 5.
[0035]
As described above, a flat sample forming space (hereinafter, referred to as “sample forming space”) in which the molten metal 2 enters and solidifies to form the metal sample 11 is defined on the lower side surface of the quenching body 3.
[0036]
In this case, the sample formation space may be open in both the width direction and the lower part, may be closed in the width direction and opened in the lower part, or may be closed in the lower part and opened in the width direction. Any one may be selected in consideration of the type and characteristics of the molten metal.
[0037]
The thickness of the sample formation space is adjusted by adjusting the thickness of the spacer 6 or reducing the thickness of the lower side surface as shown in FIG. In addition, the height of the sample forming space can be appropriately adjusted, but the thickness and / or height of the sample forming space is appropriately set in consideration of the type and characteristics of the molten metal.
[0038]
The quenching body 3 is made of a material having a high heat removal capability in order to rapidly and solidify the molten metal accurately. As a material having a high heat removal ability, a material composed of one or more of iron, steel, aluminum, copper, and stainless steel can be used. According to the experimental results of the present inventors, when the molten metal is molten steel, iron or steel is preferable.
[0039]
In the present invention, a plate made of a material that repels molten metal is used as the space partition plate 5. The space partition plate 5 is desirably a plate made of a material having excellent thermal shock resistance and heat resistance and a small amount of metal impurities, in addition to a material that repels molten metal.
[0040]
According to the experimental results of the present inventor, a quartz glass plate, a glass plate, a boron nitride plate is used as a space partition plate, and a high-temperature lubricating / release material (for example, boron nitride, silica, A plate coated with ceramic powder (alumina, zirconia, silicon carbide, etc.) can be used.
[0041]
The space partition plate may be made of an appropriate material depending on the type and characteristics of the molten metal. When the molten metal is molten steel, a quartz glass plate is preferred.
[0042]
The material of the spacer 6 may be any material that is fire-resistant and heat-resistant and has a function as a spacer. However, the same material as that of the space partition plate 5 is economical and preferable.
[0043]
Further, since the core portion 12 is repeatedly immersed in the molten metal, it is preferable to cover all or a part of the side surface of the quenched body 3 with the ceramic lubricant 10 to extend the life.
[0044]
Further, for example, if a gas vent hole is provided between the quenching body 3 and the spacer 6 or through the spacer 6, the molten metal can be quickly and smoothly introduced into the sample forming space. Preferably, the holes are provided in some manner.
[0045]
Then, in the present invention, the sample forming space and the space partition plate 3 work together in an important manner, and a metal sample that can be immediately used for analysis can be prepared. This operation will be described.
[0046]
When the core portion 12 of the sampler is rapidly immersed in the molten metal, the molten metal enters the sample forming space. However, on the opposite surface of the quenching body 3, there is a space partition plate 5 made of a material that repels the molten metal. The molten metal quickly and smoothly penetrates into the sample forming space without being solidified near the insertion port of the sample forming space.
[0047]
After the molten metal fills the sample forming space, the molten metal is quenched by the quenching body 3 and solidified to form the metal sample 11.
[0048]
The metal sample 11 is handled while being welded to the plane (side wall) of the quenching body 3 and subjected to polishing and analysis. In the analysis, the sample surface formed on the side of the space partition plate 5 is used. , Used as an analysis surface.
[0049]
As described above, the thickness and / or height of the sample forming space is appropriately set in consideration of the type and characteristics of the molten metal, and the thickness and / or height are determined in the metal sample in the thickness direction. Is important in obtaining a uniform solidified structure in each of the height direction and the width direction.
[0050]
The optimum range of the thickness and / or height varies depending on the type and characteristics of the molten metal, but in the case of molten steel, the thickness is preferably 0.5 to 20 mm. In this case, the height may be an appropriate height.
[0051]
If the thickness is less than 0.5 mm, it is difficult for the molten steel to enter the sample forming space, while if it exceeds 20 mm, the solidified structure becomes uneven or the molten steel falls off during the lifting. And a smooth surface cannot be obtained.
[0052]
The more preferable thickness of the sample forming space is 1 to 5 mm, and about 2 mm is even more preferable in terms of the speed of sampling and the smoothness of the metal sample surface.
[0053]
Here, FIG. 4 shows an overall embodiment of the metal sample rapid sampling sampler according to the present invention. In the sampler shown in FIG. 4, the support rod 9 of the core part 12 is inserted into a holding support rod 15 protected by a refractory ceramic cylinder 13, and the entire core part 12 is inserted into a slag mixing prevention paper cylinder 14. Protected.
[0054]
When the sampler for rapidly collecting a metal sample is immersed in the molten metal for several seconds, the molten metal is quickly and smoothly solidified without solidifying at the insertion port of the sample forming space due to the presence of the space partition plate 5 having a property of repelling the molten metal. It enters the inside of the forming space, is quenched by the quenching body 3 and solidifies to form the metal sample 11.
[0055]
Thereafter, the sampler is pulled up and water-cooled, and then an impact is applied to the space partition plate 5 and the clip 7 to separate the space partition plate 3 from the quenching body 3 to form a smooth surface (formed on the side of the space partition plate 3). Surface) can be obtained.
[0056]
In the rapid sampling method of the present invention, the metal sample 11 is handled in a state of being welded to the quenching body 3, and after polishing the smooth surface to make it even smoother, for example, the sample is supplied to an emission spectrometer, To analyze.
[0057]
Further, according to the rapid sampling method of the present invention, the metal sample 11 is handled in a state of being welded to the quenching body 3, so that the sample removing step which has been conventionally considered to be an inevitable step can be omitted. And the overall sampling time can be significantly reduced.
[0058]
Further, in the present invention, as shown in FIG. 5, the two core portions can be combined symmetrically about the space partition plate 5 to form a “two-piece core portion”. With such a configuration, two pieces of the same metal sample 11 can be obtained at the same time while being welded to the cooling body 3, so that either one can be selected as an optimum analysis target sample, and one metal sample 11 can be selected. Even if is poor in solidification structure, one of the metal samples can be used, and it is not necessary to take the metal sample again, and the speed of polishing and analysis is not hindered.
[0059]
【Example】
Next, examples of the present invention will be described, but the present invention is not limited to the conditions employed in the examples.
[0060]
(Example)
A sampler having a core portion having the structure shown in FIG. 3 is manufactured using a steel quenching body having a length of 30 mm × a width of 30 mm × a height of 50 mm, and the rapid sampling method of the present invention (the method of the present invention) and the conventional sampling method ( In the conventional method), molten steel was sampled and the analysis time and analysis accuracy were compared.
[0061]
Regarding the analysis time, it was confirmed that the conventional method required about 120 seconds to take out the sample, while the method of the present invention could reduce the thickness of the sample to about 2 mm and took out the sample after about 20 seconds.
[0062]
Regarding the analysis accuracy, the amount of Ti was analyzed by emission spectroscopy and compared. FIG. 6 shows the result. As shown in this figure, since the Ti content in both samples obtained by the method of the present invention and the conventional method has a corresponding relationship, the sample obtained by the method of the present invention is different from the sample obtained by the conventional method in terms of analytical accuracy. It can be seen that the sample can be replaced with a sample collected by the conventional method.
[0063]
As described above, according to the sampling method of the present invention, an appropriate sample that can be immediately provided for emission spectroscopy can be quickly collected.
[0064]
【The invention's effect】
According to the present invention, when the metal sample rapid sampling sampler is pulled up, the molten metal is rapidly solidified inside the sample forming space to form the metal sample, and furthermore, the metal sample is still welded to the quenched body. Since the sample is handled, the step of taking out the sample can be omitted, the time from cooling up to cooling and subjecting to polishing can be greatly reduced, and the component management and adjustment in the refining process can be promptly and accurately responded.
[0065]
Further, according to the present invention, the structure of the collected metal sample is refined by rapid solidification, so that there is no abnormal light emission during emission spectroscopic analysis, and the components of the metal sample can be analyzed with high accuracy. It is possible to accurately respond to component management and adjustment in the process.
[0066]
Furthermore, according to the present invention, two identical metal samples can be collected at the same time, so that one of them can be selected as an optimal analysis target sample, and one metal sample is used in terms of solidified structure. Even if defective, one of the metal samples can be used, so that the quickness of component management and adjustment in the refining process can be maintained.
[0067]
As described above, the present invention has a remarkable effect in controlling and adjusting components in the refining process. Therefore, the present invention has extremely high industrial value.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross section of a pump type sampler.
FIG. 2 is a diagram showing a cross section of a thick bottom type sampler provided with a quenching body.
FIG. 3 is a diagram showing one embodiment of a core part of the sampler for rapidly collecting metal samples according to the present invention.
FIG. 4 is a diagram showing an overall embodiment of a sampler for rapidly collecting metal samples according to the present invention.
FIG. 5 is a view showing another embodiment (two-cavity embodiment) of the core portion of the sampler for rapidly collecting metal samples according to the present invention.
FIG. 6 is a diagram showing the correspondence between the amounts of Ti in both samples collected by the method of the present invention and the conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Container 2 ... Molten metal 3 ... Quenched body 4 ... Dish-shaped recess 5 ... Space partition plate 6 ... Spacer 7 ... Clip 8 ... Depression 9 ... Support rod 10 ... Ceramic lubricant 11 ... Metal sample 12 ... Metal sample rapid sampling sampler Core part 13 ... Fireproof ceramic cylinder 14 ... Slag mixing prevention paper cylinder 15 ... Holding support rod

Claims (10)

溶融金属から金属試料を採取するサンプラーにおいて、
(a)溶融金属を急冷凝固する平面を少なくとも1つ備える急冷体を、少なくとも1つサンプラーのコア部として設け、
(b)上記平面に対向して、溶融金属をはじく材質の空間区画板を取り付け、
(c)上記平面と空間区画板の間の空間を、溶融金属が急冷凝固して金属試料を形成する試料形成空間とした、
ことを特徴とする金属試料迅速採取サンプラー。
In a sampler that collects a metal sample from molten metal,
(A) providing at least one quenched body having at least one plane for rapidly solidifying a molten metal as a core part of a sampler;
(B) facing the plane, mounting a space partition plate made of a material that repels molten metal;
(C) The space between the plane and the space partition plate is a sample forming space in which the molten metal is rapidly solidified to form a metal sample.
A sampler for rapidly collecting metal samples.
前記急冷体が、抜熱能力の高い材料で構成されていることを特徴とする請求項1に記載の金属試料迅速採取サンプラー。The sampler according to claim 1, wherein the quenching body is made of a material having a high heat removal capacity. 前記抜熱能力の高い材料が、鉄、鋼、アルミニウム、銅、および、ステンレス鋼のいずれか1種または2種以上からなる材料であることを特徴とする請求項2に記載の金属試料迅速採取サンプラー。3. The metal sample according to claim 2, wherein the material having a high heat removal ability is a material composed of one or more of iron, steel, aluminum, copper, and stainless steel. 4. sampler. 前記空間区画板が、耐熱衝撃性および耐熱性に優れ、金属不純物量の少ない材質の板であることを特徴とする請求項1〜3のいずれか1項に記載の金属試料迅速採取サンプラー。The sampler according to any one of claims 1 to 3, wherein the space partition plate is a plate made of a material having excellent thermal shock resistance and heat resistance and having a small amount of metal impurities. 前記金属不純物量の少ない材質の板が、石英ガラス板であることを特徴とする請求項4に記載の金属試料迅速採取サンプラー。The sampler according to claim 4, wherein the plate made of a material having a small amount of metal impurities is a quartz glass plate. 前記試料形成空間の厚さが、0.5〜20mmであることを特徴とする請求項1〜5のいずれか1項に記載の金属試料迅速採取サンプラー。The sampler according to claim 1, wherein the thickness of the sample forming space is 0.5 to 20 mm. 前記試料形成空間がガス抜き孔を有していることを特徴とする請求項1〜6のいずれか1項に記載の金属試料迅速採取サンプラー。7. The sampler according to claim 1, wherein the sample forming space has a gas vent hole. 前記平面が空間区画板を間に挟んで対向するように急冷体を合体し、コア部としたことを特徴とする請求項1〜7のいずれか1項に記載の金属試料迅速採取サンプラー。The metal sample rapid sampling sampler according to any one of claims 1 to 7, wherein a quenching body is combined so that the plane faces each other with a space partition plate interposed therebetween, thereby forming a core portion. 溶融金属にサンプラーを浸漬し、分析に供する金属試料を採取するサンプリング方法において、
(a)請求項1〜8のいずれか1項に記載の金属試料迅速採取サンプラーを溶融金属に浸漬し、
(b)急冷体の溶融金属を急冷凝固する平面と空間区画板との間の試料形成空間内で、溶融金属を急冷凝固して金属試料を形成し、
(c)上記サンプラーを引き上げて冷却した後、空間区画板を剥離する、
ことを特徴とする迅速サンプリング方法。
In a sampling method of immersing a sampler in a molten metal and collecting a metal sample to be analyzed,
(A) immersing the metal sample rapid sampling sampler according to any one of claims 1 to 8 in a molten metal;
(B) quenching and solidifying the molten metal to form a metal sample in a sample forming space between the plane where the molten metal of the quenched body is rapidly solidified and the space dividing plate;
(C) peeling the space partition plate after pulling up the sampler and cooling,
A rapid sampling method characterized by the above-mentioned.
溶融金属にサンプラーを浸漬し、分析に供する金属試料を採取するサンプリング方法において、
(a)請求項1〜8のいずれか1項に記載の金属試料迅速採取サンプラーを溶融金属に浸漬し、
(b)急冷体の溶融金属を急冷凝固する平面と空間区画板との間の試料形成空間内で、溶融金属を急冷凝固して金属試料を形成し、
(c)上記サンプラーを引き上げて冷却した後、空間区画板を剥離し、
(d)金属試料を、急冷体の上記平面に溶着したままの状態で、研磨・分析に供する、
ことを特徴とする迅速サンプリング方法。
In a sampling method of immersing a sampler in a molten metal and collecting a metal sample to be analyzed,
(A) immersing the metal sample rapid sampling sampler according to any one of claims 1 to 8 in a molten metal;
(B) quenching and solidifying the molten metal to form a metal sample in a sample forming space between the plane where the molten metal of the quenched body is rapidly solidified and the space dividing plate;
(C) After the sampler is pulled up and cooled, the space partition plate is peeled off,
(D) subjecting the metal sample to polishing and analysis while being welded to the flat surface of the quenched body,
A rapid sampling method characterized by the above-mentioned.
JP2002167320A 2002-06-07 2002-06-07 Metal sample rapid sampling sampler and rapid sampling method using the same Expired - Fee Related JP3965081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167320A JP3965081B2 (en) 2002-06-07 2002-06-07 Metal sample rapid sampling sampler and rapid sampling method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167320A JP3965081B2 (en) 2002-06-07 2002-06-07 Metal sample rapid sampling sampler and rapid sampling method using the same

Publications (2)

Publication Number Publication Date
JP2004012339A true JP2004012339A (en) 2004-01-15
JP3965081B2 JP3965081B2 (en) 2007-08-22

Family

ID=30434613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167320A Expired - Fee Related JP3965081B2 (en) 2002-06-07 2002-06-07 Metal sample rapid sampling sampler and rapid sampling method using the same

Country Status (1)

Country Link
JP (1) JP3965081B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216171A (en) * 2007-03-07 2008-09-18 Ihi Corp Sampling vessel and method for using the same
JP2009236738A (en) * 2008-03-27 2009-10-15 Nippon Steel Corp Metal specimen collection sampler and sampling method using it
KR20180068316A (en) * 2016-12-13 2018-06-21 헤라우스 일렉트로-나이트 인터내셔날 엔. 브이. Direct analysis sampler with heat sink
JP2018096993A (en) * 2016-12-13 2018-06-21 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイHeraeus Electro−Nite International N.V. Sampler for hot metal
JP2020020783A (en) * 2018-06-12 2020-02-06 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイHeraeus Electro−Nite International N.V. Improved molten metal sampler
KR20200099072A (en) * 2019-02-11 2020-08-21 헤라우스 일렉트로-나이트 인터내셔날 엔. 브이. Method and apparatus for demolding and analyzing a direct analysis sample

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216171A (en) * 2007-03-07 2008-09-18 Ihi Corp Sampling vessel and method for using the same
JP2009236738A (en) * 2008-03-27 2009-10-15 Nippon Steel Corp Metal specimen collection sampler and sampling method using it
KR20180068316A (en) * 2016-12-13 2018-06-21 헤라우스 일렉트로-나이트 인터내셔날 엔. 브이. Direct analysis sampler with heat sink
JP2018096995A (en) * 2016-12-13 2018-06-21 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイHeraeus Electro−Nite International N.V. Direct analysis sampler with heat sink
JP2018096993A (en) * 2016-12-13 2018-06-21 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイHeraeus Electro−Nite International N.V. Sampler for hot metal
US10488304B2 (en) 2016-12-13 2019-11-26 Heraeus Electro-Nite International N.V. Direct analysis sampler with heat sink
KR102123142B1 (en) * 2016-12-13 2020-06-16 헤라우스 일렉트로-나이트 인터내셔날 엔. 브이. Direct analysis sampler with heat sink
JP2020020783A (en) * 2018-06-12 2020-02-06 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイHeraeus Electro−Nite International N.V. Improved molten metal sampler
JP2021182007A (en) * 2018-06-12 2021-11-25 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイHeraeus Electro−Nite International N.V. Improved molten metal sampler
JP7355788B2 (en) 2018-06-12 2023-10-03 ヘレーウス エレクトロ-ナイト インターナシヨナル エヌ ヴイ Improved molten metal sampler
KR20200099072A (en) * 2019-02-11 2020-08-21 헤라우스 일렉트로-나이트 인터내셔날 엔. 브이. Method and apparatus for demolding and analyzing a direct analysis sample
KR102422687B1 (en) 2019-02-11 2022-07-18 헤라우스 일렉트로-나이트 인터내셔날 엔. 브이. Method and apparatus for demolding and analyzing a direct analysis sample

Also Published As

Publication number Publication date
JP3965081B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
Rui et al. Effect of cooling rate on solidification parameters and microstructure of Al-7Si-0.3 Mg-0.15 Fe alloy
Zhang et al. Effect of solidification cooling rate on the fatigue life of A356. 2‐T6 cast aluminium alloy
KR20180068315A (en) Sampler for hot metal
TASHIRO et al. Influence of mould design on the solidification and soundness of heavy forging ingots
UA120125C2 (en) SAMPLER FOR DIRECT ANALYSIS WITH HEAT DRAINAGE
Samuel et al. Influence of oxides on porosity formation in Sr-treated alloys
Mitrasinovic et al. On-line prediction of the melt hydrogen and casting porosity level in 319 aluminum alloy using thermal analysis
KR102445005B1 (en) Molten metal samplers for high and low oxygen applications
EP3581913B1 (en) Improved molten metal sampler
JP2004012339A (en) Metal specimen quick collection sampler and method for quick sampling using the same
JP3902512B2 (en) Metal sample rapid sampling sampler and rapid sampling method using the same
Samuel et al. Inclusion measurements in Al–Si foundry alloys using qualiflash and prefil filtration techniques
EP3311157B1 (en) Apparatus and method for analysis of molten metals
Li et al. Evaluation of melt quality and graphite degeneration prediction in heavy section ductile iron
Atakav et al. Sr addition and its effect on the melt cleanliness of A356
Riposan et al. Control of solidification pattern of cast irons by simultaneous thermal and contraction/expansion analysis
Canullo et al. Cleanliness of primary A356 alloy: Interpretation and standardisation of PODFA laboratory measurements
JP4071925B2 (en) Analytical slag sampler and slag collection method
Laukli et al. The effect of solidification of metal prior to injection in HPDC on the grain size distribution in a complex die casting
JP4125935B2 (en) Rapid determination method and apparatus for molten metal components by form
Piękoś et al. Investigations of the influence of the zone of chills on the casting made of AlSi7Mg alloy with various wall thicknesses
JP3900713B2 (en) Method for adjusting slag sample for fluorescent X-ray analysis and sampler
Wang et al. Oxide film and porosity defects in magnesium alloy AZ91
JPH0961419A (en) Container sampling metal sample
JP2586634Y2 (en) Molten metal sampling probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070525

R151 Written notification of patent or utility model registration

Ref document number: 3965081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees