JPS59136532A - Fuel control apparatus for internal-combustion engine - Google Patents

Fuel control apparatus for internal-combustion engine

Info

Publication number
JPS59136532A
JPS59136532A JP1248383A JP1248383A JPS59136532A JP S59136532 A JPS59136532 A JP S59136532A JP 1248383 A JP1248383 A JP 1248383A JP 1248383 A JP1248383 A JP 1248383A JP S59136532 A JPS59136532 A JP S59136532A
Authority
JP
Japan
Prior art keywords
engine
intake air
fuel
detecting
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1248383A
Other languages
Japanese (ja)
Inventor
Shunichi Wada
俊一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1248383A priority Critical patent/JPS59136532A/en
Publication of JPS59136532A publication Critical patent/JPS59136532A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/185Circuit arrangements for generating control signals by measuring intake air flow using a vortex flow sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To execute optimum fuel control at all times, by using a heat-sensitive element as a means for detecting the vortex frequency of a vortex flow meter for detecting the quantity of intake air, detecting the mass flow rate from the output of said detecting means, and executing fuel calculation according to the operation zone judged from signals representing the operational conditions of an engine. CONSTITUTION:A vortex generator 6 is disposed in an intake pipe 16 on the downstream side of an air cleaner 1, and hot wires 4, 5 are provided for detecting the frequency of vortices generated by the vortex generator 6. These hot wires 4, 5 are connected to a detecting circuit 7 for a vortex flow meter. A frequency signal equivalent to the valume flow rate of intake air per unit time is obtained in the detecting circuit 7, and the frequency signal is afforded to a fuel control unit 11 together with the outputs of a sensor 3 for detecting the temperature of intake air, an engine-temperature sensor 12, an O2-sensor 13, a sensor 9 for detecting the opening of a throttle valve, an intake-pressure sensor 14, etc. With such an arrangement, a required quantity of fuel is calculated in the fuel control unit 11, and a pulse having a reference duration is applied to a fuel injection valve 8 in synchronism with the above frequency output or the frequecy obtained by frequency-dividing of the same.

Description

【発明の詳細な説明】 本発明は内燃機関の吸入空気量を渦流量計を用いて測定
し、内燃機関の運転を制御する内燃機関の燃料制御装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel control device for an internal combustion engine that measures the intake air amount of the internal combustion engine using a vortex flowmeter and controls the operation of the internal combustion engine.

一般に自動車用空気流量計としては渦流量計ではカルマ
ン渦式のものとスワール式のものとが実用化されており
、いずれも吸入空気量又は流速に略比例した周波数信号
を出力する。この周波数信号は広い流量範囲で流速との
比例定数が一定なため流量計測の精度が良好で、流速の
過渡変化に追随する応答性も非常に速い特長を持つ。し
かし、反面では体積流量計であるために質量流量を計測
できない欠点がある。
Generally, as air flowmeters for automobiles, Karman vortex type and swirl type vortex flowmeters are in practical use, and both output a frequency signal that is approximately proportional to the intake air amount or flow velocity. This frequency signal has a constant proportionality constant with the flow rate over a wide flow rate range, so the accuracy of flow rate measurement is good, and it also has an extremely fast response that follows transient changes in flow rate. However, on the other hand, since it is a volume flow meter, it has the disadvantage that it cannot measure mass flow rate.

例えば自動車の燃料噴射装置のように機関の吸入空気の
質量流量に比例した燃料量を演算する制御装置では、渦
流量計の周波数出力に温度変化に伴う密度補正と圧力変
化に伴う密度補正を行わないと真の質量流量が演算でき
ない欠点がある。この場合、温度を測定する温度センサ
にはサーミスタのように高精度で安価なものが容易に利
用できるが、圧力を測定する圧力センサはそれ自身高価
で容易に利用できない欠点がある。
For example, in a control device such as an automobile fuel injection system that calculates the amount of fuel proportional to the mass flow rate of the engine's intake air, the frequency output of the vortex flow meter is subjected to density correction due to temperature changes and density correction due to pressure changes. Otherwise, there is a drawback that the true mass flow rate cannot be calculated. In this case, a high-precision and inexpensive temperature sensor such as a thermistor can be easily used as a temperature sensor for measuring temperature, but a pressure sensor for measuring pressure has the disadvantage that it is expensive and cannot be easily used.

次に渦流量計は一方向の流れの流速だけしか測負荷で運
転されている場合には吸気脈動によシ吸入空気が逆流(
吹き返し)するため周波数出力が乱れ、計測精度が悪く
なる欠点がある。
Next, when a vortex flowmeter is operated with a measuring load that only flows in one direction, the intake air flows backward due to intake pulsation (
This has the disadvantage that the frequency output is disturbed due to blowback) and measurement accuracy deteriorates.

これらの欠点を解決する手段として、渦の周波数信号の
検出手段に感熱素子を用い、その感熱素子の制御信号の
中から吸入空気の質量流量に対応した信号を同時に検出
するようにすれば、体積流量に対応した周波数信号と質
量流量とを同時に検出することができる。そこで、この
2つの信号を比較することによシ、よシ精度の高い吸入
空気流量の測定が可能になる。
As a means to solve these drawbacks, if a heat-sensitive element is used as a detection means for the frequency signal of the vortex, and a signal corresponding to the mass flow rate of intake air is simultaneously detected from among the control signals of the heat-sensitive element, the volume A frequency signal corresponding to the flow rate and the mass flow rate can be detected simultaneously. Therefore, by comparing these two signals, it becomes possible to measure the intake air flow rate with much higher accuracy.

ところで、この2つの信号の差を引き起す原因の一つは
吸入空気の温度や大気圧力の変化によって生じる密度変
化の成分であシ、この密度変化の速度は非常にゆつくシ
としたものであるため、この補正演算はゆつくシとした
時定数で行えば良い。
By the way, one of the causes of the difference between these two signals is the density change component caused by changes in the intake air temperature and atmospheric pressure, and the speed of this density change is extremely slow. Therefore, this correction calculation can be performed with a slow time constant.

もう一つの原因は吸気脈動によシ生じる成分であシ、こ
の成分は機関の運転状態が高負荷になると発生し、この
条件が外れると瞬時に消滅するため、高速度の応答性が
要求される。このように、元来性質が異る二つの補正要
因を同時に無差別に比較して吸入空気の流量を判定した
場合には、安定な吸入空気量の演算やこれを基にした機
関の燃料量の演算を行うことができないという欠点があ
った。
Another cause is a component generated by intake pulsation. This component occurs when the engine operating condition is under high load, and disappears instantly when this condition is removed, so high-speed responsiveness is required. Ru. In this way, when the intake air flow rate is determined by simultaneously and indiscriminately comparing two correction factors that originally have different properties, it is possible to calculate a stable intake air amount and to calculate the engine fuel amount based on this. The disadvantage was that it was not possible to perform calculations.

本発明は上記の欠点を除去するために成されたものであ
)、機関の運転状態にかかわらずいかなる場合において
も安定な燃料量の演算が可能で、機関の燃料制御を最適
に行うことができる内燃機関の燃料制御装置を提供する
ことを目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks.It is possible to calculate the amount of fuel stably in any case regardless of the operating state of the engine, and to perform optimal fuel control of the engine. An object of the present invention is to provide a fuel control device for an internal combustion engine that can perform the following steps.

以下本発明の実施例を図面とともに説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図において、15は恢関、16は吸気管、17は排
気管、1は吸気管16の先端に設けられたエアクリーナ
、2はクリーナエレメント、3は吸入空気温度を検出す
る吸気温センサ、4,5は熱線、6は渦発生体で、熱線
4,5と渦発生体6は吸気管16内に設けられて渦流量
計の主体部を構成する。7は渦流量計の検出回路、8は
燃料噴射弁、9はスロットル弁10の開度を検出するス
ロットル開度七ンサ、11は燃料制御部、12は@関の
温度を検出する温度センサ、13は排気中の酸素量を検
出する02センサ、14は吸気圧力を検出する圧力セン
サである。
In FIG. 1, 15 is an air conditioner, 16 is an intake pipe, 17 is an exhaust pipe, 1 is an air cleaner provided at the tip of the intake pipe 16, 2 is a cleaner element, 3 is an intake air temperature sensor that detects the intake air temperature, 4 and 5 are hot wires, and 6 is a vortex generator. The hot wires 4 and 5 and the vortex generator 6 are provided in the intake pipe 16 and constitute the main body of the vortex flowmeter. 7 is a detection circuit of a vortex flowmeter, 8 is a fuel injection valve, 9 is a throttle opening sensor that detects the opening of the throttle valve 10, 11 is a fuel control section, 12 is a temperature sensor that detects the temperature of @seki, 13 is an 02 sensor that detects the amount of oxygen in exhaust gas, and 14 is a pressure sensor that detects intake pressure.

又、第2図は検出回路7の詳細を示し、熱線4は抵抗2
3,26,27および演算亀・幅器21と共にプリツノ
回路を構成し、熱ffM4の温度と吸入空気の温度との
差が略一定となるように制御される。35.36は抵抗
、39は演算増幅器21の出力を電流増幅するトランジ
スタ、65は出力V1を安定化させるだめの抵抗である
。この回路部分は渦発生体6の後流側に発生する片側の
カルマン渦列の信号V1を検出するだめのものであるが
、それ自身で熱線流量計の検出回路を構成している。
Further, FIG. 2 shows details of the detection circuit 7, and the hot wire 4 is connected to the resistor 2.
3, 26, 27 and the arithmetic unit/width unit 21 form a Pritsuno circuit, and are controlled so that the difference between the temperature of the heat ffM4 and the temperature of the intake air is approximately constant. 35 and 36 are resistors, 39 is a transistor for current amplifying the output of the operational amplifier 21, and 65 is a resistor for stabilizing the output V1. Although this circuit portion is only for detecting the signal V1 of the one-sided Karman vortex street generated on the downstream side of the vortex generator 6, it constitutes the detection circuit of the hot wire flowmeter by itself.

今、熱線4の抵抗温度係数と抵抗27の抵抗温度係数を
等しく設定すれば黙想4の温度制御は熱線流速計のいわ
ゆる温度差変化法によって行われ、熱線4を流れる電流
IHは吸入空気の温贋、圧力の変化にかかわらずjx量
流足に対応した値となシ、演算増幅器21のV十もしく
はV−の電圧値は質量流量に対応した値となる。同様に
熱線5は抵抗24゜29.30,37,38,66、演
算増幅器22およびトランジスタ40で構成される温度
制御回路によって熱線流速計の温度差変化法によシ温度
制御され、この回路部分でもう一方のカルマン渦列の信
号V2を検出し、又演算増幅器22のv+もしくはV−
の電圧値は質量流量に対応した値となる。
Now, if the temperature coefficient of resistance of the hot wire 4 and the temperature coefficient of resistance of the resistor 27 are set equal, the temperature control in Meditation 4 will be performed by the so-called temperature difference change method using a hot wire anemometer, and the current IH flowing through the hot wire 4 will be the temperature of the intake air. In this case, the voltage value of V+ or V- of the operational amplifier 21 becomes a value corresponding to the mass flow rate, regardless of the change in pressure. Similarly, the temperature of the hot wire 5 is controlled by a temperature control circuit composed of resistors 24°29.30, 37, 38, 66, an operational amplifier 22, and a transistor 40 using the temperature difference change method of a hot wire anemometer. Then, the signal V2 of the other Karman vortex street is detected, and the signal V+ or V- of the operational amplifier 22 is detected.
The voltage value corresponds to the mass flow rate.

又、コンデンサ41,44、抵抗42,43゜45.4
6,47および演算増幅器48から成る回路は信号V、
、V、の差信号を増幅して出力■3を得る。抵抗50〜
53および電圧比較器49から成る回路は波形整形回路
で、周波数出力V4を得る。
Also, capacitors 41, 44, resistors 42, 43°45.4
6, 47 and an operational amplifier 48 receives the signal V,
, V, is amplified to obtain output (3). Resistance 50~
53 and voltage comparator 49 is a waveform shaping circuit and obtains a frequency output V4.

抵抗28.31.32から成る回路は加算回路で、演算
増幅器21のV+と演算増幅器22のV十の平均を取シ
、出力■、を得る。缶出力■1〜V、の波形を第3図に
示す。
The circuit consisting of the resistors 28, 31, and 32 is an adder circuit, which takes the average of V+ of the operational amplifier 21 and V+ of the operational amplifier 22, and obtains an output . The waveforms of the can outputs 1 to 1 V are shown in FIG.

上記構成において、摘発生体6の後流には左右対称で規
則的なカルマン渦列が発生する。熱線4゜5は吸入空気
の平均流速により冷却されるとともに交互に高周波の渦
周波数で冷却される。このため、熱線4,5を所望の温
度に保つだめの制御電圧V、 、 V2は平均流速に対
応した成分V、 、 V2およびカルマン渦による流速
変化に対応した成分△■、。
In the above configuration, a symmetrical and regular Karman vortex street is generated downstream of the extraction body 6. The hot wire 4.5 is cooled by the average flow velocity of the intake air and alternately by the high frequency vortex frequency. Therefore, the control voltages V, , V2 for keeping the hot wires 4 and 5 at a desired temperature have components V, , V2 corresponding to the average flow velocity and components Δ■, corresponding to the change in flow velocity due to the Karman vortex.

△V、とから成る。△V、と△v2は極性が反対であシ
、KIX(△V1−△V2)よシ信号v3カ得られ、信
号■。
It consists of △V. Since △V and △v2 have opposite polarities, a signal v3 is obtained from KIX (△V1-△V2), and a signal ■.

を波形整形して周波数信号v4が得られる。信号v4の
周波数と吸入空気の流速との比率は略一定であシ、吸入
空気の単位時間当シの体積流量に等しい周波数信号■、
が得られる。
A frequency signal v4 is obtained by waveform shaping. The ratio between the frequency of the signal v4 and the flow rate of the intake air is approximately constant, and the frequency signal is equal to the volumetric flow rate of the intake air per unit time.
is obtained.

次に、熱線4と抵抗27、および熱線5と抵抗30の抵
抗温度係数を等しくなるようにすれば、熱線4,5は夫
々吸入空気との温度差が吸入空気の温度上昇に応じて少
しずつ大きくなってゆくいわゆる熱線流速計の温度差変
化法により制御される。このため、吸入空気の温度、圧
力にかかわらず吸入空気の質量流量を検出することがで
きる。この質量流量の関数は熱IVi14 、5の制御
電流であシ、固、淀抵抗23.24の端子電圧も質量流
量の関数である。このため、渦による変調分を加算回路
で打消しあったアナログ出力V、は V5−(A + Bu’& )q  ただしUは質量流
ft(”/i、r)となシ、通常の熱線流速計と同じア
ナログ出力を得ることができる。
Next, by making the resistance temperature coefficients of the hot wire 4 and the resistor 27 and the hot wire 5 and the resistor 30 equal, the temperature difference between the hot wires 4 and 5 and the intake air will gradually increase as the temperature of the intake air increases. Controlled by the increasing temperature difference method of so-called hot wire anemometers. Therefore, the mass flow rate of the intake air can be detected regardless of the temperature and pressure of the intake air. This function of the mass flow rate is the control current of the thermal IVi14,5, and the terminal voltage of the fixed and stagnation resistor 23.24 is also a function of the mass flow rate. Therefore, the analog output V, in which the modulation caused by the vortex is canceled by the addition circuit, is V5-(A + Bu'& )q, where U is the mass flow ft(''/i, r), and the normal hot wire You can get the same analog output as a current meter.

第1図に示した燃料制御部11には、渦流量計の検出回
路7における周波数出力v4およびアナログ出力V3、
吸気温センサ3の出力、温度センサ12の出力、02セ
ンサ13の出力、スロットル開度センサ9の出力、圧力
上ンサ14の出力および図示されてないがエンジン回転
数情報、クランキング信号その他の機関の運転情報が入
力される。燃料制御部11はこれらの入力に基いて演算
を行って機関の必要燃料量を算出し、周波数出力V4も
しくはその分周された周波数に同期して基準の時間幅の
パルスを燃料噴射弁8に加え、機関に必要燃料量を供給
する。このようにすれば、機関に単位時間に吸入された
空気流量に応じである時間内の平均燃料流量を制御する
ことができる。何故ならば、基準時間幅の一個の電圧パ
ルスによシ噴射される燃料の量は一定であるからある時
間内の平均燃料流蓋はその電圧パルスの周波数に比例す
るからである。
The fuel control unit 11 shown in FIG. 1 includes a frequency output v4 and an analog output V3 in the detection circuit 7 of the vortex flow meter.
The output of the intake air temperature sensor 3, the output of the temperature sensor 12, the output of the 02 sensor 13, the output of the throttle opening sensor 9, the output of the pressure sensor 14, and although not shown, engine speed information, cranking signals, and other engine information. driving information is input. The fuel control unit 11 performs calculations based on these inputs to calculate the required amount of fuel for the engine, and sends a pulse with a standard time width to the fuel injection valve 8 in synchronization with the frequency output V4 or its frequency divided frequency. In addition, it supplies the required amount of fuel to the engine. In this way, the average fuel flow rate within a certain period of time can be controlled in accordance with the air flow rate taken into the engine per unit time. This is because the amount of fuel injected by one voltage pulse of a reference duration is constant, so the average fuel flow rate over a period of time is proportional to the frequency of that voltage pulse.

ところで、前述のように周波数出力V4は機関の′吸入
空気の体積流量に比例しているため、機関に必要な燃料
流量を制御するには吸入空気の温度や圧力の値に応じた
密度の補正が必要である。この密度の変化速度は吸入空
気量の変化速度に比べて非常にゆつくシとしたものであ
シ、密度補正の演算速度もゆっくりと行えば良い。一方
、アナログ出力V、は吸入空気の質量流量に対応した値
であシ、アナログ出力V、から逆算された吸入空気の質
量流量の値と周波数出力V4から得られる吸入空気の体
積流量を燃料制御部11で比較すれば、吸入空気の密度
の情報が得られる。この比較演算はゆっくりと行えば良
いので、機関の吸入空気の変動が少い低負荷の定常運転
状態で行うだけで良い。このようにして得られた密度の
情報に応じて燃料噴射弁8に加えるパルスの時間幅を変
化させれば噴射燃料量を吸入空気の質量流量に応じて制
御することが可能である。又、この密度の情報の判定の
演算を、機関の運転状態を示すその他の各種パラメータ
の情報によシ機関の運転ゾーンを判定して機関の吸入空
気の変動が少い低負荷の定常運転状態のゾーンだけで行
うことによシ、よシ正確な密度補正の演算が可能である
By the way, as mentioned above, the frequency output V4 is proportional to the volumetric flow rate of the engine's intake air, so in order to control the fuel flow rate required for the engine, the density must be corrected according to the temperature and pressure of the intake air. is necessary. The rate of change in this density is very slow compared to the rate of change in the amount of intake air, and the calculation speed for density correction may also be slow. On the other hand, the analog output V, is a value corresponding to the mass flow rate of the intake air, and the volume flow rate of the intake air obtained from the value of the mass flow rate of the intake air calculated back from the analog output V, and the frequency output V4 is used for fuel control. By comparing in section 11, information on the density of the intake air can be obtained. This comparison calculation can be performed slowly, so it only needs to be performed in a low-load, steady-state operating state where there are few fluctuations in the intake air of the engine. By changing the time width of the pulse applied to the fuel injection valve 8 in accordance with the density information obtained in this manner, it is possible to control the amount of injected fuel in accordance with the mass flow rate of intake air. In addition, the calculation for determining this density information is performed based on information on various other parameters that indicate the operating state of the engine, and the operating zone of the engine is determined to determine whether the engine is in a low-load steady operating state with little fluctuation in intake air. By performing the calculation only in the zone, it is possible to calculate the density correction more accurately.

次に、機関の運転状態が低回転、高負荷で吸気脈動が大
きいゾーンの場合を考える。この場合には吸入空気の逆
流(吹き返し)が発生するため、周波数出力焉は乱れや
ゆらぎが大きくなる欠点がある。もちろん、アナログ出
力■、も逆流のため真の吸入空気の質量流量よシは大き
い側へずれた出力を出すが、周波数出力V4はどの乱れ
は生じない。
Next, let us consider a case where the engine is operating in a zone where the engine speed is low, the load is high, and the intake pulsation is large. In this case, a backflow (blown back) of the intake air occurs, which has the disadvantage that the frequency output becomes more turbulent and fluctuates. Of course, the analog output (2) also outputs an output that is deviated from the true mass flow rate of intake air to the larger side due to the reverse flow, but no disturbance occurs in the frequency output V4.

このだめ、機関の運転状態を示すその他の各種パラメー
タの情報によりこの低回転高負荷の運転ゾーンを判定し
、この運転ゾーンの中でアナログ出力■、から得られた
流量情報と周波数出力v4から得られた流量情報を比較
し、最適な燃料流量を得るための補正演算を行うように
すれば、よシ正確な機関の燃料制御の演算が可能である
In this case, the low rotation and high load operating zone is determined based on information on various other parameters that indicate the operating status of the engine, and within this operating zone, the flow rate information obtained from the analog output ■ and the frequency output v4 are determined. By comparing the obtained flow rate information and performing correction calculations to obtain the optimum fuel flow rate, it is possible to perform highly accurate engine fuel control calculations.

又、このようにゾーン判定を行うことにより他のゾーン
への悪影響を避け、より正確な吸入空気流量の演算がで
きる。さらには02センサ13の出検定、再補正および
学習機能等の制御ができる。
Further, by performing zone determination in this manner, adverse effects on other zones can be avoided, and the intake air flow rate can be calculated more accurately. Furthermore, output verification, re-correction and learning functions of the 02 sensor 13 can be controlled.

又、低負荷定常運転の代表点としてアイドル運転状態を
判定し、前記密度補正の補正演算の計算を行うようにし
ても密度補正の目的には充分である。
Further, it is sufficient for the purpose of density correction to determine the idle operating state as a representative point of low-load steady operation and to perform the correction calculation for the density correction.

以上のように本発明においては、機関の吸入空気量検出
に渦流量計を用いるとともに渦流量計の渦周波数の検電
手段に感熱素子を用い、吸入空気の体積流量を渦周波数
により検出するとともに感熱素子の電気信号の中から質
量流蓋の値を検出し、機関の運転状態を示す入力情報を
基に機関の運転ゾーンを判定し、この運転ゾーンに応じ
て燃料演算を選択的に行うようにしている。このため、
吸入空気の変動が少い低負荷定常運転状態では周波数信
号の密度補正を行うことによシ正確な密度補正を行うこ
とができ、又吸気脈動が大きい高負荷運転ゾーンでは該
ゾーンで生じる周波数信号の乱れを効果的に補正するこ
とができ、機関の最適な燃料制御を行うことができる。
As described above, in the present invention, a vortex flowmeter is used to detect the amount of intake air in the engine, and a heat-sensitive element is used as a means for detecting the vortex frequency of the vortex flowmeter, and the volumetric flow rate of the intake air is detected by the vortex frequency. The system detects the value of the mass flow cap from the electrical signal of the heat-sensitive element, determines the engine operating zone based on the input information indicating the engine operating status, and selectively performs fuel calculations according to this operating zone. I have to. For this reason,
Accurate density correction can be performed by performing density correction of the frequency signal in low-load steady operation conditions where there are few fluctuations in intake air, and in high-load operation zones where intake pulsation is large, the frequency signal generated in the zone turbulence can be effectively corrected, and optimal fuel control for the engine can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の構成図、第2図は本発明に係る渦
流量計の検出回路の構成図、第3図は第2図に示した検
出回路における各部の電圧波形図である。 3・・・吸気温センサ、4,5・・・熱線、6・・・渦
発生体、7・・・検出回路、8・・・燃料噴射弁、9・
・・スロットル開度センサ、11・・・燃料制御部、1
2・−・温度センサ、13・・・02センサ、14・−
・圧力センサ、15・・・機関、16・・・吸気管、1
7・・・排気管。 尚、図中同一符号は同−又は相当部分を示す。 代理人   葛  野  信  − −一−−−−−−−−−−−−−−↑ 1.事件の表示   特願昭 58−12483号2、
発明の名称 内燃機関の燃料制御装置 3、補正をする者 代表者片山仁へ部 4、代理人 5、 補正の対象 明細書の発明の詳細な説明の欄。 6、 補正の内容 第8頁第4行のrKIX(△Vl−△■2)」を「K1
×(△■l−Δ■2)」  と補正する。 以上
FIG. 1 is a block diagram of the apparatus of the present invention, FIG. 2 is a block diagram of a detection circuit of a vortex flow meter according to the present invention, and FIG. 3 is a voltage waveform diagram of each part in the detection circuit shown in FIG. 3... Intake temperature sensor, 4, 5... Heat wire, 6... Vortex generator, 7... Detection circuit, 8... Fuel injection valve, 9...
...Throttle opening sensor, 11...Fuel control section, 1
2...Temperature sensor, 13...02 sensor, 14...
・Pressure sensor, 15... Engine, 16... Intake pipe, 1
7...Exhaust pipe. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Shin Kuzuno − −1−−−−−−−−−−−−−−↑ 1. Indication of the incident Patent application No. 58-12483 2,
Name of the invention Fuel control device for internal combustion engine 3, Person making the amendment Representative Hitoshi Katayama Department 4, Agent 5 Column for detailed explanation of the invention in the specification to be amended. 6. Contents of correction Change rKIX(△Vl-△■2) in the 4th line of page 8 to ``K1
×(△■l−Δ■2)”. that's all

Claims (4)

【特許請求の範囲】[Claims] (1)機関の吸気通路内に設けられ、機関の吸入空気の
流速を流体的な渦の変化としてとらえ、この渦の変化を
少くとも一個の感熱素子によシミ気信号の周波数の変化
としてとらえ、吸気流速に略比例した周波数信号を出力
する手段と、感熱素子の電気信号の中から吸入空気の質
量流量に対応した信号を出力する手段を備え、これらの
手段の出力および機関の運転状況を表わす入力情報に基
いて燃料演算を行い、この演算結果に基いて燃料供給を
行うようにした内燃機関の燃料制御装置において、機関
の運転状況を表わす入力情報であるエンジン回転数、ア
クセル一度、冷却水温、吸気管負圧、02センサおよび
吸気温度のうちの少くとも一つの要素に応じて機関の運
転ゾーンを判定し、この運転ゾーンに応じて燃料演算を
選択的に行うようにしたことを特徴とする一内燃機関の
燃料制御装置。
(1) Installed in the intake passage of the engine, which detects the flow velocity of the engine's intake air as a change in a fluid vortex, and detects the change in this vortex as a change in the frequency of a stain signal by at least one heat-sensitive element. , a means for outputting a frequency signal approximately proportional to the intake air flow velocity, and a means for outputting a signal corresponding to the mass flow rate of the intake air from among the electrical signals of the heat-sensitive element, and the output of these means and the operating status of the engine are In a fuel control system for an internal combustion engine that performs fuel calculation based on the input information that represents the engine and supplies fuel based on the calculation result, the input information that represents the operating status of the engine is the engine speed, acceleration, and cooling. The engine operating zone is determined according to at least one of the following elements: water temperature, intake pipe negative pressure, 02 sensor, and intake air temperature, and fuel calculation is selectively performed according to this operating zone. A fuel control device for an internal combustion engine.
(2)機関の運転状況を表わす入力情報によシ機関の高
負荷運転ゾーンを判定し、機関の吸入空気の脈動による
急激な流速変化に゛よシ発生する流体的な渦の乱れに基
く前記周波数信号の乱れを前記質量流量に対応した信号
に応じて補正するようにしたことを特徴とする特許請求
の範囲第1項記載の内燃機関の燃料制御装置。
(2) The high-load operating zone of the engine is determined based on input information representing the operating status of the engine, and the 2. The fuel control device for an internal combustion engine according to claim 1, wherein disturbances in the frequency signal are corrected in accordance with the signal corresponding to the mass flow rate.
(3)機関の運転状況を表わす入力情報によシ機関の低
負荷定常運転ゾーンを判定し、前記周波数信号の密度に
よる変化を前記質量流量に対応した信号に応じて補正す
るようにしたことを特徴とする特許請求の範囲第1項記
載の内燃機関の燃料制御装置。
(3) The low-load steady-state operating zone of the engine is determined based on input information representing the operating status of the engine, and changes due to the density of the frequency signal are corrected in accordance with the signal corresponding to the mass flow rate. A fuel control device for an internal combustion engine according to claim 1.
(4)低負荷定常運転ゾーンがアイドル運転状態である
ことを特徴とする特許請求の範囲第3項記載の内燃機関
の燃料制御装置。
(4) The fuel control system for an internal combustion engine according to claim 3, wherein the low load steady operation zone is an idle operation state.
JP1248383A 1983-01-26 1983-01-26 Fuel control apparatus for internal-combustion engine Pending JPS59136532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1248383A JPS59136532A (en) 1983-01-26 1983-01-26 Fuel control apparatus for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1248383A JPS59136532A (en) 1983-01-26 1983-01-26 Fuel control apparatus for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59136532A true JPS59136532A (en) 1984-08-06

Family

ID=11806638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1248383A Pending JPS59136532A (en) 1983-01-26 1983-01-26 Fuel control apparatus for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59136532A (en)

Similar Documents

Publication Publication Date Title
US4320650A (en) Flow rate measuring apparatus having vortex-generating element and hot wire element
US4502325A (en) Measurement of mass airflow into an engine
US4386520A (en) Flow rate measuring apparatus
US4457166A (en) Engine intake air flow measuring apparatus
JPS58135916A (en) Thermal flow meter for internal combustion engine
JP3421245B2 (en) Heating resistor type air flow measurement device
JPH0421809B2 (en)
JPH0326436B2 (en)
JPS5951661B2 (en) fuel injected engine
JPS59136532A (en) Fuel control apparatus for internal-combustion engine
JPH06265385A (en) Air flow rate measuring instrument
JP2004170357A (en) Exhaust gas flow rate measuring device and exhaust gas flow rate measuring method
KR0163456B1 (en) Intake air flow rate detector of internal combustion engine
JP2533479B2 (en) Heating resistance type air flow meter
JPS5827015A (en) Airflow measuring device for automobile
JP3200005B2 (en) Heating resistance type air flow measurement device
JPS5827016A (en) Device for controlling engine
JPS595842A (en) Fuel controlling apparatus for internal combustion engine
JPS6273124A (en) Heat type flow rate detector
JPH075009A (en) Air flowrate measuring device of engine, fuel injection controller, and flow sensor to be used therein
JPS6014908Y2 (en) Intake air amount detection device for internal combustion engine
JP2510151B2 (en) Thermal air flow measuring device for engine
JPS58120121A (en) Air flowmeter for internal combustion engine
JPS59136619A (en) Vortex flowmeter
JPH0143883B2 (en)