JPH08278179A - Exothermic resistance type air flow measuring device - Google Patents

Exothermic resistance type air flow measuring device

Info

Publication number
JPH08278179A
JPH08278179A JP7080026A JP8002695A JPH08278179A JP H08278179 A JPH08278179 A JP H08278179A JP 7080026 A JP7080026 A JP 7080026A JP 8002695 A JP8002695 A JP 8002695A JP H08278179 A JPH08278179 A JP H08278179A
Authority
JP
Japan
Prior art keywords
flow rate
air flow
detection
measuring device
type air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7080026A
Other languages
Japanese (ja)
Inventor
Chihiro Kobayashi
千尋 小林
Shinya Igarashi
信弥 五十嵐
Hiroshi Hirayama
平山  宏
Takayuki Saito
孝行 斉藤
Nobukatsu Arai
信勝 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP7080026A priority Critical patent/JPH08278179A/en
Publication of JPH08278179A publication Critical patent/JPH08278179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: To improve measuring accuracy in such a pulsating flow-down in association with a counter-flow in the case of actual car installation by using a throttle or the like in a detection pipe, and altering a flow velocity distribution in both forward and reverse directions. CONSTITUTION: A detection duct 3 is integrally formed in a body 1 via a bridge part 38 like bridgeingly traversing the inner part, and a heating resistor 5 measuring intake air flow rate and a temperature sensing resistor 6 detecting intake air temperature both are disposed in an inner part of the duct 3. As to size of the duct 3, an effective sectional area of this duct 3 is almost 20% or over that of a main air passage, and a throttle 8 with a form of almost 1/4 circle is formed in an inlet of the duct 3 over the whole circumference of the detection duct. In the case where the throttle 8 is installed upstream the detection duct, inertia force having a flow in the forward direction is strong on the inside of the duct 3, but this inertia force other than the duct 3 becomes weakened the other way. Accordingly, since the resistor 5 compliantly detects the flow rate by means of flow velocity distribution, it becomes hard to detect the counter flow, consequently an error due to the counter flow is reducible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の吸入空気流
量を測定する空気流量計に係わり、特に自動車のエンジ
ンに吸入される空気流量を測定するのに適する発熱抵抗
式空気流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow meter for measuring the intake air flow rate of an internal combustion engine, and more particularly to a heat generation resistance type air flow meter suitable for measuring the air flow rate of air taken into an automobile engine.

【0002】[0002]

【従来の技術】内燃機関に用いられ、脈動流下で逆流を
伴うような条件下における発熱抵抗体式空気流量計の計
測精度の向上を図る手段としては、特開平2ー1518
に示すようなL字形の検出管を持つ通路構造が公知とし
て知られている。即ち、逆方向の流れに対して壁を設け
る事により、発熱抵抗体に直接逆流が当たらない様な通
路構造としたものである。しかし、この構造では検出管
をL字形に曲げているため主通路の有効断面積狭めてし
まい圧力損失の増加や、発熱抵抗体配置部の流速低下に
伴う低流量域での検出精度バラツキ等が課題視されてい
る。
2. Description of the Related Art As means for improving the measurement accuracy of a heating resistor type air flow meter used in an internal combustion engine under conditions such as backflow under pulsating flow, there is disclosed in Japanese Patent Laid-Open No. 2-1518.
A known passage structure having an L-shaped detection tube as shown in FIG. That is, by providing a wall for the flow in the opposite direction, the passage structure is provided so that the heat generating resistor is not directly hit by the reverse flow. However, in this structure, since the detection tube is bent in an L-shape, the effective cross-sectional area of the main passage is narrowed, resulting in an increase in pressure loss and variations in detection accuracy in the low flow rate range due to a decrease in the flow velocity of the heating resistor arrangement portion. Is seen as an issue.

【0003】また、本発明の一実施例に示す通路内に絞
りを持つ構造としては、特開平1ー110220にしよ
うな構造が公知として知られている。この構造では、絞
りは主通路の壁面に環状に置かれ、そのすぐ下流に主流
方向に対する距離の短い検出管の中に発熱抵抗体を配置
する構造である。
As a structure having a throttle in a passage shown in an embodiment of the present invention, a structure as disclosed in Japanese Patent Laid-Open No. 1-120220 is known. In this structure, the restrictor is annularly placed on the wall surface of the main passage, and a heating resistor is arranged immediately downstream of the restrictor in a detection tube having a short distance in the mainstream direction.

【0004】更に特開昭63ー210727においては
検出管内に絞りを持つ構造が公知である。この構造は吸
気管路を構成する主通路の有効断面積に対して検出管の
有効断面積の面積比が非常に小さい構造である。これ
は、検出管内の流速を層流状態に保つ為には検出管内径
を小さくしなければならないためである。管路内の流速
を層流に保つためにはレイノルズ数を2300以下にし
なければならない。
Further, in JP-A-63-210727, a structure having a diaphragm in the detection tube is known. This structure is a structure in which the area ratio of the effective sectional area of the detection pipe to the effective sectional area of the main passage forming the intake conduit is very small. This is because the inner diameter of the detection tube must be reduced in order to keep the flow velocity in the detection tube in a laminar state. The Reynolds number must be 2300 or less in order to keep the flow velocity in the pipeline laminar.

【0005】レイノルズ数=V×D/ν V=管路内平均流速(m/s) D=管路径(m) ν=動粘性係数(m^2/s) 空気の場合20℃で約15×10^(−6) 一般的に熱線の出力の安定性を考えると熱線に当たる流
速は最低でも3〜4(m/s)必要となり、エンジンの
高回転域ではその10倍程度は必要となる。この数値を
前記数式に当てはめると検出管内径は最大でも10mm
以下としなければならない。吸気管の一部を構成する検
出管外側の主空気通路は最低でも内径40mm相当以上
の有効断面積は必要となり、主空気通路の有効断面積に
対する検出管の有効断面積の比率は非常に小さくなるの
である。
Reynolds number = V × D / ν V = average flow velocity in pipe (m / s) D = pipe diameter (m) ν = kinematic viscosity coefficient (m2 / s) In the case of air, about 15 at 15 ° C. X10 ^ (-6) Generally, considering the stability of the heat ray output, the flow velocity of the heat ray is required to be at least 3 to 4 (m / s), and about 10 times that is required in the high engine speed region. . Applying this value to the above formula, the inner diameter of the detection tube is 10 mm at maximum.
Must be: The main air passage outside the detection pipe that constitutes a part of the intake pipe needs to have an effective area equal to or more than 40 mm in inner diameter at least, and the ratio of the effective area of the detection pipe to the effective area of the main air passage is very small. It will be.

【0006】[0006]

【発明が解決しようとする課題】一般的に前記した従来
技術に使われる発熱抵抗体は流れの方向を区別して測定
する事は不可能である。このため、例えば図3に示すよ
うに回転数を一定に保ちスロットルバルブを徐々に開け
てブースト圧を変えて発熱抵抗体式空気流量計の平均出
力をプロットすると、あるブースト圧以降で実際の出力
に対して持ち上がってしまう現象が発生する(跳ね上が
り現象と呼ぶ)。これは、図4に示すように発熱抵抗体
式空気流量計の脈動振幅が徐々に大きくなりA点以降で
逆流が発生する為である。逆流が発生すると前記した通
り発熱抵抗体は流れの方向を判別できないため順流でも
逆流でも同様に検出してしまうため平均出力が跳ね上が
ってしまうのである。また、この現象は特に、4気筒以
下のエンジンで1000から2000rpmの比較的低
回転領域で起こり易く、それ以上の気筒数のエンジンで
は起こり難い現象である事が知られている。
Generally, it is impossible for the heating resistor used in the above-mentioned prior art to measure the flow direction separately. Therefore, for example, as shown in FIG. 3, when the throttle valve is gradually opened and the boost pressure is changed to plot the average output of the heating resistor type air flow meter as shown in FIG. 3, the actual output is obtained after a certain boost pressure. A phenomenon occurs in which the object is lifted up (called the bounce phenomenon). This is because the pulsation amplitude of the heating resistor type air flow meter gradually increases as shown in FIG. 4, and a backflow occurs after point A. When the backflow occurs, the heating resistor cannot determine the flow direction as described above, and therefore the forward flow and the backflow are similarly detected, so that the average output jumps. It is known that this phenomenon is particularly likely to occur in an engine having four or less cylinders in a relatively low rotation speed range of 1000 to 2000 rpm, and is unlikely to occur in an engine having more cylinders.

【0007】本発明は、前記した、発熱抵抗体式空気流
量測定装置の最大の課題の一つである実車装着時の逆流
を伴うような脈動流下における計測精度の向上を図る事
を目的としており、更に通路構造を複雑化せずに、単純
化する事によるバラツキ精度の向上、低コスト化及び、
取扱い性に優れた発熱抵抗体式空気流量測定装置を提供
する事を目的としている。
An object of the present invention is to improve the measurement accuracy under the pulsating flow accompanied by backflow when the vehicle is mounted, which is one of the biggest problems of the heating resistor type air flow rate measuring device. Furthermore, by not simplifying the passage structure, by simplifying it, the accuracy of variation is improved, the cost is reduced, and
It is an object of the present invention to provide a heating resistor type air flow rate measuring device having excellent handleability.

【0008】[0008]

【課題を解決するための手段】実車装着時の逆流を伴う
脈動流下における計測精度の向上を図るために、検出管
中に絞り等を用いることにより、順方向と逆方向の流速
分布を変えるようにした。つまり、順方向の空気流れの
持つ慣性の力を利用して逆流が発熱抵抗体に当たりにく
くなる流速分布を強制的に作り出す通路構造とした。
[Means for Solving the Problems] In order to improve the measurement accuracy in a pulsating flow accompanied by a backflow when an actual vehicle is mounted, the flow velocity distribution in the forward and reverse directions is changed by using a throttle or the like in the detection tube. I chose That is, the passage structure is forcibly created by utilizing the inertial force of the forward air flow to forcibly create the flow velocity distribution in which the backflow is less likely to hit the heating resistor.

【0009】また、通路構造を複雑化せずに逆流による
誤差低減を可能となるため、圧力損失を増加させる事無
く、低流量(低流速)域での発熱抵抗体の検出バラツキ
精度の向上を図ると共に低コストな発熱抵抗体式空気流
量測定装置を提供する事が可能となる。
Further, since it is possible to reduce the error due to the backflow without complicating the passage structure, it is possible to improve the detection variation accuracy of the heating resistor in the low flow rate (low flow velocity) area without increasing the pressure loss. It is possible to provide a heating resistor type air flow rate measuring device at a low cost.

【0010】更に、取扱い性の向上については、回路部
と検出管部を一体化しすることにより、吸気管の一部に
穴を設け、主空気通路に脱着可能に固定できる事により
対応可能とした。
Further, the handling can be improved by integrating the circuit portion and the detection pipe portion with a hole provided in a part of the intake pipe and detachably fixed to the main air passage. .

【0011】[0011]

【作用】検出管上流に絞り等を設けることにより、順方
向に空気が流れた場合に発熱抵抗体設置部分の流速は主
空気通路内平均流速より速くなる。つまり、順方向の空
気が流れた場合には発熱抵抗体配置付近は流速が速く、
その他の位置で流速は遅くなる流速分布となる。一方、
内燃機関の逆流の起こり易い条件下の例えば、4気筒車
で1000rpmにおける脈動の周期は約33Hzであ
り、1秒間に約30回も逆流の有無が観測される事にな
り、発熱抵抗体付近ではかなり高速で空気の流れがが脈
動しており、流速の異なる位置では流れの持つ慣性の力
に差が出ることになる。つまり、流速の速い位置では、
慣性の力が強く、流速の遅い位置では逆に慣性の力は弱
くなるのである。
By providing a throttle or the like upstream of the detection tube, the flow velocity at the portion where the heating resistor is installed becomes faster than the average flow velocity in the main air passage when air flows in the forward direction. In other words, when air flows in the forward direction, the flow velocity is high near the heating resistor arrangement,
The flow velocity distribution becomes slower at other positions. on the other hand,
Under the condition that the backflow of the internal combustion engine is likely to occur, for example, in a 4-cylinder car, the pulsation cycle at 1000 rpm is about 33 Hz, and the presence or absence of the backflow is observed about 30 times per second. The air flow is pulsating at a considerably high speed, and the inertial force of the flow is different at the position where the flow velocity is different. That is, at the position where the flow velocity is fast,
The force of inertia is strong, and conversely, the force of inertia becomes weak at the position where the flow velocity is slow.

【0012】さらに、このような条件下においては、瞬
間的に流れの方向が変わり逆流が発生すると、順方向の
慣性の力の強い位置では逆流を取り難く、順方向の慣性
の力の弱い位置では逆流を取り易くなる流速分布を示す
ようになる。つまり、瞬間的に流れの方向が変わった場
合には発熱抵抗体の設置位置では逆流を取り難く、それ
以外の所では逆流を取り易くなるのである。
Further, under such conditions, if the flow direction changes instantaneously and a backflow occurs, it is difficult to obtain the backflow at the position where the forward inertial force is strong, and the position where the forward inertial force is weak. Shows a flow velocity distribution that facilitates the reverse flow. That is, when the flow direction changes instantaneously, it is difficult to obtain a backflow at the installation position of the heating resistor, and it becomes easy to obtain a backflow at other locations.

【0013】前記した効果を、発熱抵抗体設置位置より
も上流側で一時的に速くなる構造的手段として検出管上
流側に絞りを用いた場合を例に取って図5を用いて説明
する。一般に管路内の流速分布は定常流下においては放
物線的な流速分布を示すが、脈動流下においては比較的
平らな流速分布を示すことが知られている。
The above effect will be described with reference to FIG. 5 by taking as an example a case where a throttle is used on the upstream side of the detection tube as a structural means for temporarily increasing the upstream side of the heating resistor installation position. It is generally known that the flow velocity distribution in a pipe shows a parabolic flow velocity distribution under a steady flow, but has a relatively flat flow velocity distribution under a pulsating flow.

【0014】まず、図5の上段は、検出管上流に絞りを
設けていない場合である。順方向空気流れ10は逆方向
空気流れ13に対して流量の絶対値は大きな流れであ
る。ここでは、流速は図に示す流速分布の矢印ベクトル
の長さで表し、流量を流速分布の面積で表す。絞りを設
けていない場合には順方向の流れは、前記した通り比較
的平らな流速分布を示す。よって、逆流の流れも瞬間的
に変化したとしても比較的平らな流速分布を示す。即
ち、このような場合には発熱抵抗体は設置位置によらず
に逆流を素直に取り易い通路構造である。
First, the upper part of FIG. 5 shows the case where no throttle is provided upstream of the detection tube. The forward air flow 10 has a larger absolute flow rate than the reverse air flow 13. Here, the flow velocity is represented by the length of the arrow vector of the flow velocity distribution shown in the figure, and the flow rate is represented by the area of the flow velocity distribution. When the restriction is not provided, the forward flow has a relatively flat velocity distribution as described above. Therefore, even if the reverse flow changes instantaneously, it shows a relatively flat velocity distribution. That is, in such a case, the heat generating resistor has a passage structure in which it is easy to take a reverse flow without depending on the installation position.

【0015】これに対して、検出管上流に絞りを設けた
場合には図5下段に示す結果となる。検出管内において
は、絞り無しの時と流量は変わらないが、絞りにより広
範囲から空気を取り込むため、検出管内の流速は平均流
速よりも速い流速を示し、それ以外の所では平均流速に
近いか、平均流速より遅くなる。よって、検出管内では
順方向の流れの持つ慣性の力が強く検出管以外では慣性
の力が弱くなるのである。よって、瞬間的に流れの方向
が変わって逆流が生じた場合には順流の慣性の力が強い
位置では逆流を取り難く、順流の慣性の力の弱いところ
では逆流を取り易い図5に下段示す分布を示す。
On the other hand, when the diaphragm is provided upstream of the detection tube, the result shown in the lower part of FIG. 5 is obtained. In the detection tube, the flow rate is the same as when there is no throttling, but since the air is taken in from a wide range due to the throttling, the flow rate in the detection tube shows a faster flow rate than the average flow rate, and in other places it is close to the average flow rate, It becomes slower than the average flow velocity. Therefore, the inertial force of the forward flow is strong inside the detection tube, and the inertial force is weak except for the detection tube. Therefore, when the flow direction changes instantaneously and a backflow occurs, it is difficult to take a backflow at a position where the inertial force of the forward flow is strong, and it is easy to take a backflow where the inertial force of the forward flow is weak. The distribution is shown.

【0016】[0016]

【実施例】以下、本発明の実施例を図1〜図17を使い
説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0017】図1は本発明の一実施例を示す発熱抵抗式
空気流量計の横断面であり、図2はその上流(左側)か
ら見た外観図である。
FIG. 1 is a cross section of a heating resistance type air flow meter showing an embodiment of the present invention, and FIG. 2 is an external view seen from the upstream (left side) thereof.

【0018】吸気系の一部である主空気通路2を構成す
る発熱抵抗式空気流量計のボディ1にはボディ1内部を
橋渡し状に横切るブリッジ部38を介して検出管路3が
一体形成されている。検出管路3内部には、吸入空気流
量を測定する発熱抵抗体5及び吸入空気温度を検出する
感温抵抗体6が配置され、導伝性部材によりなる支持体
7と電気的に接続を行い、ボディ1の外側にある駆動回
路を内蔵したモジュール4と電気的に接続が行われてい
る。前記した、ボディ1とブリッジ部38、空気の乱れ
を整流する整流体9及び、検出管路3は一体構成されて
おり、また、発熱抵抗体5、感温抵抗体6、導伝性支持
体7は非導伝性部材14を介し、外部とのインターフェ
ースのためのコネクタ12とともに駆動回路を内蔵し、
一体化されたモジュール4として、前記したボディ1と
はネジ11を使って機械的に固定されている。検出管路
3の入り口には、ほぼ1/4円の形状を持つ絞り8が検
出管路全周に形成されており、その下流は段差を持つ構
造である。ここで、検出管路3の形状は本実施例では円
形としているが四角形等の角形でもかまわない。吸入空
気の流れは、図示左から右への流れを順方向の流れとし
ている。つまり、順方向流れ(エアクリーナからエンジ
ン方向)は、図示10で示し、逆方向流れ(エンジンか
らエアクリーナ方向)は、図示13で示している。
A detection conduit 3 is integrally formed in a body 1 of a heat resistance type air flow meter which constitutes a main air passage 2 which is a part of an intake system, via a bridge portion 38 which crosses the inside of the body 1 in a bridging manner. ing. A heating resistor 5 for measuring the intake air flow rate and a temperature sensitive resistor 6 for detecting the intake air temperature are arranged inside the detection pipe line 3 and electrically connected to a support 7 made of a conductive member. , And is electrically connected to a module 4 having a drive circuit built in outside the body 1. The body 1, the bridge portion 38, the rectifying body 9 for rectifying the turbulence of the air, and the detection conduit 3 are integrally configured, and the heating resistor 5, the temperature-sensitive resistor 6, the conductive support body are provided. 7 includes a drive circuit with a connector 12 for interfacing with the outside through a non-conductive member 14.
The integrated module 4 is mechanically fixed to the body 1 using screws 11. At the entrance of the detection pipe line 3, a diaphragm 8 having a shape of approximately 1/4 circle is formed around the entire circumference of the detection pipe line, and the downstream side thereof has a structure having a step. Here, although the shape of the detection conduit 3 is circular in this embodiment, it may be rectangular or other square. The flow of the intake air is a flow from the left to the right in the drawing in the forward direction. That is, the forward flow (from the air cleaner to the engine) is shown in FIG. 10, and the reverse flow (from the engine to the air cleaner) is shown in FIG.

【0019】図3に示す特性は、回転数を一定に保ちス
ロットルバルブを徐々に開けてブースト圧を変えて発熱
抵抗体式空気流量計の平均出力を示した図である。これ
は、前記した通り跳ね上がり現象と呼ばれエンジンの逆
流により発生する現象である。
The characteristic shown in FIG. 3 is a graph showing the average output of the heating resistor type air flow meter by gradually opening the throttle valve while keeping the rotation speed constant and changing the boost pressure. This is a phenomenon called the bounce-up phenomenon as described above, which is caused by the reverse flow of the engine.

【0020】この現象は特に、4気筒以下のエンジンで
3000rpm以下の比較的低回転領域で起こり易く、
この領域におけるエンジンのマッチングに影響を及ぼす
現象である。この現象はスロットルバルブが比較的閉じ
ている場合(グラフの左側)には吸気管内の脈動振幅は
小さいが、徐々にスロットルバルブを開けていくと脈動
振幅が大きくなり、A点では脈動振幅は平均値を中心に
流速がゼロ点まで振れ、スロットルバルブの全開となる
B点では逆流を伴う脈動振幅となるために発生する。
This phenomenon is particularly likely to occur in a relatively low speed region of 3000 rpm or less in an engine having four cylinders or less,
This is a phenomenon that affects engine matching in this area. This phenomenon shows that when the throttle valve is relatively closed (left side of the graph), the pulsation amplitude in the intake pipe is small, but as the throttle valve is gradually opened, the pulsation amplitude increases, and at point A, the pulsation amplitude averages. This occurs because the flow velocity fluctuates around the value to the zero point, and at point B where the throttle valve is fully opened, there is a pulsation amplitude accompanied by backflow.

【0021】しかし、この現象は発熱抵抗体が方向を検
出し、B点における逆流を図に示す点線のようにマイナ
ス出力すればA点における平均出力は跳ね上がらない
が、発熱抵抗体はその構造上流れの方向を区別して測定
する事が困難なため、吸気管内に逆流が発生した場合に
発熱抵抗体が順流に加え逆流も計測し、ダブルカウント
してしまうために出力が実際の出力に対して跳ね上がっ
てしまうのである。
However, in this phenomenon, if the heating resistor detects the direction and outputs the reverse flow at the point B as a minus line as shown by the dotted line in the figure, the average output at the point A does not jump up, but the heating resistor is structurally different. Since it is difficult to measure the flow direction separately, when a backflow occurs in the intake pipe, the heating resistor measures the backflow in addition to the forward flow and double counts, so the output is against the actual output. It jumps up.

【0022】図5に示す図は図1に示す本発明の特徴で
ある検出管路4入り口に設けた絞り8の有無における主
空気通路2内の流速分布を示す図である。この図を用い
て本発明の逆流影響の低減効果を説明する。
FIG. 5 is a view showing the flow velocity distribution in the main air passage 2 with and without the throttle 8 provided at the inlet of the detection pipe 4 which is a feature of the present invention shown in FIG. The effect of reducing the backflow effect of the present invention will be described with reference to this figure.

【0023】まず、図5の上段は、検出管路上流に絞り
を設けていない場合である。順方向空気流れ10は逆方
向空気流れ13に対して流量の絶対値は大きな流れであ
る。ここでは、流速は図に示す流速分布の矢印ベクトル
の長さで表し、流量を流速分布の面積で表す。絞りを設
けていない場合には順方向の流れは、前記した通り比較
的平らな流速分布を示す(一般に管路内の流速分布は定
常流下においては放物線的な流速分布を示すが、脈動流
下においては比較的平らな流速分布を示すことが知られ
ている)。よって、逆流の流れも瞬間的に変化したとし
ても比較的平らな流速分布を示す。即ち、このような場
合には発熱抵抗体は設置位置によらずに逆流を素直に取
り易い通路構造となる。
First, the upper part of FIG. 5 shows the case where no throttle is provided upstream of the detection pipe. The forward air flow 10 has a larger absolute flow rate than the reverse air flow 13. Here, the flow velocity is represented by the length of the arrow vector of the flow velocity distribution shown in the figure, and the flow rate is represented by the area of the flow velocity distribution. When no restriction is provided, the forward flow shows a relatively flat velocity distribution as described above (generally, the velocity distribution in the pipeline shows a parabolic velocity distribution under steady flow, but under pulsating flow). Is known to exhibit a relatively flat velocity distribution). Therefore, even if the reverse flow changes instantaneously, it shows a relatively flat velocity distribution. That is, in such a case, the heat generating resistor has a passage structure in which it is easy to take a reverse flow regardless of the installation position.

【0024】これに対して、検出管路上流に絞りを設け
た場合には図5下段に示す結果となる。検出管路内にお
いては、絞り無しの時と流量は変わらないが、絞りによ
り広範囲から空気を取り込むため、検出管路内の流速は
平均流速よりも速い流速を示し、それ以外の所では平均
流速に近いか、平均流速より遅くなる。即ち、検出管路
内では順方向の流れの持つ慣性の力が強く検出管路以外
では慣性の力が弱くなるのである。よって、瞬間的に流
れの方向が変わって逆流が生じた場合には順流の慣性の
力が強い位置では逆流を取り難く、順流の慣性の力の弱
いところでは逆流を取り易い図5に下段示す分布を示
す。このため、発熱抵抗体は流速分布により素直に流量
を検出するため逆流を検出し難くなる。このため、結果
的に発熱抵抗体式空気流量測定装置は逆流による誤差を
低減する事が出来、逆流を伴う脈動流下における計測精
度の向上を図ることが可能となる。
On the other hand, when a throttle is provided upstream of the detection pipe, the result shown in the lower part of FIG. 5 is obtained. In the detection pipeline, the flow rate is the same as when there is no throttling, but since the air is taken in from a wide range due to the throttling, the flow velocity in the detection pipeline is faster than the average flow velocity, and in other places, the average flow velocity. Close to or slower than the average flow velocity. That is, the inertial force of the forward flow is strong inside the detection conduit, and the inertial force is weak outside the detection conduit. Therefore, when the flow direction changes instantaneously and a backflow occurs, it is difficult to take a backflow at a position where the inertial force of the forward flow is strong, and it is easy to take a backflow where the inertial force of the forward flow is weak. The distribution is shown. For this reason, since the heating resistor can detect the flow rate in a straightforward manner according to the flow velocity distribution, it is difficult to detect the backflow. Therefore, as a result, the heating resistor type air flow measuring device can reduce the error due to the backflow, and can improve the measurement accuracy under the pulsating flow accompanied by the backflow.

【0025】上記、検出管路上流に絞りを設ける構造に
おいては、筆者の実験的に行った結果では、検出管路の
大きさは主空気通路の有効断面積に対して、検出管路の
有効断面積が概略20%以上で、検出管路内の絞りの大
きさは、発熱抵抗体設置の有効断面積に対して絞り部の
通路有効断面積が概略80%以下の時に逆流による誤差
の低減効果が認められ、この範囲外では低減効果が認め
られなかった(主空気通路径=60mm、検出管路径=
30mm、絞り部径=26mm)。これは、主空気通路
の流量に対して、検出管路に有る程度の流量を入れて、
絞り込まなければ流速分布を変える効果が得られないた
めである。
In the above-mentioned structure in which the throttle is provided upstream of the detection pipe, the experimental result of the author shows that the size of the detection pipe is larger than the effective sectional area of the main air passage. When the cross-sectional area is approximately 20% or more, and the size of the throttle in the detection conduit is approximately 80% or less of the passage effective cross-sectional area of the throttling resistor, the error due to backflow is reduced. The effect was recognized, and the reduction effect was not recognized outside this range (main air passage diameter = 60 mm, detection pipe diameter =
30 mm, squeeze portion diameter = 26 mm). This is the flow rate of the main air passage, put a flow rate that is in the detection pipe,
This is because the effect of changing the flow velocity distribution cannot be obtained without narrowing down.

【0026】図6は本発明の他の一実施例を示す発熱抵
抗式空気流量計の横断面である。図6では検出管路入り
口に絞りの変わりに平面部15を持つ構造とし、そのほ
かの構成は図1と同じである。図7は図6の検出管路内
を順流が流れるときの流れの状態を示した図である。検
出管路3に順流が流れると平面部15に圧力が加わり、
その下流で剥離渦が生じる。このため、検出管路入り口
部は一時的に通路有効面積が狭まり入り口部の流速が速
くなり、その下流の発熱抵抗体設置部における流速も速
め、順流の慣性の力を強める事が可能となる。このため
に、図1に示した検出管路入り口に設けた絞り8と同様
な効果が得られ、前記図5下図に示したような流速分布
を得ることが可能となり、発熱抵抗体式空気流量測定装
置の逆流による誤差を低減する事が出来るのである。
FIG. 6 is a cross-sectional view of a heating resistance type air flow meter showing another embodiment of the present invention. In FIG. 6, a flat portion 15 is provided at the entrance of the detection conduit instead of the diaphragm, and the other configurations are the same as in FIG. FIG. 7 is a diagram showing a flow state when a forward flow flows in the detection conduit of FIG. When a forward flow flows through the detection pipe line 3, pressure is applied to the flat surface portion 15,
A separation vortex occurs downstream of that. Therefore, the effective area of the passage is temporarily narrowed at the inlet of the detection pipe, the flow velocity at the inlet is increased, the flow velocity at the heating resistor installation portion downstream is also increased, and the force of inertia of forward flow can be strengthened. . Therefore, an effect similar to that of the throttle 8 provided at the entrance of the detection conduit shown in FIG. 1 can be obtained, and the flow velocity distribution as shown in the lower diagram of FIG. 5 can be obtained, and the heating resistor type air flow rate measurement can be performed. The error due to the backflow of the device can be reduced.

【0027】図8は本発明の他の一実施例を示す発熱抵
抗式空気流量計の横断面であり、図9はその上流(左
側)から見た外観図である。図1及び図2との違いは吸
入空気流量を検出する発熱抵抗体を2本配置した事であ
る。これは、上流からの偏流の影響を防ぐためである。
発熱抵抗体は通常1本(点)で主通路内の流速(流量)
を代表し計測している。しかし、吸気管内の流速分布は
さまざまな分布を示す事がある。特にエアクリーナのす
ぐ下流ではエアクリーナの形状により敏感に変化する。
発熱抵抗式空気流量測定装置は、利用頻度としてはエア
クリーナにボディを直付けして使用される事が非常に多
い為に、偏流対策が必須となっている。偏流体策として
一般的に知られているのは多点により計測する事、或い
は広範囲の流速を取り込む事である。本発明品において
も同じで検出管路内で偏流が有ると逆流の低減効果は薄
くなってしまう。本発明でも、絞り等により広範囲の流
速を取り込む事は出来るがやはり、1つの点だけで主空
気通路内の流量を計測する事は難しい。このため、副空
気通内に複数の発熱抵抗体を配置し、検出管路内で複数
の点で計測し平均化する事により偏流の影響及び出力ノ
イズの増加を防いだものである。
FIG. 8 is a cross section of a heating resistance type air flow meter showing another embodiment of the present invention, and FIG. 9 is an external view seen from the upstream (left side) thereof. The difference from FIGS. 1 and 2 is that two heating resistors for detecting the intake air flow rate are arranged. This is to prevent the influence of drift from the upstream.
The heating resistor is usually one (point) and the flow velocity (flow rate) in the main passage.
It measures on behalf of. However, the flow velocity distribution in the intake pipe may show various distributions. Especially, immediately downstream of the air cleaner, the shape of the air cleaner changes sensitively.
Since the heating resistance type air flow rate measuring device is often used by directly attaching the body to the air cleaner, it is necessary to take measures against uneven flow. Generally known as an unbalanced fluid measure is to measure at multiple points or to capture a wide range of flow velocity. The same applies to the product of the present invention, and if there is a drift in the detection conduit, the effect of reducing the backflow will be diminished. In the present invention as well, a wide range of flow velocities can be taken in by a throttle or the like, but it is still difficult to measure the flow rate in the main air passage with only one point. Therefore, by disposing a plurality of heating resistors in the sub air passage and measuring and averaging at a plurality of points in the detection conduit, the influence of drift and the increase of output noise are prevented.

【0028】図10及び図11に示す構造は図1で示し
た検出管路3の入り口に設けた絞り8の上流に空気を検
出管路3内に取り込むためのガイド18を取り付けた場
合の空気の流れを示した図である。図10はガイド無し
の場合を示すが、本構造の様な場合に検出管路の外側に
剥離渦を生じる様な構造にすると、絞り8を付けた効果
が減少してしまう。これは、外側の剥離のために剥離部
分の圧力が低くなるために検出管路内に取り込むべき流
速の一部を外側に逃がしてしまうためである。これに対
して、図11では絞りの上流側に厚みの薄いガイド18
を設けている。厚みを薄くしているのはガイド18の先
端部にかかる圧力を小さくして回りに出来る剥離の渦を
できるだけ少なくするためである。このため、検出管路
3内に取り込める空気取り込みの範囲を図10の場合よ
りも広くでき、絞りによる検出管路内の流速を速める効
果が高めることが出来る。
The structure shown in FIGS. 10 and 11 is the air when a guide 18 for taking air into the detection pipe 3 is attached upstream of the throttle 8 provided at the entrance of the detection pipe 3 shown in FIG. It is a figure showing the flow of. FIG. 10 shows a case without a guide, but in the case of this structure, if the structure is such that a separation vortex is generated outside the detection conduit, the effect of adding the diaphragm 8 is reduced. This is because the pressure at the peeling portion becomes low due to the peeling on the outside, so that part of the flow velocity to be taken into the detection conduit is released to the outside. On the other hand, in FIG. 11, the thin guide 18 is provided on the upstream side of the diaphragm.
Is provided. The thickness is reduced in order to reduce the pressure applied to the tip portion of the guide 18 and to reduce the vortices of separation that occur around the guide 18 as much as possible. Therefore, the range of air intake that can be taken into the detection conduit 3 can be made wider than in the case of FIG. 10, and the effect of accelerating the flow velocity in the detection conduit due to the restriction can be enhanced.

【0029】図12は、エアクリーナ19の一部に本発
明の通路構造を設けた実施例を示す。本構造では駆動回
路内臓モジュール4、支持体7、発熱抵抗体5及び感温
抵抗体6が一体化された発熱抵抗体式空気流量測定装置
をエアクリーナに設けた前記通路部に挿入して成る構造
である。本実施例に示す通り、本発明の通路構造は、発
熱抵抗体式空気流量測定装置のボディに限らず、内燃機
関の吸気管の構成部品の一部に配置して後から発熱抵抗
体を挿入しても効果は同じである。
FIG. 12 shows an embodiment in which the passage structure of the present invention is provided in a part of the air cleaner 19. In this structure, the heating resistor type air flow rate measuring device in which the driving circuit built-in module 4, the support 7, the heating resistor 5 and the temperature sensitive resistor 6 are integrated is inserted into the passage portion provided in the air cleaner. is there. As shown in the present embodiment, the passage structure of the present invention is not limited to the body of the heating resistor type air flow rate measuring device, but is disposed in a part of the components of the intake pipe of the internal combustion engine, and the heating resistor is inserted later. But the effect is the same.

【0030】図13は本発明の更成る実施例を示す発熱
抵抗式空気流量計の横断面であり、図14はその上流
(左側)から見た外観図である。本構造では、回路モジ
ュール4、複数の発熱抵抗体5、感温抵抗体6及び入り
口に絞り8を設けた検出管路3を一体形成のモジュール
化して、吸気管の一部に設けた挿入孔に検出管路部3を
挿入して吸気管内を流れる吸入空気流量を計測する。挿
入孔箇所にはゴム材等により吸気管と発熱抵抗体式空気
流量測定装置とのシールを施している。
FIG. 13 is a cross-sectional view of a heating resistance type air flow meter showing a further embodiment of the present invention, and FIG. 14 is an external view seen from the upstream (left side) thereof. In this structure, the circuit module 4, the plurality of heat-generating resistors 5, the temperature-sensitive resistor 6, and the detection conduit 3 having the throttle 8 at the entrance are integrally formed into a module, and an insertion hole provided in a part of the intake pipe. The detection pipe line portion 3 is inserted into and the flow rate of intake air flowing through the intake pipe is measured. At the insertion hole, a rubber material is used to seal the intake pipe and the heating resistor type air flow rate measuring device.

【0031】吸気管の一部に挿入する方法は効果的に
は、まったく前記してきた効果と変わらない。この構造
とする事により発熱抵抗体式空気流量測定装置のほとん
どの機能を持たせ、モジュールは一つの製品として取り
扱える物となった。これにより、内燃機関を取りまとめ
る企業、例えばカーメーカは、安価な発熱抵抗体式空気
流量測定装置を得る事が可能となり、更に、吸気系の自
由なレイアウトを行う事が可能となる。
The method of inserting it into a part of the intake pipe is effectively no different from the effect described above. By adopting this structure, most of the functions of the heating resistor type air flow rate measuring device can be provided, and the module can be handled as one product. As a result, a company that integrates internal combustion engines, for example, a car maker, can obtain an inexpensive heating resistor type air flow rate measuring device, and further, can freely design the intake system.

【0032】図15は本発明の更成る実施例を示す発熱
抵抗式空気流量計の横断面であり、図16はその上流
(左側)から見た外観図である。図13及び図14に対
して、検出管路3の内部を仕切材39により分割する構
造としている。本構造とする事により図13及び図14
より上流からの偏流の影響及び出力ノイズの増加を防ぐ
事が可能となりためである。
FIG. 15 is a cross-sectional view of a heating resistance type air flow meter showing a further embodiment of the present invention, and FIG. 16 is an external view seen from the upstream (left side) thereof. 13 and 14, the inside of the detection conduit 3 is divided by a partition member 39. By adopting this structure, FIG. 13 and FIG.
This is because it is possible to prevent the influence of the drift from the upstream and the increase of the output noise.

【0033】最後に、図17を使い電子燃料噴射方式の
内燃機関に本発明品を適用した一実施例を示す。
Finally, FIG. 17 shows an embodiment in which the product of the present invention is applied to an electronic fuel injection type internal combustion engine.

【0034】エアクリーナ24から吸入された吸入空気
37は、発熱抵抗式空気流量測定装置のボディ1、吸入
ダクト25、スロットルボディ28及び燃料が供給され
るインジェクタ30を備えたインテークマニホールド2
9を経て、エンジンシリンダ32に吸入される。一方、
エンジンシリンダで発生したガス33は排気マニホール
ド34を経て排出される。
The intake air 37 sucked from the air cleaner 24 is an intake manifold 2 having a body 1 of a heat resistance type air flow rate measuring device, an intake duct 25, a throttle body 28 and an injector 30 to which fuel is supplied.
It is sucked into the engine cylinder 32 via 9. on the other hand,
The gas 33 generated in the engine cylinder is discharged through the exhaust manifold 34.

【0035】発熱抵抗式空気流量測定装置の回路モジュ
ール4から出力される空気流量信号、スロットル角度セ
ンサ27から出力されるスロットルバルブ角度信号、排
気マニホールド34に設けられた酸素濃度計35から出
力される酸素濃度信号及び、エンジン回転速度計31か
ら出力されるエンジン回転速度信号等、これらを入力す
るコントロールユニット36はこれらの信号を逐次演算
して最適な燃料噴射量とアイドルエアコントロールバル
ブ開度を求め、その値を使って前記インジェクタ30及
びアイドルコントロールバルブ26を制御する。
An air flow rate signal output from the circuit module 4 of the heating resistance type air flow rate measuring device, a throttle valve angle signal output from the throttle angle sensor 27, and an oxygen concentration meter 35 provided in the exhaust manifold 34. The control unit 36, which receives the oxygen concentration signal, the engine speed signal output from the engine tachometer 31, etc., sequentially calculates these signals to obtain the optimum fuel injection amount and the idle air control valve opening. , That value is used to control the injector 30 and the idle control valve 26.

【0036】[0036]

【発明の効果】順方向流れの慣性力を強める事により、
逆流の流速分布に変化を持たせ、発熱抵抗体が検出する
逆流量を減らす事が可能となる。これにより、実車装着
時の逆流を伴うような脈動流下における計測精度の向上
を図る事発熱抵抗式空気流量測定装置を提供する事が可
能となる。
By increasing the inertial force of the forward flow,
It is possible to reduce the reverse flow rate detected by the heating resistor by providing a change in the reverse flow velocity distribution. As a result, it is possible to provide the heating resistance type air flow rate measuring device which improves the measurement accuracy under the pulsating flow accompanied by backflow when the vehicle is mounted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す発熱抵抗体式空気流量
測定装置の横断面
FIG. 1 is a cross-sectional view of a heating resistor type air flow measuring device showing an embodiment of the present invention.

【図2】図1を空気の流れの上流側からみた図FIG. 2 is a view of FIG. 1 seen from the upstream side of the air flow.

【図3】逆流を伴う脈動流下における回転数一定時にお
けるブースト圧対発熱抵抗体式空気流量測定装置の出力
特性
FIG. 3 Output characteristics of boost pressure vs. heating resistor type air flow rate measuring device at constant rotation speed under pulsating flow accompanied by backflow

【図4】図4中のA、B各点における脈動波形FIG. 4 is a pulsation waveform at points A and B in FIG.

【図5】絞りの有無の主通路内の流速分布を示す図FIG. 5 is a diagram showing a flow velocity distribution in the main passage with and without a throttle.

【図6】本発明の他の実施例を示す発熱抵抗体式空気流
量測定装置の横断面
FIG. 6 is a cross section of a heating resistor type air flow rate measuring device showing another embodiment of the present invention.

【図7】図6に示した通路構造における検出管内の空気
の流れを示す図
7 is a diagram showing the flow of air in the detection pipe in the passage structure shown in FIG.

【図8】本発明の他の実施例を示す発熱抵抗体を複数個
備えた発熱抵抗体式空気流量測定装置の横断面
FIG. 8 is a cross-sectional view of a heating resistor type air flow rate measuring device having a plurality of heating resistors according to another embodiment of the present invention.

【図9】図9を空気の流れの上流側からみた図FIG. 9 is a view of FIG. 9 seen from the upstream side of the air flow.

【図10】図1の通路構造における検出管内への空気取
り込みを表す図
FIG. 10 is a diagram showing air intake into the detection tube in the passage structure of FIG.

【図11】図10の通路構造に対して検出管上流側に空
気取り込みのガイドを備えた検出管内への空気取り込み
を表す図
11 is a diagram showing air intake into the detection tube provided with a guide for air intake on the upstream side of the detection tube with respect to the passage structure of FIG.

【図12】本発明の通路構造をエアクリーナへ一体化し
た発熱抵抗体式空気流量測定装置の横断面
FIG. 12 is a cross section of a heating resistor type air flow rate measuring device in which the passage structure of the present invention is integrated with an air cleaner.

【図13】本発明の通路構造を回路モジュールと一体化
して吸気管内の一部へ挿入して成る発熱抵抗体式空気流
量測定装置の横断面
FIG. 13 is a cross-sectional view of a heating resistor type air flow rate measuring device in which the passage structure of the present invention is integrated with a circuit module and inserted into a part of an intake pipe.

【図14】図13を空気の流れの上流側からみた図FIG. 14 is a diagram of FIG. 13 viewed from the upstream side of the air flow.

【図15】図13の通路構造に対して検出管を分割して
各々の通路に発熱抵抗体配置して成る発熱抵抗体式空気
流量測定装置の横断面
FIG. 15 is a cross-sectional view of a heating resistor type air flow measuring device in which a detecting tube is divided into the passage structure of FIG. 13 and heating resistors are arranged in each passage.

【図16】図15を空気の流れの上流側からみた図FIG. 16 is a view of FIG. 15 seen from the upstream side of the air flow.

【図17】本発明の発熱抵抗体式空気流量測定装置を利
用して成る内燃機関のシステム図
FIG. 17 is a system diagram of an internal combustion engine using the heating resistor type air flow rate measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1…ボディ 2…主通路 3…検出管 4…駆動回路内
臓モジュール 5…発熱抵抗体 6…感温抵抗体 7…支持体 8…検
出管絞り 9…整流体 10…主流流れ 11…固定ネジ 12…コネクタ 1
3…逆流 14…支持体固定部 15…平面部 18…ガイド 19…エアクリーナ一体化通路 20…
エアフイルタ 21…シール材 22…検出管一体形ベース 23…吸
気管構成部材 24…エアクリーナ 25…ダクト26…アイドルエア
コントロールバルブ 27…スロットル角度センサ 28…スロットルボディ 29…吸気マニホールド 30…インジェクタ 31…
回転速度計 32…エンジンシリンダ 33…ガス 34…排気マニ
ホールド 35…酸素濃度計 36…コントロールユニット 37…吸入空気 38…ブリッジ部 39…仕切材
DESCRIPTION OF SYMBOLS 1 ... Body 2 ... Main passage 3 ... Detection tube 4 ... Driving circuit built-in module 5 ... Heating resistor 6 ... Temperature sensitive resistor 7 ... Support 8 ... Detection tube throttle 9 ... Rectifier 10 ... Mainstream flow 11 ... Fixing screw 12 … Connector 1
3 ... Backflow 14 ... Support fixing part 15 ... Flat part 18 ... Guide 19 ... Air cleaner integrated passage 20 ...
Air filter 21 ... Seal material 22 ... Detection tube integrated type base 23 ... Intake pipe constituent member 24 ... Air cleaner 25 ... Duct 26 ... Idle air control valve 27 ... Throttle angle sensor 28 ... Throttle body 29 ... Intake manifold 30 ... Injector 31 ...
Tachometer 32 ... Engine cylinder 33 ... Gas 34 ... Exhaust manifold 35 ... Oxygen concentration meter 36 ... Control unit 37 ... Intake air 38 ... Bridge part 39 ... Partition material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五十嵐 信弥 茨城県ひたちなか市大字高場字鹿島谷津 2477番地3日立オートモティブエンジニア リング株式会社内 (72)発明者 平山 宏 茨城県ひたちなか市大字高場字鹿島谷津 2477番地3日立オートモティブエンジニア リング株式会社内 (72)発明者 斉藤 孝行 茨城県ひたちなか市大字高場字鹿島谷津 2477番地3日立オートモティブエンジニア リング株式会社内 (72)発明者 荒井 信勝 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinya Igarashi 2471, Kashima Yatsu, Hitachi Takanaka City, Ibaraki Pref. 3 Hitachi Automotive Engineers Ring Co., Ltd. (72) Inventor, Hiroshi Hirayama Kajima, Hitachinaka City, Ibaraki Prefecture Yatsu 2477 Address 3 Hitachi Automotive Engineering Co., Ltd. (72) Inventor Takayuki Saito Takata, Ibaraki Pref. Takashima Kashima Yatsu 2477 Address 3 Hitachi Automotive Engineering Ring Co., Ltd. (72) Inventor Nobukatsu Arai Tsuchiura City, Ibaraki Prefecture 502, Machi

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の吸気通路の一部を構成する主通
路とほぼ平行で内部に発熱抵抗体を有する検出管と、前
記発熱抵抗体と電気的に接続された電子回路とを備えた
発熱抵抗体式空気流量測定装置において、前記検出管の
大きさは前記主空気通路の有効断面積に対して、検出管
の有効断面積が概略20%以上を有し、検出管の発熱抵
抗体の上流側には検出管内壁付近の空気の流れを乱し、
検出管中央付近の流速を速める構造的手段を設け、更に
検出管支持部材と検出管とが一体形成されたことを特徴
とする発熱抵抗体式空気流量測定装置。
1. A detection tube having a heat generating resistor therein, which is substantially parallel to a main passage forming a part of an intake passage of an internal combustion engine, and an electronic circuit electrically connected to the heat generating resistor. In the heating resistor type air flow rate measuring device, the size of the detection tube is such that the effective cross-sectional area of the detection tube is approximately 20% or more of the effective cross-sectional area of the main air passage. On the upstream side, the air flow near the inner wall of the detection tube is disturbed,
A heating resistor type air flow rate measuring device characterized in that structural means for increasing the flow velocity near the center of the detection tube is provided, and the detection tube support member and the detection tube are integrally formed.
【請求項2】内燃機関の吸気通路の一部を構成する主通
路とほぼ平行で内部に発熱抵抗体を有する検出管と、前
記発熱抵抗体と電気的に接続された電子回路とを備えた
発熱抵抗体式空気流量測定装置において、前記検出管内
の発熱抵抗体付近の流速が、前記検出管内及び前記主通
路内の他のどの部分の流速より速くなるような流速分布
を持つことを特徴とする発熱抵抗体式空気流量測定装
置。
2. A detection tube having a heat-generating resistor therein, which is substantially parallel to a main passage forming a part of an intake passage of an internal combustion engine, and an electronic circuit electrically connected to the heat-generating resistor. The heating resistor type air flow rate measuring device is characterized in that it has a flow velocity distribution such that a flow velocity near the heating resistor in the detection pipe becomes faster than a flow velocity in any other portion in the detection pipe and in the main passage. Heating resistor type air flow rate measuring device.
【請求項3】請求項1または請求項2に記載の構造的手
段として、検出管内の発熱抵抗体設置の有効断面積より
上流の検出管有効断面積が狭くなるような絞り構造を設
けた事を特徴とする発熱抵抗式空気流量測定装置。
3. The structural means according to claim 1 or 2, wherein a throttling structure is provided so that the effective cross-sectional area of the detection tube upstream of the effective cross-sectional area of the heating resistor in the detection tube is narrowed. A heating resistance type air flow rate measuring device.
【請求項4】請求項3における絞りの大きさとして、発
熱抵抗体設置の有効断面積に対して上流の検出管有効断
面積が概略80%以下とする事を特徴とする請求項1か
ら請求項3に記載の発熱抵抗式空気流量測定装置。
4. The size of the diaphragm according to claim 3, wherein the effective area of the upstream detection tube is approximately 80% or less of the effective area of the heating resistor installed. Item 3. A heating resistance type air flow rate measuring device according to Item 3.
【請求項5】検出管内に発熱抵抗体を複数個配置した事
を特徴とする請求項1から請求項4のいずれかに記載の
発熱抵抗式空気流量測定装置。
5. The heating resistance type air flow rate measuring device according to claim 1, wherein a plurality of heating resistors are arranged in the detection tube.
【請求項6】検出管内を複数に分割或いは複数の検出管
を備え、各々に発熱抵抗体を配置し、更に各々の検出管
路が請求項4に記載の絞り構造であることを特徴とする
発熱抵抗式空気流量測定装置。
6. The inside of the detection tube is divided into a plurality of or a plurality of detection tubes are provided, and a heating resistor is arranged in each of the detection tubes, and each of the detection tubes has the diaphragm structure according to claim 4. Heating resistance type air flow rate measuring device.
【請求項7】請求項1から請求項6のいずれかに記載の
検出管構造を備えた内燃機関の吸気管構成部品。
7. An intake pipe component of an internal combustion engine, which comprises the detection pipe structure according to any one of claims 1 to 6.
【請求項8】請求項7に記載の内燃機関の吸気管構成部
品に発熱抵抗体を挿入して流量を検出する事を特徴とす
る発熱抵抗式空気流量測定装置。
8. A heating resistance type air flow rate measuring device characterized in that a heating resistor is inserted into the intake pipe constituent parts of the internal combustion engine according to claim 7 to detect the flow rate.
【請求項9】請求項1から請求項8のいずれかに記載の
検出管内に発熱抵抗体及び感温抵抗体を配置し、更に前
記、発熱抵抗体及び吸入空気温度を検出する感温抵抗体
を導伝性部材により駆動回路と電気的に接続されると共
に、非導伝性部材によりなる支持部材により一体形成さ
れ、前記駆動回路を内装保護するハウジング部材及び外
部へのインターフェースのためのコネクタとを一体固定
し、回路部と検出管部を一体のモジール化し、主空気通
路の壁面に設けられた穴から前記検出管部を主空気通路
に挿入し、前記ハウジング部の一部で前記主空気通路外
壁面に固定してなる事を特徴とする発熱抵抗式空気流量
測定装置。
9. A heat-sensitive resistor for arranging a heat-generating resistor and a temperature-sensitive resistor in the detection tube according to claim 1, and further for detecting the heat-generating resistor and intake air temperature. Is electrically connected to the drive circuit by a conductive member and is integrally formed by a support member made of a non-conductive member, and a housing member for internally protecting the drive circuit and a connector for external interface. Is integrally fixed, the circuit part and the detection pipe part are integrated into a module, and the detection pipe part is inserted into the main air passage through a hole provided in the wall surface of the main air passage, and the main air passage is partly connected to the main air passage. A heating resistance type air flow rate measuring device characterized by being fixed to the outer wall surface of the passage.
【請求項10】内燃機関の吸気管路に設けられた発熱抵
抗体式空気流量測定装置からの信号と、前記吸気管路の
発熱抵抗体式空気流量測定装置下流に設けられた絞り弁
の開度を検出する検出手段からの出力信号と、前記内燃
機関の回転数を検出する検出手段からの出力信号と、前
記内燃機関の排気ガス中の酸素濃度を検出する検出手段
からの出力信号等を基に燃料の供給量を制御する内燃機
関の制御システムにおいて、前記発熱抵抗体式空気流量
測定装置からの出力信号は請求項1から請求項9のいず
れかに記載の発熱抵抗体式空気流量測定装置より得られ
た出力信号であることを特徴とする内燃機関の制御シス
テム。
10. A signal from a heating resistor type air flow rate measuring device provided in an intake pipe line of an internal combustion engine and an opening of a throttle valve provided downstream of the heating resistor type air flow rate measuring device in the intake pipe line. Based on the output signal from the detecting means for detecting, the output signal from the detecting means for detecting the rotational speed of the internal combustion engine, the output signal from the detecting means for detecting the oxygen concentration in the exhaust gas of the internal combustion engine, etc. In an internal combustion engine control system for controlling a fuel supply amount, an output signal from the heating resistor type air flow rate measuring device is obtained by the heating resistor type air flow rate measuring device according to any one of claims 1 to 9. A control system for an internal combustion engine, wherein the control signal is an output signal.
JP7080026A 1995-04-05 1995-04-05 Exothermic resistance type air flow measuring device Pending JPH08278179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7080026A JPH08278179A (en) 1995-04-05 1995-04-05 Exothermic resistance type air flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7080026A JPH08278179A (en) 1995-04-05 1995-04-05 Exothermic resistance type air flow measuring device

Publications (1)

Publication Number Publication Date
JPH08278179A true JPH08278179A (en) 1996-10-22

Family

ID=13706777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7080026A Pending JPH08278179A (en) 1995-04-05 1995-04-05 Exothermic resistance type air flow measuring device

Country Status (1)

Country Link
JP (1) JPH08278179A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908704A1 (en) 1997-10-13 1999-04-14 Denso Corporation Air flow amount measuring apparatus having flow rectifier
WO2007139223A1 (en) * 2006-05-31 2007-12-06 Toyota Jidosha Kabushiki Kaisha Sensor unit of exhaust gas analyzer
US8085404B2 (en) 2006-08-23 2011-12-27 Toyota Jidosha Kabushiki Kaisha Gas analyzer and gas analyzing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908704A1 (en) 1997-10-13 1999-04-14 Denso Corporation Air flow amount measuring apparatus having flow rectifier
US6223594B1 (en) 1997-10-13 2001-05-01 Denso Corporation Thermal type air flow amount measuring apparatus having flow rectifier
WO2007139223A1 (en) * 2006-05-31 2007-12-06 Toyota Jidosha Kabushiki Kaisha Sensor unit of exhaust gas analyzer
JP2007322214A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Sensor unit in exhaust gas analyzer
JP4594277B2 (en) * 2006-05-31 2010-12-08 トヨタ自動車株式会社 Sensor unit in exhaust gas analyzer
US7936460B2 (en) 2006-05-31 2011-05-03 Toyota Jidosha Kabushiki Kaisha Sensor unit in exhaust gas analyzer
US8085404B2 (en) 2006-08-23 2011-12-27 Toyota Jidosha Kabushiki Kaisha Gas analyzer and gas analyzing method

Similar Documents

Publication Publication Date Title
JP3527813B2 (en) Heating resistor type air flow measurement device
US7523659B2 (en) Flow measurement apparatus
JP3416526B2 (en) Thermal flow sensor
JPH08278179A (en) Exothermic resistance type air flow measuring device
EP0085987B1 (en) Fuel feeding apparatus for internal combustion engine
JP4836179B2 (en) Heating resistor type fluid flow measuring device
US7555945B2 (en) Mass air flow sensor having off axis converging and diverging nozzles
JPH06265385A (en) Air flow rate measuring instrument
JPH0953482A (en) Throttle body integrated air flow measuring device
JP2001108500A (en) Heat generation resistance-type flow rate-measuring device
JPS62159016A (en) Flow rate detector
JPH0953966A (en) Heating element type air flow rate measuring apparatus
JP3189636B2 (en) Heating resistance type flow measurement device
JPS5861411A (en) Measuring device for flow rate of gas
EP2058632A2 (en) Configuration of air intake parts applied to thermal type air flow measuring instrument
JP2993912B2 (en) Air flow meter and internal combustion engine using it
US20010052262A1 (en) Mass flowmeter
JPH109921A (en) Air flow rate measuring apparatus
JP3344259B2 (en) Fluid physical quantity measurement method and device
JP2000314646A (en) Heating resistance-type flow-rate measuring apparatus
JPH08240461A (en) Air flow rate measuring device
JPH06288805A (en) Air flowmeter
JP2003161652A (en) Flow rate measuring device
JPH1114420A (en) Heating resistor-type air-flow-rate measuring instrument
JPS61164115A (en) Karman's vortex street type air flow rate measuring instrument