JPS59137807A - Method and apparatus for measuring gap between fuel rod - Google Patents

Method and apparatus for measuring gap between fuel rod

Info

Publication number
JPS59137807A
JPS59137807A JP58012010A JP1201083A JPS59137807A JP S59137807 A JPS59137807 A JP S59137807A JP 58012010 A JP58012010 A JP 58012010A JP 1201083 A JP1201083 A JP 1201083A JP S59137807 A JPS59137807 A JP S59137807A
Authority
JP
Japan
Prior art keywords
sensor
fuel
fuel rod
ultrasonic wave
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58012010A
Other languages
Japanese (ja)
Inventor
Hisao Kumatou
熊藤 久雄
Tsutomu Sato
務 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP58012010A priority Critical patent/JPS59137807A/en
Publication of JPS59137807A publication Critical patent/JPS59137807A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/06Devices or arrangements for monitoring or testing fuel or fuel elements outside the reactor core, e.g. for burn-up, for contamination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To display the gap between fuel rods at the outer part in two dimensions, by detecting the response times from the fuel rods and the height of echo by an ultrasonic wave sensor. CONSTITUTION:A fuel assembly 1 is suspended from a suspending jig 2 and arranged at a specified position in the vicinity of a sensor device 4 under this state. The sensor 4 is composed of a driving motor part 5, a carrier 6, an ultrasonic wave probe sensor 7, and a cable 8, and attached to a supporting table 3. The response time period from the time when the ultrasonic wave, which is transmitted from the sensor 4, is reflected by the fuel rod 1 to the time when the wave is received by the sensor depends on the distance between the ultrasonic wave sensor to the fuel rod, which is an object. The sensor is moved at a constant speed and performs the transmission and reception. The sensor detects the response time of the ultrasonic wave from each fuel rod, and detects the height of echo and the position of the sensor from the fuel rod. Based on the measured value of the displacement and the gap, the positions of the fuel rods can be displayed in two dimensions.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、主として軽水炉用の照射済燃料における燃料
棒間隙の測定法とその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates primarily to a method and apparatus for measuring fuel rod gaps in irradiated fuel for light water reactors.

〔従来技術と問題点〕[Conventional technology and problems]

照射済燃料の燃料棒間隙は、燃料の健全性評価の重要な
因子である。照射され、次サイクル運転時に装荷予定の
燃料集合体は、従来、その燃料集合体をモニタテレビに
て写し出し、モニタ再生画像から燃料棒間隙を計測して
いた。しかし、モニタテレビを使用すると、燃料棒間隙
は基準面への投影として評価されるため、観察方向と平
行方向への燃料棒向りは検知できず、真の燃料棒間隙と
して検知できない欠点があった。
Fuel rod gap of irradiated fuel is an important factor in fuel integrity assessment. Conventionally, the fuel assembly that has been irradiated and scheduled to be loaded during the next cycle of operation is displayed on a monitor television, and the gap between the fuel rods is measured from the reproduced image on the monitor. However, when using a monitor TV, the fuel rod gap is evaluated as a projection onto a reference plane, so the orientation of the fuel rods in a direction parallel to the observation direction cannot be detected, which has the disadvantage that it cannot be detected as a true fuel rod gap. Ta.

〔発明の構成〕[Structure of the invention]

本発明は、上記の欠点を解消するためになされた燃料棒
IT、IJ隙測定法色測定法置を提供するものである。
The present invention provides a fuel rod IT/IJ gap measurement method color measurement system that is designed to eliminate the above-mentioned drawbacks.

本発明による燃料棒間隙測定法とその装置を以下に図面
に基づいて説明する。
The fuel rod gap measuring method and device according to the present invention will be explained below based on the drawings.

第1図は燃料棒間隙を測定するための方法および装置を
示す説明図である。(イ)図において燃料集合体1は吊
治具2で吊下げた状態でセンサ装置4の近くの所定位置
に配置される。上述のセンサ装置4は、(ロ)図に示す
ように、駆動モータ部5.キー?!J−26、超音波探
触子センサ7、ケーブル8がら構成され、(イ)図に示
すように支持台3に取付けられている。
FIG. 1 is an illustration showing a method and apparatus for measuring fuel rod gaps. (a) In the figure, the fuel assembly 1 is placed in a predetermined position near the sensor device 4 while being suspended by a hanging jig 2. The above-mentioned sensor device 4 includes a drive motor section 5. as shown in FIG. Key? ! It consists of a J-26, an ultrasonic probe sensor 7, and a cable 8, and is attached to a support stand 3 as shown in the figure (A).

第2図は燃料集合体1とセンサ7との配置を示す略図で
、センサとして使う超音波探触子は、燃料集合体側面と
平行に燃料棒9表面を走査し計測を実施している。なお
X、、X、はセンサの位置である。
FIG. 2 is a schematic diagram showing the arrangement of the fuel assembly 1 and the sensor 7. An ultrasonic probe used as a sensor scans the surface of the fuel rod 9 parallel to the side surface of the fuel assembly to perform measurements. Note that X,,X, is the position of the sensor.

第3図はセンサがらの受信波形を示す、(イ)図。FIG. 3 is a diagram (A) showing the waveform received by the sensor.

(ロ)図のtI + txはセンサがら発信された超音
波が燃料棒で反射され、再びセンサに受信されるまでの
時間を表パシ、この応答時間は超音波センサがら対象燃
料棒までの距離に依存する。センサは一定速度で移動し
ながら受発信を行い、各燃料棒がらの超音波の応答時間
および燃料棒からエコー高さとその時のセンサの位置を
検出し、プロットしたグラフを第4図(イ2パロ)I;
、↑、す。
(b) In the figure, tI + tx is the time it takes for the ultrasonic wave emitted by the sensor to be reflected by the fuel rod and received by the sensor again. This response time is the distance from the ultrasonic sensor to the target fuel rod. Depends on. The sensor transmits and receives signals while moving at a constant speed, and detects the ultrasonic response time of each fuel rod, the echo height from the fuel rod, and the sensor position at that time, and plots the graph in Figure 4 (I2P). )I;
,↑,su.

超音波応答時間とセンサの位置との関係から、外周部の
燃、料俸の変位を、また、燃料棒がらのエコー高さとセ
ンサの位置との関係から外周部の燃料棒の間隔を測定し
、変位と間隔の測定値がら燃料棒の位置を2次元で表示
することができる。
From the relationship between the ultrasonic response time and the sensor position, we can measure the displacement of the fuel and feed rate at the outer periphery, and from the relationship between the echo height of the fuel rods and the sensor position, we can measure the spacing between the fuel rods at the outer periphery. , the position of the fuel rods can be displayed in two dimensions from the displacement and spacing measurements.

なお・外周部の燃料棒の間隔測定に際し、対象燃料棒の
位置の読取りは、燃料棒がらのエコーの先端値における
センサ位置であると、燃料棒の表面状態の変化によりエ
コーを精度よくとらえることができないため、燃料棒の
表面状態による変化のないエコーである先端値より/d
B以上低下したエコーを発生するセンサ位置の平均値を
燃料棒の位置とするのが好ましい。
When measuring the spacing between fuel rods on the outer periphery, if the position of the target fuel rod is read from the sensor position at the tip of the echo from the fuel rod, it is possible to accurately capture the echo due to changes in the surface condition of the fuel rod. /d from the tip value, which is an echo that does not change due to the surface condition of the fuel rod.
It is preferable that the average value of the sensor positions that generate echoes reduced by B or more is taken as the position of the fuel rod.

また、使用するセンサの周波数として、周波数が51鳩
より低いと超音波ビームの指向性が悪く、周波数が/!
;M )Izより制いと超音波が燃料棒に到達するまで
の減衰がはげしく、いずれもエコーを精度よくとらえる
ことができないため、使用するセンサの周波数として!
;MH2から1sHH,の間に限定すべきである。
Also, if the frequency of the sensor used is lower than 51 pigeons, the directivity of the ultrasonic beam will be poor, and the frequency /!
;M) If the frequency is lower than Iz, the attenuation of the ultrasonic wave before it reaches the fuel rod is severe, and the echoes cannot be captured accurately in either case, so the frequency of the sensor used should be set!
; should be limited between MH2 and 1sHH.

なお、セ°ンサは燃料集合体と平行(水平方向)に移動
するだけでなく、垂直方向(燃料集合体軸方向)にも移
動することができるので、燃料棒の位置を3次元にて表
示することができ、燃料棒の曲り、燃料集合体のねじれ
の測定にも拡張で゛きる。
The sensor can not only move parallel to the fuel assembly (horizontal direction), but also vertically (in the axial direction of the fuel assembly), so the position of the fuel rod can be displayed in three dimensions. It can also be extended to measure bending of fuel rods and torsion of fuel assemblies.

(実施例) 燃料集合体として軽水炉照射済燃料、センサとして周波
数が10MHzの超音波探触子を使用し、燃料集合体と
センサを水中にてl100 M離して配置し、センサを
駆動モータにて移動させて計測した。
(Example) Using irradiated light water reactor fuel as a fuel assembly and an ultrasonic probe with a frequency of 10 MHz as a sensor, the fuel assembly and sensor were placed 1100 M apart in water, and the sensor was moved by a drive motor. I moved it and measured it.

センサの位置信号は駆動モ〜りから信号をとりだし、燃
料棒からの反射エコーの信号は通常の超音波探触子にて
検出した。燃料棒の間隔を3間に設定し、計測したとこ
ろ、3.0±θ/runの間雌値を得ることができ、燃
料集合体外周部の燃料棒の間隙を計測することが可能で
あった。
The position signal of the sensor was taken from the drive motor, and the signal of the reflected echo from the fuel rod was detected with a normal ultrasonic probe. When the spacing between the fuel rods was set to 3 and measurements were taken, a female value could be obtained for 3.0±θ/run, indicating that it was possible to measure the gap between the fuel rods on the outer periphery of the fuel assembly. Ta.

(発明の効果〕 従来の水中テレビによる方法では、基準面への投影面と
゛してしか燃料棒間隙を評価できなかったが、超音波セ
ンサによる燃料棒からの応答時間およびエコー高さを評
価することにより、外周部の燃料棒の間隙を2次元で表
示することができる。
(Effects of the invention) With the conventional method using underwater television, the fuel rod gap could only be evaluated by projecting it onto a reference surface, but now we can evaluate the response time and echo height from the fuel rods using an ultrasonic sensor. This allows the gap between the fuel rods at the outer periphery to be displayed two-dimensionally.

また、超音波センサを使用すると、情報が電気信号で得
られるため、データ処理が容易に迅速に行える。
Furthermore, when an ultrasonic sensor is used, information is obtained in the form of electrical signals, so data processing can be performed easily and quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料棒間隙を測定する方法および装置の説明図
で、(イ)は全体説明図、(ロ)はセンサ装置の詳細説
明図、第2図は燃料集合体とセンサの配置を示す説明図
、第3図はセンサの受信波形で、(イ)。 (ロ)はそれぞれx、、 、 x、における受信波形図
、第4図は本発明に従って測定した出力信号をセンサの
位  1置に対してプロットしたグラフで、(イ)は超
音波応答時間、(0)はエコー高さを示すものである。 1・・・燃料集合体、2・・・吊治具、3・・・支持台
、4・・:センサ装置、5・・・駆動モータ部、6・・
・キャリヤ、才2図 才3図
Fig. 1 is an explanatory diagram of the method and device for measuring the fuel rod gap, (a) is an overall explanatory diagram, (b) is a detailed explanatory diagram of the sensor device, and Fig. 2 shows the arrangement of the fuel assembly and sensor. The explanatory diagram, Figure 3, is the received waveform of the sensor (A). (B) is a diagram of received waveforms at x, , , x, respectively; FIG. 4 is a graph plotting the output signal measured according to the present invention with respect to sensor position 1; (0) indicates the echo height. DESCRIPTION OF SYMBOLS 1... Fuel assembly, 2... Hanging jig, 3... Support stand, 4...: Sensor device, 5... Drive motor part, 6...
・Career, age 2 and age 3

Claims (1)

【特許請求の範囲】 1、 超音波センサを用いて燃料集合体の外周部の燃料
棒からの反射応答時間および燃料棒からの反射エコーと
センサの位置を検出して測定する燃料棒間隙測定法。 2、使用するセンサの周波数を5H七〜/!;MHzと
した特許請求の範囲第1項記載の燃料棒間隙測定法。 6、燃料棒からの反射エコーの先端より/dB以上低下
したエコーを発生するセンサの位置の平均値を、燃料棒
の位置とする特許請求の範囲第1項または第2項記載の
燃料棒間隙測定法。 4、駆動部モータ、キャリヤ、超音波探触子のセンサ、
ケーブルから構成されるセンサ装置を備えた燃料棒間隙
測定装置。
[Claims] 1. A fuel rod gap measurement method that uses an ultrasonic sensor to detect and measure the reflection response time from the fuel rods on the outer periphery of the fuel assembly, the reflection echo from the fuel rods, and the position of the sensor. . 2. Set the frequency of the sensor to 5H7~/! ; MHz is the fuel rod gap measurement method according to claim 1. 6. The fuel rod gap according to claim 1 or 2, wherein the fuel rod position is the average value of the positions of sensors that generate echoes that are lower than the tips of reflected echoes from the fuel rods by /dB or more. Measurement method. 4. Drive motor, carrier, ultrasonic probe sensor,
A fuel rod gap measuring device equipped with a sensor device consisting of a cable.
JP58012010A 1983-01-27 1983-01-27 Method and apparatus for measuring gap between fuel rod Pending JPS59137807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58012010A JPS59137807A (en) 1983-01-27 1983-01-27 Method and apparatus for measuring gap between fuel rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58012010A JPS59137807A (en) 1983-01-27 1983-01-27 Method and apparatus for measuring gap between fuel rod

Publications (1)

Publication Number Publication Date
JPS59137807A true JPS59137807A (en) 1984-08-08

Family

ID=11793610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58012010A Pending JPS59137807A (en) 1983-01-27 1983-01-27 Method and apparatus for measuring gap between fuel rod

Country Status (1)

Country Link
JP (1) JPS59137807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2753266A1 (en) * 1996-09-10 1998-03-13 Reel Sa METHOD FOR DETERMINING THE AMPLITUDE OF DEFORMATIONS OF IRRADIATED NUCLEAR FUEL ASSEMBLIES AND DEVICE CARRYING OUT THIS METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2753266A1 (en) * 1996-09-10 1998-03-13 Reel Sa METHOD FOR DETERMINING THE AMPLITUDE OF DEFORMATIONS OF IRRADIATED NUCLEAR FUEL ASSEMBLIES AND DEVICE CARRYING OUT THIS METHOD
WO1998011559A1 (en) * 1996-09-10 1998-03-19 Reel S.A. Method for determining the condition of a nuclear fuel assembly and device for implementing same

Similar Documents

Publication Publication Date Title
US20130061677A1 (en) Defect detecting system and method
CA1139422A (en) Method and apparatus for ultrasonic tube inspection
CN107870202A (en) A kind of detection method of cable connector internal flaw
GB1421575A (en) Methods and apparatuses for ultrasonic examination
US5426978A (en) Non-destructive axle flaw detecting apparatus
JP2013088242A (en) Ultrasonic testing method and ultrasonic testing apparatus
JPS6317184B2 (en)
JPS59137807A (en) Method and apparatus for measuring gap between fuel rod
JPS62144066A (en) Ultrasonic flaw detector
JPS6342744B2 (en)
JP3638174B2 (en) Method and apparatus for determining wounds to be inspected
JP3616193B2 (en) Method and apparatus for determining wounds to be inspected
JPS6086462A (en) Ultrasonic flaw detecting system
JPH01158348A (en) Ultrasonic flaw detection apparatus
JPH1068716A (en) Manual ultrasonic flaw detection skill training device
JPS6411143B2 (en)
JPS60170764A (en) Ultrasonic flaw detector for turbine disk
JPH0412456Y2 (en)
Christensen et al. Performance survey of ultrasound instrumentation and feasibility of routine monitoring
JPS6341422B2 (en)
JPS6080761A (en) Ultrasonic diagnosing device
JPS6258103A (en) Method for ultrasonic flaw detection
JPS61266907A (en) Detector for surface condition
JPH07128311A (en) Ultrasonic flaw detector
JPH04291149A (en) Ultrasonic flaw detection method for steel pipe and device