JPH06265385A - Air flow rate measuring instrument - Google Patents

Air flow rate measuring instrument

Info

Publication number
JPH06265385A
JPH06265385A JP5053586A JP5358693A JPH06265385A JP H06265385 A JPH06265385 A JP H06265385A JP 5053586 A JP5053586 A JP 5053586A JP 5358693 A JP5358693 A JP 5358693A JP H06265385 A JPH06265385 A JP H06265385A
Authority
JP
Japan
Prior art keywords
resistor
temperature
air flow
flow rate
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5053586A
Other languages
Japanese (ja)
Inventor
Chihiro Kobayashi
千尋 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5053586A priority Critical patent/JPH06265385A/en
Publication of JPH06265385A publication Critical patent/JPH06265385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To stabilize the measurement accuracy of an air flow rate measuring instrument even when a reverse flow occurs due to large variation of the flowing speed of air by arranging a plurality of pieces of temperature sensitive resistors for detecting the temperature of intake air. CONSTITUTION:An exothermic resistor 4 has such a structure that cannot distinguish the flowing speed of air in the normal direction with that in the reverse direction and causes the jumping of its output voltage by outputting the flowing speed in the reverse direction in the same way as that for the flowing speed in the normal direction. Therefore, a temperature sensitive resistor A 5 is arranged at a position where the resistor A 5 is easily affected by the heat of the resistor 4 when air flows in the reverse direction and another temperature sensible resistor B 6 at another position where the resistor B 6 is hardly affected by the heat of the resistor 4 when the air flows in the normal or reverse direction. The resistor B 6 indicates a fixed intake-air temperature when such a state occurs that a reverse flow is generated at a fixed intake-air temperature, but the resistor A 5 is affected by the heat of the resistor 4 and its detecting temperature abruptly changes only when a reverse flow occurs. On the other hand, the detecting temperature of the resistor A 5 similarly changes when the intake-air temperature changes, but the temperature change is not so abrupt as compared with that at the time of reverse flow. Therefore, the presence/absence and flow rate of a reverse flow in an intake pipe can be discriminated from the variation of the detecting temperature of the resistor A 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用エンジンの吸
入空気流量を検出する空気流量測定装置に係わり、特
に、吸入空気温度を検出するための感温抵抗体及び、吸
入空気流量を測定する為の発熱抵抗体を備えた発熱抵抗
式空気流量装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow rate measuring device for detecting an intake air flow rate of an automobile engine, and more particularly to a temperature sensitive resistor for detecting an intake air temperature and an intake air flow rate. The present invention relates to a heat generating resistance type air flow device having a heat generating resistor.

【0002】[0002]

【従来の技術】現在、自動車エンジン等においては、燃
費向上及び排気ガス浄化を図るため、吸入空気流量を測
定して燃料噴射制御手段(マイクロコンピュータ制御)
により空燃比,点火タイミングを制御するシステムが主
流である。このような吸入空気流量を測定する空気流量
測定装置には、例えば熱線の抵抗温度特性を利用し、空
気流量を測定するものが有る。この種の空気流量測定装
置は、質量流量を直接測定できる、高速応答性に優れか
つ、配置スペースを然程要しない等の利点を有するた
め、自動車エンジンの吸入空気流量測定用として適して
いる。
2. Description of the Related Art At present, in automobile engines and the like, in order to improve fuel efficiency and purify exhaust gas, an intake air flow rate is measured to control fuel injection (microcomputer control).
The mainstream system is a system that controls the air-fuel ratio and ignition timing. Some air flow rate measuring devices for measuring such an intake air flow rate measure the air flow rate by utilizing, for example, the resistance temperature characteristic of a heat wire. This type of air flow rate measuring device is suitable for measuring the intake air flow rate of an automobile engine because it has the advantages that it can directly measure the mass flow rate, has excellent high-speed response, and does not require much space for arrangement.

【0003】しかし、この種の空気流量測定装置はエン
ジンの高負荷において、ピストンの往復運動に伴う空気
速度の変動(脈動)が測定精度に影響を及ぼす。例え
ば、発熱抵抗体はその構造上、正方向流速と逆方向流速
の区別ができず、正方向流速と逆方向流速を同一出力し
てしまい、高負荷時にエンジンからの吹き返しによる逆
流が発生した場合、発熱抵抗体の出力電圧が実際の吸入
空気流量より多くなってしまう、いわゆる跳ね上がり現
象が生じてしまい、これは制御システムを正常にコント
ロールする課題の一つとなっている。
However, in this type of air flow rate measuring device, the fluctuation of the air velocity (pulsation) due to the reciprocating movement of the piston affects the measurement accuracy under a high load of the engine. For example, when the heating resistor cannot distinguish between the forward flow velocity and the reverse flow velocity due to its structure, the forward flow velocity and the reverse flow velocity are output the same, and the reverse flow occurs due to blowback from the engine at high load. A so-called jump-up phenomenon occurs in which the output voltage of the heating resistor becomes larger than the actual intake air flow rate, which is one of the problems to normally control the control system.

【0004】発熱抵抗式空気流量計における跳ね上がり
の対策方法としては、特開昭61−65053 号に記載の様な
主空気流路中に副空気流路を備え、副空気流路の中に発
熱抵抗体を配置する構造を有る。
As a countermeasure against the spring-up in the heating resistance type air flow meter, a sub air passage is provided in the main air passage as described in JP-A-61-65053, and heat is generated in the sub air passage. It has a structure for arranging resistors.

【0005】[0005]

【発明が解決しようとする課題】以上のような従来の空
気流量測定装置においては、副空気流路により、副空気
流路出口部から直接進入する逆流を防止することは可能
である。しかし、実際の吸気管内では逆流が発生する領
域においては正方向の流速も増加することが知られてい
る。これは、逆流として吹返えされる分が正方向分とし
て吸入されるものである。
In the conventional air flow rate measuring device as described above, it is possible to prevent the backflow directly entering from the outlet of the sub air flow passage by the sub air flow passage. However, it is known that in the actual intake pipe, the flow velocity in the forward direction also increases in the region where the reverse flow occurs. In this, the part that is blown back as a reverse flow is sucked in as a positive direction part.

【0006】よって、発熱抵抗体式空気流量計の跳ね上
がり対策方法としては、逆流分を正確に計測する必要が
ある。
Therefore, it is necessary to accurately measure the amount of backflow as a countermeasure against the jumping up of the heating resistor type air flow meter.

【0007】本発明は、以上の課題の対策案として発明
されたものであり、その目的とするところは、空気速度
の変動が大きく逆流が発生した場合でも安定した測定精
度を保持した空気流量測定装置を提供することにある。
The present invention was invented as a measure against the above problems, and an object thereof is to measure an air flow rate while maintaining a stable measurement accuracy even when a backflow occurs due to a large fluctuation of the air velocity. To provide a device.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、発熱抵抗体を1本と、感温抵抗体を2本
以上配置し、内一本を発熱抵抗体の上流側に配置し、逆
流時に発熱抵抗体の温度を感温抵抗体1が検出する構造
とした。これにより、感温抵抗体1の温度変化をスイッ
チングとして利用して吸気管内の逆流の有無を判定する
構造としたものである。
In order to achieve the above object, the present invention arranges one heating resistor and two or more temperature sensitive resistors, one of which is on the upstream side of the heating resistor. The temperature-sensitive resistor 1 detects the temperature of the heating resistor during reverse flow. Thus, the temperature change of the temperature sensitive resistor 1 is used as switching to determine the presence or absence of backflow in the intake pipe.

【0009】[0009]

【作用】この様な構成による本発明によれば、発熱抵抗
体の上流側に配置した感温抵抗体1の温度変化により吸
気管内の逆流の有無を判定でき、その温度変化の大きさ
により発熱抵抗体式空気流量計の出力電圧に補正を加え
ることにより、空気速度の変動が大きいエンジンに装着
された場合でも安定した測定精度を保持出来、脈動影響
の少ない空気流量測定装置を提供することができる。
According to the present invention having such a configuration, the presence or absence of backflow in the intake pipe can be determined by the temperature change of the temperature sensitive resistor 1 arranged on the upstream side of the heat generating resistor, and the amount of the temperature change causes heat generation. By correcting the output voltage of the resistor air flow meter, it is possible to maintain stable measurement accuracy even when mounted on an engine with large fluctuations in air velocity, and to provide an air flow measurement device with less pulsation influence. .

【0010】[0010]

【実施例】以下、本発明による空気流量測定装置を発熱
抵抗体式空気流量計を例にとり、図示の実施例により詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The air flow measuring device according to the present invention will be described in detail below with reference to the illustrated embodiment, taking a heating resistor type air flow meter as an example.

【0011】まず図1は本発明の一実施例を示す空気流
量測定装置の横断面図である。空気通路を構成するボデ
ィ2は、主空気流路9内に制御回路内蔵モジュール1に
機械的に固定されたベンチュリ管3が配置されている。
さらに、前記ベンチュリ管3内には、吸入空気流量を検
出するための発熱抵抗体4及び吸入空気温度を検出する
ための感温抵抗体A5,感温抵抗体B6が設置されてい
る。発熱抵抗体4と感温抵抗体A5及び、感温抵抗体B
6は、導電性部材から成る支持材7を介して、制御回路
内蔵モジュール1と電気的に接続されている。発熱抵抗
体4は感温抵抗体B6に対してある一定温度差を持つよ
うに加熱され、空気流量に応じた出力特性を得るように
駆動回路は構成されている。また、感温抵抗体B6は発
熱抵抗体4との温度差に関係無く、吸入空気温度を計測
する働きを持っている。尚、図に示すベンチュリ管3は
装着されない状態でもかまわない。
First, FIG. 1 is a cross-sectional view of an air flow rate measuring apparatus showing an embodiment of the present invention. In the body 2 forming the air passage, a venturi pipe 3 mechanically fixed to the control circuit built-in module 1 is arranged in the main air flow passage 9.
Further, in the venturi pipe 3, a heating resistor 4 for detecting the intake air flow rate and a temperature sensitive resistor A5 and a temperature sensitive resistor B6 for detecting the intake air temperature are installed. Heating resistor 4, temperature-sensitive resistor A5, and temperature-sensitive resistor B
Reference numeral 6 is electrically connected to the control circuit built-in module 1 through a support member 7 made of a conductive member. The heating resistor 4 is heated so as to have a certain temperature difference with respect to the temperature sensitive resistor B6, and the drive circuit is configured to obtain an output characteristic according to the air flow rate. Further, the temperature sensitive resistor B6 has a function of measuring the intake air temperature regardless of the temperature difference between the temperature sensitive resistor B6 and the heating resistor 4. The Venturi tube 3 shown in the figure may be in a state where it is not mounted.

【0012】本実施例の様な発熱抵抗体式空気流量計に
おいては、エンジンの高負荷において、ピストンの往復
運動に伴う空気速度の変動(脈動)が大きくなると、エ
ンジンからの吹き返しによる逆流等の影響により発熱抵
抗体式空気流量計出力電圧の跳ね上がり現象が発生し、
測定精度に影響を及ぼすことが一般的に知られている。
図3にその現象の図を示す。図は回転数を一定に保った
状態で、横軸にインテークマニュホールド内の吸入負圧
を示し、縦軸に、発熱抵抗体式空気流量計の出力電圧を
示している。スロットルバルブ開度の全開付近におい
て、直線的になる状態が正常の特性、急上昇するのが跳
ね上がり現象である。図2はエンジンの吸気管内におけ
る吸入空気脈動を示した図である。本図は特に脈動の大
きな状態(低回転のスロットルバルブ全開付近)を示し
ている。発熱抵抗体はその構造上、正方向流速と逆方向
流速の区別が出来ず図2の記号12に示すような逆方向
流速を、正方向流速と同一出力してしまうことが発熱抵
抗体式空気流量計の出力電圧が跳ね上がってしまう原因
である。
In the heating resistor type air flow meter as in the present embodiment, when the air velocity fluctuation (pulsation) accompanying the reciprocating motion of the piston becomes large under a high load of the engine, the influence of backflow due to blowback from the engine, etc. Causes the output voltage of the heating resistor type air flow meter to jump,
It is generally known that the measurement accuracy is affected.
FIG. 3 shows a diagram of the phenomenon. In the figure, the horizontal axis shows the suction negative pressure in the intake manifold, and the vertical axis shows the output voltage of the heating resistor type air flow meter, with the rotation speed kept constant. When the throttle valve opening is near full opening, a linear state is a normal characteristic, and a sharp rise is a jumping phenomenon. FIG. 2 is a diagram showing intake air pulsation in the intake pipe of the engine. This figure shows a state in which the pulsation is particularly large (around the fully opened throttle valve at low speed). Due to the structure of the heating resistor, it is not possible to distinguish between the forward flow velocity and the backward flow velocity, and it is possible that the backward flow velocity as shown by symbol 12 in FIG. This is the cause of the output voltage of the meter jumping up.

【0013】本発明においては、逆流時に発熱抵抗体4
の熱影響を受け易い位置に感温抵抗体A5が配置され、
感温抵抗体B6は、正流及び逆流のいずれにおいても発
熱抵抗体4の熱影響を受けにくい位置に配置されてい
る。本構造においては、ある一定の吸気温度時に逆流が
発生するような状態になると、図4に示すように感温抵
抗体B6は一定の吸気温度を示すが、感温抵抗体A5の
検出温度は発熱抵抗体4の熱影響を受け、図に示すよう
に逆流時のみ検出温度が急激に変化する。また、吸入温
度が変化する場合においては感温抵抗体A5の検出温度
は同様に変化するが、逆流時と比べ、その温度変化は急
激ではない。すなわち、この感温抵抗体A5の検出温度
出力変化の度合いにより吸気管内における逆流の有無
が、判定できることになる。感温抵抗体A5の検出温度
出力変化の度合いを知るには、マイコンを利用して、感
温抵抗体A5の検出温度出力変化の微分値を取ることが
考えられる。また、その微分値の大きさにより逆流の量
を知ることが可能である。
According to the present invention, the heating resistor 4 is used when the backflow occurs.
The temperature-sensitive resistor A5 is placed at a position that is easily affected by the heat of
The temperature sensitive resistor B6 is arranged at a position where it is unlikely to be affected by the heat of the heating resistor 4 in both forward flow and reverse flow. In this structure, when the backflow occurs at a certain constant intake air temperature, the temperature-sensitive resistor B6 shows a constant intake temperature as shown in FIG. 4, but the detected temperature of the temperature-sensitive resistor A5 is Due to the heat effect of the heating resistor 4, the detected temperature changes rapidly only during reverse flow as shown in the figure. Further, when the suction temperature changes, the detected temperature of the temperature sensitive resistor A5 also changes, but the temperature change is not abrupt as compared with the case of backflow. That is, the presence or absence of backflow in the intake pipe can be determined by the degree of change in the detected temperature output of the temperature sensitive resistor A5. In order to know the degree of change in the detected temperature output of the temperature sensitive resistor A5, it is conceivable to use a microcomputer to take the differential value of the change in the detected temperature output of the temperature sensitive resistor A5. Also, the amount of backflow can be known from the magnitude of the differential value.

【0014】以上、説明した通り感温抵抗体A5の検出
温度出力変化の度合いを知ることにより逆流の有無及
び、その量を知ることが可能であり、発熱抵抗体式空気
流量計の出力電圧が跳ね上り時に逆流量を補正すること
により真の吸入空気流量を測定することが可能であり信
頼性の高い空気流量測定装置を提供することができる。
当然の事ではあるが、本構造の様な空気流量測定装置の
場合、逆流量の補正は空気流量測定装置自身が行って
も、エンジンコントロールユニットが行ってもどちらで
も良い。
As described above, by knowing the degree of change in the detected temperature output of the temperature sensitive resistor A5, it is possible to know the presence or absence of backflow and its amount, and the output voltage of the heating resistor type air flow meter jumps. A true intake air flow rate can be measured by correcting the reverse flow rate when going up, and a highly reliable air flow rate measurement device can be provided.
As a matter of course, in the case of the air flow rate measuring device having this structure, the reverse flow rate may be corrected by the air flow rate measuring device itself or by the engine control unit.

【0015】[0015]

【発明の効果】本発明によれば、脈動影響による跳ね上
がり現象を低減し信頼性の高い空気流量測定装置を提供
することができる。
According to the present invention, it is possible to provide a highly reliable air flow rate measuring device in which the jumping phenomenon due to the influence of pulsation is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す発熱抵抗式空気流量測
定装置の横断面図である。
FIG. 1 is a cross-sectional view of a heating resistance type air flow rate measuring device showing an embodiment of the present invention.

【図2】発熱抵抗式空気流量測定装置の吸気通路内にお
ける脈動波形の模擬図である。
FIG. 2 is a simulated diagram of a pulsating waveform in an intake passage of a heating resistance type air flow measuring device.

【図3】発熱抵抗式空気流量計の跳ね上がりを示す特性
図である。
FIG. 3 is a characteristic diagram showing a jump of a heating resistance type air flow meter.

【図4】本発明における感温抵抗体の検出温度を示す模
擬図である。
FIG. 4 is a simulation diagram showing a temperature detected by a temperature-sensitive resistor according to the present invention.

【符号の説明】[Explanation of symbols]

1…制御回路内蔵モジュール、2…ボディ、3…ベンチ
ュリ管、4…発熱抵抗体、5…感温抵抗体A、6…感温
抵抗体B、7…支持材、9…主空気流路、10…正方向
流速、11…逆方向流速、12…発熱抵抗体の逆流誤計
測部。
DESCRIPTION OF SYMBOLS 1 ... Module with built-in control circuit, 2 ... Body, 3 ... Venturi tube, 4 ... Heating resistor, 5 ... Temperature sensitive resistor A, 6 ... Temperature sensitive resistor B, 7 ... Support material, 9 ... Main air flow path, 10 ... Forward flow velocity, 11 ... Reverse flow velocity, 12 ... Reverse flow erroneous measurement unit of heating resistor.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内燃機関における、吸入空気を測定するた
めに空気流路内に、吸入空気流量を検山する発熱抵抗体
及び、吸入空気温度を検出するための感温抵抗体を備え
た空気流量測定装置において、前記、吸入空気温度を検
出するための感温抵抗体を複数個配置したことを特徴と
した空気流量測定装置。
1. In an internal combustion engine, air having an exothermic resistor for detecting an intake air flow rate and a temperature sensitive resistor for detecting an intake air temperature in an air flow path for measuring the intake air. The air flow rate measuring device, wherein a plurality of temperature sensitive resistors for detecting the intake air temperature are arranged in the flow rate measuring device.
【請求項2】請求項1において、複数個配置した感温抵
抗体の内少なくとも一本を、空気流路内における逆流時
に、吸入空気流量を検出する発熱抵抗体の熱影響を受け
易い位置に配置したことを特徴とした空気流量測定装
置。
2. A thermosensitive resistor according to claim 1, wherein at least one of the plurality of temperature-sensitive resistors is placed at a position susceptible to thermal influence of a heat-generating resistor that detects an intake air flow rate when backflowing in an air flow path. An air flow measuring device characterized by being arranged.
【請求項3】請求項2において、感温抵抗体の配置位置
は、吸入空気流量を検出する発熱抵抗体の正方向の空気
流れに対し、ほぼ上流側に配置したことを特徴とした空
気流量測定装置。
3. The air flow rate according to claim 2, wherein the temperature sensitive resistor is arranged substantially upstream of the air flow in the positive direction of the heating resistor for detecting the intake air flow rate. measuring device.
【請求項4】請求項1から請求項3のいずれか1項にお
いて、複数個配置した感温抵抗体の内少なくとも一本は
発熱抵抗体の加熱温度に関係なく独立な検出出力をとる
ことを特徴とした空気流量測定装置。
4. The method according to any one of claims 1 to 3, wherein at least one of the temperature-sensitive resistors arranged in plurality takes an independent detection output regardless of the heating temperature of the heating resistor. A characteristic air flow measuring device.
【請求項5】請求項1から請求項4のいずれか1項にお
ける、空気流量測定装置を使用したことを特徴とする、
電子燃料噴射システム。
5. The air flow rate measuring device according to any one of claims 1 to 4 is used.
Electronic fuel injection system.
JP5053586A 1993-03-15 1993-03-15 Air flow rate measuring instrument Pending JPH06265385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5053586A JPH06265385A (en) 1993-03-15 1993-03-15 Air flow rate measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5053586A JPH06265385A (en) 1993-03-15 1993-03-15 Air flow rate measuring instrument

Publications (1)

Publication Number Publication Date
JPH06265385A true JPH06265385A (en) 1994-09-20

Family

ID=12946965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5053586A Pending JPH06265385A (en) 1993-03-15 1993-03-15 Air flow rate measuring instrument

Country Status (1)

Country Link
JP (1) JPH06265385A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066936A1 (en) * 2001-02-21 2002-08-29 Hitachi, Ltd. Flowmeter with resistor heater
US6629456B2 (en) 2000-12-20 2003-10-07 Denso Corporation Thermal flowmeter for detecting rate and direction of fluid flow
US6862930B1 (en) 1998-10-21 2005-03-08 Denso Corporation Fluid flow amount measuring apparatus responsive to fluid flow in forward and reverse directions
JP2008233111A (en) * 2008-07-04 2008-10-02 Hitachi Ltd Heat generation resistor type flow measurement device
CN106153126A (en) * 2015-04-23 2016-11-23 深圳万讯自控股份有限公司 A kind of measurement of fluid flow method and effusion meter
JP2019219178A (en) * 2018-06-15 2019-12-26 アズビル株式会社 Thermal flowmeter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6862930B1 (en) 1998-10-21 2005-03-08 Denso Corporation Fluid flow amount measuring apparatus responsive to fluid flow in forward and reverse directions
US6629456B2 (en) 2000-12-20 2003-10-07 Denso Corporation Thermal flowmeter for detecting rate and direction of fluid flow
WO2002066936A1 (en) * 2001-02-21 2002-08-29 Hitachi, Ltd. Flowmeter with resistor heater
US7201046B2 (en) 2001-02-21 2007-04-10 Hitachi, Ltd. Flowmeter with resistor heater
JP2008233111A (en) * 2008-07-04 2008-10-02 Hitachi Ltd Heat generation resistor type flow measurement device
CN106153126A (en) * 2015-04-23 2016-11-23 深圳万讯自控股份有限公司 A kind of measurement of fluid flow method and effusion meter
JP2019219178A (en) * 2018-06-15 2019-12-26 アズビル株式会社 Thermal flowmeter

Similar Documents

Publication Publication Date Title
US4275694A (en) Electronic controlled fuel injection system
US4142407A (en) Air flow metering apparatus for internal combustion engines
EP0025149A2 (en) Gas flow measuring apparatus
JPH0232564B2 (en)
US7409859B2 (en) Thermal type flow measuring apparatus
KR19980024244A (en) Heating resistance air flow measuring device and intake pipe component and fuel control system of internal combustion engine
JPS58135916A (en) Thermal flow meter for internal combustion engine
JPS6140924B2 (en)
JPH06265385A (en) Air flow rate measuring instrument
US6571767B2 (en) Flow amount calculation controller and flow amount calculation control method
US4384484A (en) Gas flow measuring device
JPS611847A (en) Internal-combustion engine control apparatus
JPS60247030A (en) Engine control device
JP3211317B2 (en) Method and apparatus for measuring mixed gas
WO2021045117A1 (en) Air flow rate measurement device
JPS5861411A (en) Measuring device for flow rate of gas
JP3200005B2 (en) Heating resistance type air flow measurement device
JP2001153702A (en) Method for correcting measuring error of heat generating resistor type air flow measuring apparatus
JPH08278179A (en) Exothermic resistance type air flow measuring device
KR0163456B1 (en) Intake air flow rate detector of internal combustion engine
JPH0694497A (en) Air flow rate measuring device
JP2001108500A (en) Heat generation resistance-type flow rate-measuring device
JPS5810612A (en) Suction air flowmeter employing constant temperature difference heat generating resistor
JPH0143883B2 (en)
JPS6256963B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees