JPS6331738B2 - - Google Patents

Info

Publication number
JPS6331738B2
JPS6331738B2 JP57062350A JP6235082A JPS6331738B2 JP S6331738 B2 JPS6331738 B2 JP S6331738B2 JP 57062350 A JP57062350 A JP 57062350A JP 6235082 A JP6235082 A JP 6235082A JP S6331738 B2 JPS6331738 B2 JP S6331738B2
Authority
JP
Japan
Prior art keywords
sampling
molten steel
holder
sampling container
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57062350A
Other languages
Japanese (ja)
Other versions
JPS58180950A (en
Inventor
Kazuyoshi Nakai
Hiroshi Ootani
Shoichi Hiwasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57062350A priority Critical patent/JPS58180950A/en
Publication of JPS58180950A publication Critical patent/JPS58180950A/en
Publication of JPS6331738B2 publication Critical patent/JPS6331738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • G01N33/2025Gaseous constituents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】 本発明は溶鋼中の水素含有量を分析するための
溶鋼サンプルのサンプリング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for sampling molten steel samples for analyzing hydrogen content in molten steel.

溶鋼中の水素ガス分析用鋼サンプルを採取する
場合に留意すべき点は、水素が溶鋼中あるいは凝
固過程における鋼塊内において著しく拡散、逸散
しやすい性質を有するため、サンプリングを迅速
に行ない、サンプリング後サンプルを迅速に急冷
することにある。
When collecting steel samples for hydrogen gas analysis in molten steel, it is important to keep in mind that hydrogen has a tendency to diffuse and dissipate significantly in molten steel or in steel ingots during the solidification process. The purpose is to quickly quench the sample after sampling.

従来、サンプリング後の急冷効果をあげるため
に、内径20mm、外径30mm、高さ45〜50mmの鉄製容
器に外径5〜8mmの鋼線を溶接した小形のサンプ
リング容器を用い、これを溶鋼中に浸漬して溶鋼
サンプルを採取後鋼線を切断し、容器ごと急冷す
る方法が用いられていた。このサンプリング容器
は、鋼線が細い場合には、サンプリング中に溶鋼
が容器内に十分に充填されるまでにこの鋼線が溶
断する不具合を生じ、鋼線が太い場合にはその切
断に時間を要し、その間に水素が逸散し、水素の
正確な分析値が期待できない欠点があつた。
Conventionally, in order to increase the quenching effect after sampling, a small sampling container was used, which was made by welding a steel wire with an outer diameter of 5 to 8 mm to a steel container with an inner diameter of 20 mm, an outer diameter of 30 mm, and a height of 45 to 50 mm. The method used was to collect a sample of molten steel by immersing it in water, cut the steel wire, and then rapidly cool the entire container. If the steel wire is thin, the steel wire will melt before the container is sufficiently filled with molten steel during sampling, and if the steel wire is thick, it will take time to cut the wire. However, there was a drawback that hydrogen dissipated during that time, making it impossible to expect accurate hydrogen analysis values.

また、シリカチユーブを用いて溶鋼サンプルを
吸引採取するサンプリング方法が一般に行なわれ
ている。内径12〜13mm程度の石英製単管を溶鋼中
に浸漬し、スポイド等により溶鋼を吸引するもの
で、金属に比し附着水分が少く、水素の分析誤差
が少なく、分析精度が良いが、容器が高価であ
る。また、シリカチユーブ内への溶鋼の充填が不
十分でサンプル内に空孔を生ずることがあり、こ
の空孔を生じた場合には、この空孔に水素が凝集
するために正確な分析値が期待できない欠点があ
る。さらに、サンプリングにかなりの技能が必要
である。
Furthermore, a sampling method is generally used in which a molten steel sample is collected by suction using a silica tube. A single quartz tube with an inner diameter of about 12 to 13 mm is immersed in molten steel, and the molten steel is sucked in with a dropper, etc. Compared to metal, there is less adhering moisture, less hydrogen analysis error, and better analysis accuracy, but the container is expensive. Additionally, if the molten steel is not sufficiently filled into the silica tube, pores may be formed in the sample, and if these pores are formed, hydrogen will aggregate in these pores, making it difficult to obtain accurate analytical values. There are drawbacks that cannot be expected. Furthermore, sampling requires considerable skill.

本発明は、上記の従来の欠点を改善し、工業的
規模において、安価で取扱いが容易で、正確な分
析値の期待できる水素ガス分析用鋼サンプルのサ
ンプリング方法を提供することを目的とする。
An object of the present invention is to improve the above-mentioned conventional drawbacks and provide a method for sampling steel samples for hydrogen gas analysis on an industrial scale, which is inexpensive, easy to handle, and allows accurate analytical values to be expected.

第1図は、本発明方法において使用する水素分
析用鋼サンプリング具を示し、bは平面図、aは
b図のA―A矢視図である。1はサンプリング容
器、2はサンプリング容器を装脱自在に収納する
ひしやく状保持具で、柄3を固着している。
FIG. 1 shows a steel sampling tool for hydrogen analysis used in the method of the present invention, b is a plan view, and a is a view taken along the line A--A in FIG. 1 is a sampling container, 2 is a diamond-shaped holder for removably storing the sampling container, and a handle 3 is fixed thereto.

サンプリング容器1はコツプ状すなわち截頭円
錐台を倒立した形の鉄製中空容器で上面を開放し
ており、保持具2の中に数mm程度の間隙を以て遊
嵌し、装脱自在に収納される。保持具2の内外面
には溶鋼付着防止剤が塗布される。
The sampling container 1 is a hollow iron container in the shape of an inverted truncated cone with the upper surface open, and is loosely fitted into the holder 2 with a gap of several mm, and is stored in a removable manner. . A molten steel adhesion prevention agent is applied to the inner and outer surfaces of the holder 2.

本発明方法は、水素ガス含有量を分析測定する
ための溶鋼サンプルを採取するに当り、サンプリ
ング容器1を500±50℃に予熱した後保持具2に
装填し、取鍋中の溶鋼中に上記サンプリング具を
浸漬し、サンプリング容器1の中に鋼サンプルを
汲み入れ、直ちに溶鋼中から引き上げ、次いでサ
ンプリング容器1を溶鋼サンプルと共に保持具か
ら取り出し、これを直ちに−30乃至−40℃に急冷
することを特徴とする。
In the method of the present invention, when collecting a molten steel sample for analyzing and measuring the hydrogen gas content, a sampling container 1 is preheated to 500±50°C and then loaded into a holder 2, and the molten steel in a ladle is filled with the above sample. Immerse the sampling tool, pump the steel sample into the sampling container 1, immediately pull it out of the molten steel, then take out the sampling container 1 together with the molten steel sample from the holder, and immediately cool it rapidly to -30 to -40°C. It is characterized by

本発明に用いるサンプリング容器1は、例え
ば、内径20mm、外径28mm、高さ50mm程度のものが
好ましく、保持具2に容易に装脱できるように抜
き勾配を付したものが好適である。この容器は小
さすぎると溶鋼の密実な充填が困難になり、大き
すぎると冷却を迅速に行なうことができない。
The sampling container 1 used in the present invention preferably has an inner diameter of 20 mm, an outer diameter of 28 mm, and a height of about 50 mm, and preferably has a draft angle so that it can be easily attached to and removed from the holder 2. If this container is too small, it will be difficult to fill it tightly with molten steel, and if it is too large, it will not be possible to cool it quickly.

サンプリング容器1の予熱は、溶鋼の充填を良
好にするために行なう。予熱温度は450℃末満で
も550℃超でも溶鋼の充填が悪くなり、500±50℃
の温度範囲において最も充填が良好となる。
Preheating of the sampling container 1 is performed in order to improve filling of the molten steel. If the preheating temperature is below 450℃ or above 550℃, the filling of molten steel will be poor, and the temperature will be 500±50℃.
The best filling is achieved in the temperature range of .

予熱したサンプリング容器1を、溶鋼付着防止
剤を内外面に塗布した保持具2に速やかに装填す
る。
The preheated sampling container 1 is quickly loaded into a holder 2 whose inner and outer surfaces are coated with a molten steel adhesion inhibitor.

装填したサンプリング容器1と保持具2との境
目にも地金付着防止剤を塗布するとサンプル採取
後にサンプリング容器1を保持具2から取り出す
ことが容易となり、これを急冷するまでの時間が
迅速になる。
If the metal adhesion prevention agent is also applied to the boundary between the loaded sampling container 1 and the holder 2, it will be easier to take out the sampling container 1 from the holder 2 after collecting the sample, and the time required to rapidly cool it will become faster. .

サンプリング容器1を装填した保持具2を10〜
20秒程度の短時間溶鋼に浸漬すれば、サンプリン
グ容器中に溶鋼サンプルが十分に充填されるので
これを引き上げ、サンプリング容器1を保持具2
から取出し直ちに−30〜−40℃に急冷する。
Holder 2 loaded with sampling container 1 from 10 to
If immersed in the molten steel for a short time of about 20 seconds, the molten steel sample will be sufficiently filled in the sampling container, so pull it out and place the sampling container 1 in the holder 2.
Take it out and immediately cool it to -30 to -40℃.

本発明方法によつて水素分析用のサンプルを採
取した結果、次の通りである。
The results of collecting samples for hydrogen analysis using the method of the present invention are as follows.

(1) NG率の減少 サンプル内に空洞、気孔が存在した場合、この
部分に水素が拡散してしまうため、バルク内の水
素は実際より低い値を示すことがある。サンプル
に気孔等のあるものをNG(No Good)と呼んで
いるが、これを比較すると次の通りである。
(1) Decrease in NG rate If there are cavities or pores in the sample, hydrogen will diffuse into these areas, so the hydrogen in the bulk may show a lower value than the actual value. Samples with pores are called NG (No Good), and the comparison is as follows.

本発明のNG率 0.5〜1.0% 従来法のNG率 5 〜25 % (2) 分析値の正確さ 従来最も信頼性が高いと考えられているシリカ
チユーブを用いたサンプリング法による測定値と
比較した結果は次の通りである。
NG rate of the present invention: 0.5 to 1.0% NG rate of conventional method: 5 to 25% (2) Accuracy of analytical values Comparison with measured values using a sampling method using silica tubes, which is considered to be the most reliable conventional method. The results are as follows.

本発明とシリカチユーブ法との測定値の差 試料数 n=100 平均値 =+0.07ppm 標準偏差 σ=0.13ppm 鋼線を溶接したサンプリング容器を用いた従来
のサンプリング法とシリカチユーブ法との測定値
の差 試料数 n=68 平均値 =−0.27ppm 標準偏差 σ=0.38ppm 以上の通り、本発明方法は従来法に比較して水
素分析値の信頼性と精度が高く、確実なサンプリ
ング法である。
Difference in measured values between the present invention and the silica tube method Number of samples n = 100 Average value = +0.07ppm Standard deviation σ = 0.13ppm Measurement between the conventional sampling method using a sampling container with welded steel wire and the silica tube method Difference in value Number of samples n = 68 Average value = -0.27ppm Standard deviation σ = 0.38ppm As described above, the method of the present invention has higher reliability and accuracy of hydrogen analysis values than the conventional method, and is a reliable sampling method. be.

本発明により、工業的規模において、溶鋼中の
水素ガス分析用鋼サンプルのサンプリングを、安
価に、精度よく実施することができ、また本方法
は、他の溶融金属の水素ガス分析に広く適用する
ことが可能である。
According to the present invention, sampling of steel samples for hydrogen gas analysis in molten steel can be carried out inexpensively and accurately on an industrial scale, and this method can be widely applied to hydrogen gas analysis of other molten metals. Is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは本発明の実施に用いるサンプリ
ング具の縦断面図、平面図である。 1……サンプリング容器、2……保持具。
FIGS. 1a and 1b are a longitudinal sectional view and a plan view of a sampling tool used in carrying out the present invention. 1... Sampling container, 2... Holder.

Claims (1)

【特許請求の範囲】[Claims] 1 水素ガス含有量を分析測定するための溶鋼サ
ンプルを採取するに当り、コツプ状の鉄製サンプ
リング容器を500±50℃に予熱した後該サンプリ
ング容器を装脱自在に収納するひしやく状保持具
に装填し、該保持具により前記サンプリング容器
内に溶鋼サンプルを汲み入れ、次いで該サンプリ
ング容器を溶鋼サンプルと共に前記保持具から取
り出し、これを直ちに−30乃至−40℃に冷却する
ことを特徴とする水素ガス分析用鋼サンプルのサ
ンプリング方法。
1. When collecting a molten steel sample for analysis and measurement of hydrogen gas content, a cup-shaped iron sampling container is preheated to 500±50°C, and then placed in a diamond-shaped holder that removably stores the sampling container. the molten steel sample is pumped into the sampling container by the holder, and then the sampling container is taken out from the holder along with the molten steel sample, and the hydrogen is immediately cooled to -30 to -40°C. Sampling method for steel samples for gas analysis.
JP57062350A 1982-04-16 1982-04-16 Sampling of steel sample for hydrogen gas analysis Granted JPS58180950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57062350A JPS58180950A (en) 1982-04-16 1982-04-16 Sampling of steel sample for hydrogen gas analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57062350A JPS58180950A (en) 1982-04-16 1982-04-16 Sampling of steel sample for hydrogen gas analysis

Publications (2)

Publication Number Publication Date
JPS58180950A JPS58180950A (en) 1983-10-22
JPS6331738B2 true JPS6331738B2 (en) 1988-06-27

Family

ID=13197580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57062350A Granted JPS58180950A (en) 1982-04-16 1982-04-16 Sampling of steel sample for hydrogen gas analysis

Country Status (1)

Country Link
JP (1) JPS58180950A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745007Y2 (en) * 1990-07-26 1995-10-11 新日本製鐵株式会社 Melt collection container
TWI513825B (en) * 2013-12-27 2015-12-21 China Steel Corp Slagging device

Also Published As

Publication number Publication date
JPS58180950A (en) 1983-10-22

Similar Documents

Publication Publication Date Title
AU2004256175B2 (en) Method and device for measuring a melt cooling curve
US3369406A (en) Molten material sampling apparatus and method
US3315529A (en) Method and apparatus for taking samples from melts in order to obtain the gases evolved during solidification
HU216038B (en) Sensor arrangement for measuring temperature of melts, thermotric device with the sensor arrangement,as well as method for measuring temperature of molten criolytes
RU2323423C2 (en) Probe for bath filled with melt of cryolite
US4428245A (en) Apparatus for sampling molten metal
JPS6331738B2 (en)
US4170139A (en) Sampling device for analysis of molten metal for hydrogen
US3295171A (en) Frangible ceramic test mold
US2143982A (en) Collecting gases from metals
US3321978A (en) Molten metal sampling apparatus
US4112770A (en) Molten metal sampler
US1933425A (en) Method and apparatus for sampling liquid metals
JP3467514B2 (en) Molten metal sampling device, member for molten metal sampling device, and sampling method
US3704621A (en) Sampling bomb and method of sampling and analyzing a heat of unkilled steel
RU2651031C1 (en) Method of a liquid metal sampling
CA1062039A (en) Molten metal sampling device and method with germanium killing agent
GB2040750A (en) Molten metal sampler
JPS58214848A (en) Method of measuring velocity of oxidation of molten metal
GB1350248A (en) Method and apparatus for the determination of the oxygen content of metal melts
RU2818524C1 (en) Device and method for determining level of immersion of cup in metallurgical vessel
JPS585974Y2 (en) Sample collector for measuring hydrogen content in molten metal
JP3900713B2 (en) Method for adjusting slag sample for fluorescent X-ray analysis and sampler
US4624149A (en) Sampling tube
JPS6213006Y2 (en)