JP2001091324A - Heat resistor type air flowrate measuring device - Google Patents

Heat resistor type air flowrate measuring device

Info

Publication number
JP2001091324A
JP2001091324A JP2000249997A JP2000249997A JP2001091324A JP 2001091324 A JP2001091324 A JP 2001091324A JP 2000249997 A JP2000249997 A JP 2000249997A JP 2000249997 A JP2000249997 A JP 2000249997A JP 2001091324 A JP2001091324 A JP 2001091324A
Authority
JP
Japan
Prior art keywords
air passage
throttle
main
air flow
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000249997A
Other languages
Japanese (ja)
Other versions
JP2001091324A5 (en
Inventor
Chihiro Kobayashi
千尋 小林
Shinya Igarashi
信弥 五十嵐
Akira Takasago
晃 高砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2000249997A priority Critical patent/JP2001091324A/en
Publication of JP2001091324A publication Critical patent/JP2001091324A/en
Publication of JP2001091324A5 publication Critical patent/JP2001091324A5/ja
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an accurate heat resistor type air flowrate measuring device superior in treatment and low in cost. SOLUTION: The heat resistor type air flowrate measuring device is provided with a main air flow path body 20 forming a main air flow path 22 where air flows and a measuring module 52 containing heating resistors 3, 4, etc. inserted in the main air flow path body for measuring air flowrate. The measuring module 52 has a heating resistor and the like inside a sub-air flow path body 10 forming an L-shape sub-air flow path 13 consisting of an inlet opening 11, a vertical path 13a, a horizontal path 13b and an outlet opening 12 opening to the parallel direction to the main flow line. The main air flow path body 20 has an orifice 21 on the periphery of the side wall inside upstream the sub-air flow path body 10. Inside a flux region D forming the air flow 23 expanding from the tip end of the orifice 21 to the parallel direction of the main flow line, both the inlet opening 11 and outlet opening 12 are arranged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気流量を測定す
る空気流量計に係わり、特に、自動車の内燃機関の吸入
空気流量の測定に好適な発熱抵抗体式空気流量測定装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow meter for measuring an air flow, and more particularly to a heating resistor type air flow measurement device suitable for measuring an intake air flow of an internal combustion engine of a motor vehicle.

【0002】[0002]

【従来の技術】内燃機関に用いられる発熱抵抗体式空気
流量測定装置の脈動流下における計測精度の向上を図る
従来技術として、特開平2ー1518号公報に示すL字
形の検出管を持つ通路構造のものが開示されている。即
ち、逆方向の流れに対して壁を設ける事により、発熱抵
抗体に直接逆流が当たらない様な通路構造としたもので
ある。このような通路構造とすることにより、逆流を伴
わないまでも脈動振幅が大きくなった場合に生じる発熱
抵抗体式空気流量測定装置の検出値の低下、いわゆる二
値現象の改善が図られる。
2. Description of the Related Art As a conventional technique for improving the measurement accuracy under a pulsating flow of a heating resistor type air flow measuring device used in an internal combustion engine, a passage structure having an L-shaped detection tube disclosed in Japanese Patent Application Laid-Open No. 2-1518 is disclosed. Things are disclosed. That is, by providing a wall for the flow in the reverse direction, the passage structure is such that the heat flow does not directly hit the heating resistor. By adopting such a passage structure, the detection value of the heating resistor type air flow measuring device, which is generated when the pulsation amplitude becomes large even without backflow, that is, the so-called binary phenomenon is improved.

【0003】また、通路内に絞りを持つ構造としては、
特開平1−110220号公報に開示されたものがあ
る。この構造は、主流方向に対するほぼ直管の距離の短
い検出管の中の絞りのすぐ下流に発熱抵抗体を配置する
構造である。
Further, as a structure having a throttle in the passage,
There is one disclosed in JP-A-1-110220. This structure is a structure in which a heating resistor is disposed immediately downstream of a throttle in a detection tube having a short distance from a straight pipe with respect to a main flow direction.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術では、流
れの方向を区別して測定する事は不可能である。このた
め、回転数を一定に保ちスロットルバルブを徐々に開け
てブースト圧を変えて発熱抵抗体式空気流量計の平均出
力をプロットすると、例えば、図12に示すように、あ
るブースト圧以降で真の流速(流量)に対して徐々に増加
してプラス側の計測誤差を示すような跳ね上がり現象が
発生する。これは、図13に示すように発熱抵抗体式空
気流量計の脈動振幅が徐々に大きくなりB点以降で逆流
が発生する為である。逆流が発生すると発熱抵抗体は流
れの方向を判別できないため、順流でも逆流でも同様に
検出してしまうため平均出力が増加してしまうのであ
る。また、この現象は特に、4気筒以下のエンジンで1
000から2000rpmの比較的低回転領域で起こり
易く、それ以上の気筒数のエンジンでは起こり難い現象
である事が知られている。
In the above-mentioned prior art, it is impossible to measure the flow direction separately. For this reason, if the average output of the heating resistor type air flow meter is plotted by changing the boost pressure by gradually opening the throttle valve while keeping the rotation speed constant, for example, as shown in FIG. A jumping phenomenon that gradually increases with respect to the flow velocity (flow rate) and indicates a measurement error on the plus side occurs. This is because, as shown in FIG. 13, the pulsation amplitude of the heating resistor type air flow meter gradually increases, and backflow occurs after point B. When a backflow occurs, the heating resistor cannot determine the direction of the flow, so that the forward flow and the reverse flow are similarly detected, so that the average output increases. This phenomenon is particularly noticeable in engines with four cylinders or less.
It is known that this phenomenon is likely to occur in a relatively low rotation speed range of 000 to 2,000 rpm, and is unlikely to occur in an engine having more cylinders.

【0005】このため、前記した従来技術の一つである
逆方向の流れに対して壁を設けることにより、発熱抵抗
体に直接逆流が当たらないような通路構造とすることで
逆流による誤差は低減可能ではある。しかし、その低減
量は半分でしかない。これは逆流が生じる場合にはその
分順流も増加するためである。そして、エンジン及びそ
の吸気管路構成上、吸気管路内の逆流の発生を無くすこ
とは困難である。従って、逆流による誤差低減のために
は順流分から逆流分を差し引く構成や、順流のみの計測
だけではなく逆流も計測する構成等の複雑なる方法を採
らなければならない。
For this reason, by providing a wall for the reverse flow, which is one of the prior arts described above, the passage structure is such that the reverse flow does not directly hit the heating resistor, thereby reducing errors due to the reverse flow. It is possible. However, the reduction is only half. This is because when a backflow occurs, the forward flow also increases accordingly. And it is difficult to eliminate backflow in the intake pipe due to the configuration of the engine and its intake pipe. Therefore, in order to reduce the error due to the backflow, a complicated method such as a structure for subtracting the backflow from the forward flow, a structure for measuring not only the forward flow but also the backflow, and the like must be adopted.

【0006】従って、本発明の目的は、単純な構成で、
実車装着時の逆流を伴う脈動流下における測定精度(含
む低バラツキ精度)の向上を図り、低価格で取扱性に優
れた発熱抵抗体式空気流量測定装置を提供することにあ
る。
Accordingly, an object of the present invention is to provide a simple configuration,
It is an object of the present invention to provide a heating resistor type air flow measuring device which is improved in measurement accuracy (including low variation accuracy) under a pulsating flow accompanied by a reverse flow when mounted on an actual vehicle, and which is inexpensive and excellent in handleability.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する発熱
抵抗体式空気流量測定装置は、被測定流体が流れる主空
気通路を形成する主空気通路体と、前記主空気通路体内
に挿入されて前記被測定流体の流量を測定する発熱抵抗
体等を包含する測定モジュールとを備える発熱抵抗体式
空気流量測定装置において、前記測定モジュールは、前
記被測定流体の主流線に対し垂直方向に開口した入口開
口部と前記主流線に対し平行方向に開口した出口開口部
とを含む略L字形の副空気通路を形成している副空気通
路体の内部に、前記発熱抵抗体等を有し、前記主空気通
路体は、前記副空気通路体の上流側に位置する内部側壁
周囲に絞りを有し、前記被測定流体が前記絞りの先端か
ら前記主流線に平行方向に延展して形成する流束領域の
内側に、前記入口開口部と前記出口開口部の両開口部が
配設されているものである。
According to a first aspect of the present invention, there is provided a heating resistor type air flow measuring device which achieves the above object, comprises a main air passage which forms a main air passage through which a fluid to be measured flows, and a main air passage inserted into the main air passage. A heating module for measuring the flow rate of the fluid to be measured, the heating module including a heating resistor and the like, wherein the measurement module includes an inlet opening that opens in a direction perpendicular to a main streamline of the fluid to be measured. A heating element and the like inside a sub air passage body forming a substantially L-shaped sub air passage including a portion and an outlet opening opening in a direction parallel to the main streamline; The passage body has a throttle around an inner side wall located on the upstream side of the sub air passage body, and a flow area of a flux region formed by the measured fluid extending from a tip of the throttle in a direction parallel to the main streamline. Inside, the entrance In which both the openings of the mouth the outlet opening is arranged.

【0008】本発明によれば、絞りで形成される流束領
域の流速増加分が該流束領域内に配設された両開口部を
有する副空気通路体を流れる逆流の影響分を低減するの
で、測定精度の向上が図られる。
According to the present invention, the increase in the flow velocity in the flux region formed by the throttle reduces the influence of the backflow flowing through the auxiliary air passage having both openings disposed in the flux region. Therefore, the measurement accuracy is improved.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1〜図11を参照し説明する。図1は、 本発明
による一実施例の 発熱抵抗体式空気流量測定装置を示
す正面(断面)図である。図2は、図1の上流側から視た
側面図である。図1,図2を同時に参照して説明する。
発熱抵抗体式空気流量測定装置(以下、流量測定装置と
いう)は、流量測定用の測定モジュール52と、 主空気
通路22を形成するボディ53(即ち、主空気通路体2
0)と、 ボディ53に測定モジュール52を取り付ける
部品としてのネジ54aやシール54b等を含む構成で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a front (cross-sectional) view showing a heating resistor type air flow measuring device according to an embodiment of the present invention. FIG. 2 is a side view as viewed from the upstream side in FIG. This will be described with reference to FIGS.
The heating resistor type air flow measuring device (hereinafter, referred to as a flow measuring device) includes a measuring module 52 for measuring a flow rate and a body 53 forming the main air passage 22 (that is, the main air passage body 2).
0) and a screw 54a and a seal 54b as components for attaching the measurement module 52 to the body 53.

【0010】即ち、主空気通路22を形成するボディ5
3としての主空気通路体20の壁面には、穴25が開け
られており、 該穴25に測定モジュール52(の副空気
通路体10)が挿入されて、 主空気通路体20の取付面
とハウジング1の取付面とがネジ7等で機械的強度を保
つように固定されている。また、測定モジュール52と
ボディ53(主空気通路体20)の間にシール54bを取
り付けて気密性が保たれている。
That is, the body 5 forming the main air passage 22
A hole 25 is formed in the wall surface of the main air passage body 20 serving as 3. The measurement module 52 (of the sub air passage body 10) is inserted into the hole 25 so that the mounting surface of the main air passage body 20 is The mounting surface of the housing 1 is fixed by screws 7 or the like so as to maintain mechanical strength. Further, a seal 54b is attached between the measurement module 52 and the body 53 (the main air passage body 20) to maintain airtightness.

【0011】一方、測定モジュール52は、後述の駆動
回路を搭載する回路基板2を内蔵するハウジング1と非
導電性部材から成る副空気通路体10とから主に構成さ
れ、副空気通路体10には、空気流量検出のための発熱
抵抗体3と、吸入空気温度を補償するための感温抵抗体
4とが、導電性部材から成る支持体5を介して、回路基
板2と電気的に接続されるように配置されている。すな
わち、ハウジング1,回路基板2,発熱抵抗体3,感温
抵抗体4,副空気通路体10等が、測定モジュール52
として一体化されている。
On the other hand, the measuring module 52 mainly comprises a housing 1 containing a circuit board 2 on which a drive circuit described later is mounted, and a sub air passage 10 made of a non-conductive member. A heating resistor 3 for detecting an air flow rate and a temperature-sensitive resistor 4 for compensating an intake air temperature are electrically connected to the circuit board 2 via a support 5 made of a conductive member. It is arranged to be. That is, the housing 1, the circuit board 2, the heating resistor 3, the temperature-sensitive resistor 4, the sub air passage 10, etc.
It is integrated as.

【0012】上記流量測定装置の流量測定の動作原理に
ついて、回路構成から説明する。図3は、図1の発熱抵
抗体式空気流量測定装置を示す回路構成図である。流量
測定装置の回路基板2に形成されている駆動回路は、大
きく分けてブリッジ回路とフィードバック回路から成り
立っている。吸入空気流量測定を行うための発熱抵抗体
3(RH),吸入空気温度を補償するための感温抵抗体4
(RC),抵抗R10及びR11で上記ブリッジ回路を組
み、オペアンプOP1を使いフィードバックをかけなが
ら発熱抵抗体RHと感温抵抗体RCの間に一定温度差を
保つように発熱抵抗体RHに加熱電流Ihを流して、空
気流量に応じた出力信号V2を出力する。つまり、流速
の速い場合には、発熱抵抗体RHから奪われる熱量が多
いため加熱電流Ihを多く流す。これに対して流速の遅
い場合には、発熱抵抗体Rhから奪われる熱量が少ない
ため加熱電流も少なくて済むものである。そして、発熱
抵抗体Rhから奪われる熱量は、空気の流れの方向によ
らず順流でも逆流でも同じであるため、逆流時にも加熱
電流Ihが流れて、流量測定装置の跳ね上がり現象が生
じるのである。
The operation principle of the flow rate measurement of the flow rate measuring device will be described from the circuit configuration. FIG. 3 is a circuit configuration diagram showing the heating resistor type air flow measuring device of FIG. The drive circuit formed on the circuit board 2 of the flow measurement device is roughly composed of a bridge circuit and a feedback circuit. Heating resistor 3 (RH) for measuring intake air flow rate, temperature-sensitive resistor 4 for compensating intake air temperature
(RC), the above-mentioned bridge circuit is assembled by the resistors R10 and R11, and the heating current is supplied to the heating resistor RH so as to maintain a constant temperature difference between the heating resistor RH and the temperature-sensitive resistor RC while applying feedback using the operational amplifier OP1. Ih is flown to output an output signal V2 corresponding to the air flow rate. That is, when the flow velocity is high, a large amount of heat is taken from the heating resistor RH, so that a large amount of the heating current Ih flows. On the other hand, when the flow velocity is low, the amount of heat taken from the heating resistor Rh is small, so that the heating current can be reduced. The amount of heat deprived from the heating resistor Rh is the same regardless of the direction of the flow of air, whether it is a forward flow or a reverse flow. Therefore, the heating current Ih flows even at the time of the reverse flow, and a jumping-up phenomenon of the flow measurement device occurs.

【0013】図1,図2に戻って、本発明の特徴とする
構成について詳説する。「L字形の検出管を形成してい
る通路構造」としての副空気通路体10は、順方向空気
流れ23の主流線に対して、垂直方向に開口している副
空気通路入口11と、該副空気通路入口11から主流線
に平行に延長している縦通路13aと、該縦通路13a
に連通し略直角に曲がって主流線に垂直に延長している
横通路13bと、該横通路14の終端にあって、主流線
に対して平行に開口している副空気通路出口12とから
成る略L字形の副空気通路13(縦通路13aと横通路
14)を形成している。なお、一般に、発熱抵抗体3や
感温抵抗体4などの発熱抵抗体等は、縦通路13aの内
部部位に配設されている。
Returning to FIG. 1 and FIG. 2, the configuration characteristic of the present invention will be described in detail. The sub air passage body 10 as “the passage structure forming the L-shaped detection tube” has a sub air passage inlet 11 that opens vertically to the main streamline of the forward air flow 23, A vertical passage 13a extending from the sub air passage inlet 11 in parallel with the main streamline;
A lateral passage 13b that is bent substantially at right angles and extends perpendicular to the main streamline, and a sub air passage outlet 12 at the end of the lateral passage 14 that opens parallel to the mainstream line. A substantially L-shaped auxiliary air passage 13 (vertical passage 13a and horizontal passage 14) is formed. In general, the heating resistors such as the heating resistor 3 and the temperature-sensitive resistor 4 are disposed inside the vertical passage 13a.

【0014】他方、ボディ53としての主空気通路体2
0は、挿入された副空気通路体10の上流側に、主空気
通路体20の内部側壁周囲に形成された絞り21を有
し、上述した副空気通路体10の入口開口部(面)として
の副空気通路入口11と、出口開口部(面)としての副空
気通路出口12との両開口部(面)は、被測定流体として
の順方向空気流れ23が絞り21の先端から主流線に対
して平行方向に延展して形成する流束領域D(図1に示
すように絞り21の先端から主流線に対して平行方向に
延展している流線G1,G2で囲まれた内側の領域、例え
ば、主空気通路体20が図2に示すような円管であれば
内径Dに相当する流束領域)の、内側に入るように配設
されている。
On the other hand, main air passage 2 as body 53
0 has a throttle 21 formed around the inner side wall of the main air passage body 20 on the upstream side of the inserted sub air passage body 10, and serves as an inlet opening (surface) of the above-described sub air passage body 10. The opening (surface) of the sub air passage inlet 11 and the sub air passage outlet 12 as the outlet opening (surface) is formed so that the forward air flow 23 as the fluid to be measured flows from the tip of the throttle 21 to the main streamline. A flux region D formed by extending in a direction parallel to the main surface (an inner region surrounded by streamlines G1 and G2 extending in a direction parallel to the main streamline from the tip of the throttle 21 as shown in FIG. 1). For example, if the main air passage body 20 is a circular pipe as shown in FIG. 2, the main air passage body 20 is disposed so as to enter the inside of a flux region corresponding to the inner diameter D).

【0015】即ち、図2に示すように、副空気通路体1
0が挿入される主空気通路体20の形状は、ほぼ円筒状
(円管)であり、主空気通路体10が形成する主空気通路
22を流れる 被測定流体としての空気流の流束が成す
有効断面積は、 副空気通路体10の出入口開口部(とし
ての副空気通路入口11と副空気通路出口12)の配置
箇所を包含しているものである。
That is, as shown in FIG.
The shape of the main air passage body 20 into which 0 is inserted is substantially cylindrical.
(Circular pipe), and the effective cross-sectional area formed by the flux of the air flow as the fluid to be measured flowing through the main air passage 22 formed by the main air passage body 10 is determined by the inlet / outlet opening (as the inlet / outlet opening of the sub air passage body 10). The sub air passage inlet 11 and the sub air passage outlet 12) are included.

【0016】換言すれば、副空気通路体10の上流側に
位置する主空気通路体20の内部側壁周囲に、絞り21
を設けている。絞り21の断面形状は、主空気通路22
とほぼ同じ中心軸を有するベンチェリ形の断面であっ
て、絞り21の上流側はほぼ円弧形状を有し、絞り21
の下流側は順方向空気流れ23に対してほぼ垂直となっ
ている。さらに、絞り21と、副空気通路体10の副空
気通路入口11及び副空気通路出口12との出入口配置
構成は、図2に示すように、上流側から視たときに、絞
り内径D(図示の流束領域D)の内側に、両方の副空気通
路入口11及び副空気通路出口12が配置されるものと
なっている。そして、副空気通路入口11は、図1に示
す流線G1の内側近傍の通路壁側の位置に、かつ、副空
気通路出口12は、図1に示す流線G2の内側近傍の通
路壁側の位置に配設されることが望ましい。
In other words, a throttle 21 is formed around the inner side wall of the main air passage body 20 located upstream of the sub air passage body 10.
Is provided. The cross-sectional shape of the throttle 21 is the same as that of the main air passage 22.
And a venturi-shaped cross section having substantially the same central axis as that of the diaphragm 21. The upstream side of the diaphragm 21 has a substantially arc shape.
Is substantially perpendicular to the forward airflow 23. Further, as shown in FIG. 2, when the throttle 21 and the sub air passage inlet 11 and the sub air passage outlet 12 of the sub air passage body 10 are viewed from the upstream side, the arrangement of the throttle 21 and the inner diameter D (shown in FIG. Both the sub air passage inlet 11 and the sub air passage outlet 12 are arranged inside the flux region D). The auxiliary air passage inlet 11 is located at a position near the passage wall near the inside of the stream line G1 shown in FIG. 1, and the auxiliary air passage outlet 12 is located near the passage wall near the inside of the stream line G2 shown in FIG. It is desirable to be arranged at the position.

【0017】なお、絞り21の上流側半分を円弧形状
(ベルマウス状)とするのは、絞り21の下流側の通路中
心付近の空気流れを乱さないためであり、また、絞り2
1の下流側半分を空気流れの主流線方向に対してほぼ垂
直形状とするのは、後述の図5に示すように、絞り21
の下流側で順方向空気流れ23に対して剥離を生じ易く
するためである。これにより、絞り径内側の下流で流れ
を乱さずに脈動時の順流流速を増加させることが可能と
なる。
The upstream half of the throttle 21 is formed in an arc shape.
(Bellmouth shape) in order not to disturb the air flow near the center of the passage downstream of the throttle 21.
As shown in FIG. 5 described below, the downstream half of the throttle 1 is shaped substantially perpendicular to the main streamline direction of the air flow.
This is because the separation in the forward air flow 23 is likely to occur on the downstream side of the air flow. This makes it possible to increase the forward flow velocity during pulsation without disturbing the flow downstream of the inside of the throttle diameter.

【0018】すなわち、本発明による発熱抵抗体式空気
流量測定装置の特徴は、被測定流体が流れる主空気通路
を形成する主空気通路体と、前記主空気通路体内に挿入
されて前記被測定流体の流量を測定する発熱抵抗体等を
包含する測定モジュールとを備える発熱抵抗体式空気流
量測定装置において、前記測定モジュールは、前記被測
定流体の主流線に対し垂直方向に開口した入口開口部
と、該入口開口部から前記主流線に平行に延長した縦通
路と、該縦通路に連通し略直角に曲がって前記主流線に
垂直に延長した横通路と、該横通路の終端にあって前記
主流線に対し平行方向に開口した出口開口部とからなる
略L字形の副空気通路を形成している副空気通路体を有
して該副空気通路体の内部に前記発熱抵抗体等を保有
し、前記主空気通路体は、前記副空気通路体の上流側に
位置する内部側壁周囲に絞りを有し、前記被測定流体が
前記絞りの先端から前記主流線に平行方向に延展して形
成する流束領域の内側に、前記入口開口部と前記出口開
口部の両開口部が配設されていることにあると言える。
That is, the features of the heating resistor type air flow measuring device according to the present invention are that a main air passage forming a main air passage through which the fluid to be measured flows, In a heating resistor type air flow measurement device including a measurement module including a heating resistor for measuring a flow rate, the measurement module includes an inlet opening that opens in a direction perpendicular to a main streamline of the fluid to be measured, A vertical passage extending from the inlet opening in parallel with the main streamline, a horizontal passage communicating with the vertical passage, bending at a substantially right angle and extending perpendicular to the main streamline, and a main streamline at an end of the horizontal passage. A sub-air passage body that forms a substantially L-shaped sub-air passage composed of an outlet opening portion opened in a direction parallel to the sub-air passage body, and holding the heating resistor and the like inside the sub-air passage body; The main air passage body Having a throttle around the inner side wall located on the upstream side of the sub air passage body, inside a flux region formed by the fluid to be measured extending from the tip of the throttle in a direction parallel to the main streamline, It can be said that both the opening of the inlet and the opening of the outlet are provided.

【0019】次に、L字形の副空気通路体の上流側に絞
りを有する本発明の特徴とする構成によって、逆流影響
による跳ね上がり誤差および二値現象が低減されるメカ
ニズムについて、図4,5を用いて絞りの有無の比較か
ら説明する。図4は、本実施例の絞りによる跳ね上がり
誤差低減のメカニズムを示す図である。図5は、本実施
例の絞りによる二値現象低減のメカニズムを示す図であ
る。
Next, referring to FIGS. 4 and 5, a description will be given of a mechanism for reducing a jump error and a binary phenomenon caused by a backflow by the characteristic structure of the present invention having a restriction on the upstream side of the L-shaped auxiliary air passage body. A description will be given based on a comparison of the presence or absence of a diaphragm using the above. FIG. 4 is a diagram showing a mechanism for reducing a jump error by the diaphragm according to the present embodiment. FIG. 5 is a diagram illustrating a mechanism of reducing the binary phenomenon by the diaphragm according to the present embodiment.

【0020】まず、絞りの有無で比較した流速波形が図
4(a)と図4(b)である。従来の絞り無しの場合には、
主空気通路中に図4(a)に示す流速波形のような逆流が
生じても、発熱抵抗体だけでは流れの方向を検知できな
いために、実際には図中斜線に示したような流速のゼロ
付近で折り返した波形となる。また、図4(a)に示す副
空気通路効果の波形のように、前述のL字形副空気通路
を採用することにより副空気通路中には逆流の侵入を無
くすことができる。
First, FIGS. 4 (a) and 4 (b) show flow velocity waveforms compared with and without the restriction. If there is no conventional aperture,
Even if a reverse flow like the flow velocity waveform shown in FIG. 4 (a) occurs in the main air passage, the flow direction cannot be detected by the heating resistor alone, so that the flow velocity shown in FIG. The waveform is folded near zero. Also, as shown in the waveform of the sub air passage effect shown in FIG. 4 (a), by adopting the L-shaped sub air passage described above, it is possible to prevent the backflow from entering the sub air passage.

【0021】そして絞り無しの場合に、平均流速U1で
逆流まで生じる流速振幅が有ると、副空気通路の効果に
より副空気通路の中には逆流の進入は無くなるが、発熱
抵抗体の応答遅れを考慮した波形の平均値は、逆流が生
じた分は差し引かないので、その分だけ順流が増加する
ことになり、ΔU1増加してしまう。このΔU1が逆流
による検出誤差となる。
If there is a flow velocity amplitude that occurs up to the reverse flow at the average flow velocity U1 when there is no throttle, the reverse flow will not enter the sub air passage due to the effect of the sub air passage, but the response delay of the heating resistor will be reduced. Since the average value of the considered waveform does not deduct the portion where the backflow has occurred, the forward flow increases by that amount, and ΔU1 increases. This ΔU1 becomes a detection error due to the backflow.

【0022】これに対して、L字形副空気通路の上流側
に絞りを配置すると絞りの下流側で剥離渦が生じるため
に、副空気通路配置部では、主空気通路有効断面積が狭
くなり、平均流速U2はU1よりも速くなり、更に脈動
振幅も増加する。しかし、逆流に対しては、副空気通路
配置部の通路有効断面積を絞る手段が無いため、すなわ
ち、 副空気通路の上流側の絞りは、逆流に対しては無
関係となるので、 逆流(逆流量)の影響としてのΔU1
とΔU2とは、ほぼ同じ値を示す。つまり、副空気通路
の上流側に絞りを配置したことにより、逆流量を変えず
に平均流速のみ増加させることが可能となる。
On the other hand, if the throttle is arranged upstream of the L-shaped auxiliary air passage, a separation vortex is generated downstream of the throttle, so that the effective cross-sectional area of the main air passage is reduced at the auxiliary air passage arrangement portion. The average flow velocity U2 is faster than U1, and the pulsation amplitude also increases. However, for backflow, there is no means to reduce the effective cross-sectional area of the passage in the sub air passage arrangement part, that is, the restriction on the upstream side of the sub air passage is irrelevant to backflow. ΔU1 as an effect of flow rate)
And ΔU2 show almost the same value. That is, by arranging the throttle upstream of the sub air passage, only the average flow velocity can be increased without changing the reverse flow rate.

【0023】従って、流量測定装置の逆流による計測誤
差(跳ね上がり誤差)としては、上記の関係、すなわち、
U1<U2, ΔU1=ΔU2 から、(ΔU1/U
1)>(ΔU2/U2)の関係式が成立ち、副空気通路の
上流に絞りを設けた場合の方が、逆流による計測誤差を
小さくすることが可能となる。
Therefore, the measurement error (bounce error) due to the backflow of the flow measuring device is the above-mentioned relationship, that is,
From U1 <U2, ΔU1 = ΔU2, (ΔU1 / U
1)> (ΔU2 / U2) holds, and the measurement error due to the backflow can be reduced when a throttle is provided upstream of the sub air passage.

【0024】一方、副空気通路の上流に絞りを設けた効
果として、逆流を伴わないまでも脈動振幅が大きくなっ
た場合に生じる流量測定装置の検出値の低下、いわゆる
二値現象の改善があげられる。図13に示すように、二
値現象は回転数一定に保って徐々にスロットルバルブを
開けて吸入負圧を変化させた場合に生じる出力の低下で
ある。これは発熱抵抗体の空気流量(流速)に関する出力
特性が非線形な関係にあるために生じるものである。
On the other hand, as an effect of providing a throttle upstream of the auxiliary air passage, there is a reduction in the detection value of the flow rate measuring device, which is caused when the pulsation amplitude increases even without backflow, that is, an improvement in the so-called binary phenomenon. Can be As shown in FIG. 13, the binary phenomenon is a decrease in output that occurs when the throttle valve is gradually opened while the rotation speed is kept constant to change the suction negative pressure. This occurs because the output characteristics of the heating resistor with respect to the air flow rate (flow velocity) have a non-linear relationship.

【0025】このような現象が生じると、同じ流量指示
値に対して二つの異なる運転条件が存在してしまうた
め、エンジンの制御系は正確な燃料制御ができなくなっ
てしまうのである。従来技術で述べた通り、この現象は
絞りの無い曲がりを有するL字形副空気通路内に発熱抵
抗体を配置することである程度回避することは可能であ
る。しかし、全てのエンジンに関して二値現象を改善す
るためには、L字形副空気通路の形状の各エンジンに対
しての最適化が必要となる。これに対し、本発明による
発熱抵抗体式空気流量測定装置が備える副空気通路上流
側の絞りが、全てのエンジンに関して二値現象を改善す
るに有効なものである。これについて、絞りの有無で比
較した流速分布の図5(a)と図5(b)を参照して説明す
る。
When such a phenomenon occurs, two different operating conditions exist for the same flow rate instruction value, so that the engine control system cannot perform accurate fuel control. As described in the prior art, this phenomenon can be avoided to some extent by arranging the heating resistor in the L-shaped auxiliary air passage having a bend without restriction. However, in order to improve the binary phenomenon for all engines, it is necessary to optimize the shape of the L-shaped auxiliary air passage for each engine. On the other hand, the restriction on the upstream side of the sub air passage provided in the heating resistor type air flow measuring device according to the present invention is effective for improving the binary phenomenon in all engines. This will be described with reference to FIGS. 5A and 5B showing flow velocity distributions compared with and without the restriction.

【0026】図5(a)と図5(b)に示すように、一般に
管路における空気流の流速分布は、定常時はほぼ放物線
に近い分布を示す。しかし、脈動流下においては、流速
振幅が徐々に大きくなると、その分布形状は放物線形状
から平坦形状に近づく流速分布となる。 これを絞りの
有無で比較してみると、絞り無しの場合は、 図5(a)
のようになり、絞り有りの場合は、図5(b)のようにな
る。
As shown in FIGS. 5 (a) and 5 (b), the flow velocity distribution of the air flow in the pipeline generally shows a nearly parabolic distribution in a steady state. However, under the pulsating flow, when the flow velocity amplitude gradually increases, the distribution shape becomes a flow velocity distribution that approaches a flat shape from a parabolic shape. When this is compared with the presence or absence of the aperture, in the case of no aperture, FIG.
As shown in FIG. 5B, when there is a stop, the state becomes as shown in FIG.

【0027】図5(b)において、絞り21が有ると、主
空気通路22の壁面付近は絞り21の影となるため、空
気が流れ難くなる。そのために空気流は、それ以外の部
分、即ち、絞り21の領域D(例えば、円管の内径D)の
下流部分で、流速が極端に速くなるのである。更に、こ
れは図中に示す絞り21の内径下流部分の通路中心より
も、中心からずれた通路壁側の位置における流速の増加
分が多くなる。なお、この点に、前述した副空気通路入
口11は流線G1の内側近傍の通路壁側の位置に、副空
気通路出口12は流線G2の内側近傍の通路壁側の位置
に配設する理由がある。
In FIG. 5B, if there is a throttle 21, the vicinity of the wall surface of the main air passage 22 becomes a shadow of the throttle 21, so that it becomes difficult for air to flow. Therefore, the flow rate of the air flow becomes extremely high in other portions, that is, in the downstream portion of the region D of the throttle 21 (for example, the inner diameter D of the circular pipe). Furthermore, the increase in the flow velocity at a position on the side of the passage wall deviated from the center is larger than that of the center of the passage downstream of the inner diameter of the throttle 21 shown in the drawing. At this point, the sub air passage inlet 11 described above is disposed at the position near the passage wall near the inside of the flow line G1, and the sub air passage outlet 12 is disposed at the position near the passage wall near the inside of the flow line G2. There is a reason.

【0028】そして、上述したように、図5(a)に示す
通路壁側の位置における流速増加分ΔU1’と、図5
(b)に示す通路壁側の位置における流速増加分ΔU2’
との間に、ΔU1’<ΔU2’の関係があるので、領域
Dの下流部分に、副空気通路の出入口を配置すれば、脈
動振幅の増加に伴って、副空気通路内を流れる流速も増
加する。そのために、発熱抵抗体の出力が非線形性で低
下したとしても、副空気通路を流れる流速を増加させる
流速増加分が、その低下分をキャンセルすることが可能
となるものである。しかしながら、絞り寸法(内径D)を
あまりに小さくすると、この流速増加分が大きくなり過
ぎて、逆流の発生が無いにも関わらず発熱抵抗体の出力
が増加してしまう現象が生じる。このために逆流影響の
低減や二値現象低減を考慮すると、主空気通路20の有
効断面積A1と絞り21の有効断面積A2(領域Dの有
効断面積)との比は、後述するような最適な値に設定し
なければならない。
As described above, the flow velocity increase ΔU1 'at the position on the side of the passage wall shown in FIG.
The flow velocity increase ΔU2 ′ at the position on the side of the passage wall shown in FIG.
Therefore, if the inlet and outlet of the sub air passage are arranged downstream of the region D, the flow velocity flowing in the sub air passage increases with the increase of the pulsation amplitude. I do. Therefore, even if the output of the heating resistor decreases due to the non-linearity, the increase in the flow velocity that increases the flow velocity flowing through the auxiliary air passage can cancel the decrease. However, if the throttle size (inner diameter D) is too small, the increase in the flow velocity becomes too large, and a phenomenon occurs in which the output of the heating resistor increases despite the occurrence of no backflow. For this reason, in consideration of the reduction of the backflow effect and the reduction of the binary phenomenon, the ratio of the effective area A1 of the main air passage 20 to the effective area A2 of the throttle 21 (effective area of the region D) will be described later. Must be set to the optimal value.

【0029】以上説明した流速を増加させる効果は、流
速の速い位置で効果が大きくなるため、副空気通路出入
口が絞り21の領域D(例えば、円管の内径D)の下流部
分の内側に配置されることが重要である。つまり、空気
流の主流線方向に対してほぼ垂直に開口している副空気
通路入口11は、流れの動圧が直接かかる配置構造とし
なければならず、空気流の主流線方向に対してほぼ平行
に開口している副空気通路出口12は、出口上流に動圧
を与え、かつ剥離渦を生じさせて出口の吸い出し効果を
高める配置構造とすることが必要となる。また、副空気
通路出口12に関しては、主流線方向に対してほぼ平行
に開口しているので、主空気通路体20の壁面と空気流
との衝突による損失をも抑えなければならず、そのため
に、副空気通路出口12は適切に該壁面から離して配置
しなければならない。
Since the effect of increasing the flow velocity described above is greater at a position where the flow velocity is high, the inlet / outlet of the auxiliary air passage is disposed inside the downstream portion of the area D of the throttle 21 (for example, the inner diameter D of a circular pipe). It is important to be. In other words, the sub air passage inlet 11, which opens substantially perpendicular to the main stream line direction of the air flow, must have an arrangement structure in which the dynamic pressure of the flow is directly applied, The auxiliary air passage outlet 12 which is opened in parallel needs to have an arrangement structure that applies a dynamic pressure upstream of the outlet and generates a separation vortex to enhance the suction effect of the outlet. Further, since the auxiliary air passage outlet 12 is opened substantially parallel to the main streamline direction, the loss due to collision between the wall surface of the main air passage body 20 and the air flow must be suppressed. , The auxiliary air passage outlet 12 must be properly spaced from the wall.

【0030】次に、上述した絞りの寸法に関しての、実
際に実車を用いて実験的に検討した結果を、図6,図7
を参照して説明する。図6は、絞りの寸法と跳ね上がり
誤差との関係を示す図である。図7は、絞りの出入口相
対位置と出力ノイズとの関係を示す図である。実験内容
としては、台上エンジンを用いて図12に示すように、
回転数を一定に保ちながら徐々にスロットルを開けて、
スロットル全開時の発熱抵抗体の示す検出誤差を絞り寸
法(内径D)を変えてプロットしたものである。実験によ
れば、図5(b),図6に示すように、絞りの大きさとし
ては、副空気通路が配置される主空気通路の有効断面積
A1と絞り内径Dの有効断面積A2の絞り比R(A2/
A1)≧70(%)の範囲で、逆流による跳ね上がり誤差
の低減効果が得られた。
Next, the results of experimentally studying the dimensions of the above-described aperture using an actual vehicle are shown in FIGS.
This will be described with reference to FIG. FIG. 6 is a diagram showing the relationship between the size of the stop and the jump error. FIG. 7 is a diagram illustrating a relationship between the entrance / exit relative position of the aperture and the output noise. As the contents of the experiment, as shown in FIG.
Open the throttle gradually while keeping the rotation speed constant,
This is a plot of the detection error indicated by the heating resistor when the throttle is fully opened, with the aperture size (inner diameter D) changed. According to the experiment, as shown in FIGS. 5B and 6, the size of the throttle is determined by the effective sectional area A1 of the main air passage in which the sub air passage is arranged and the effective sectional area A2 of the throttle inner diameter D. Aperture ratio R (A2 /
In the range of A1) ≧ 70 (%), the effect of reducing the jump error due to the backflow was obtained.

【0031】一方、絞り比Rを70(%)より小さくする
と、逆に出力が増加に転じることが判明した。これは前
記した通り絞り下流では振幅が大きくなると、検出する
流速そのものが増加するためである。参考のため逆流の
発生のない回転数での同一検討結果も示したが、絞り比
R<70%で出力が急激に増加する事を確認した。この
ため、副空気通路が配置される主空気通路の断面積A1
と絞り内径の断面積A2の比としては、R(A2/A1)
≧70%が妥当であると考える。しかし、絞り比R=1
00(%)の絞り無しの場合(従来技術相当)を考慮すれ
ば、跳ね上がり誤差を低減するには、90≧R≧70
(%)の範囲が望ましいと言える。特に、誤差を半減する
場合であれば、80≧R≧70(%)の範囲が望ましく、
また、跳ね上がり誤差の低減効果は、80≧R≧70
(%)の範囲であって、図1に示す、絞り21から入口開
口部11までの距離Lが、L=0.7Dの関係にある近
辺距離にあれば、良好であるという実験結果が得られて
いる。
On the other hand, it has been found that when the aperture ratio R is smaller than 70%, the output starts to increase. This is because, as described above, when the amplitude increases downstream of the throttle, the detected flow velocity itself increases. For reference, the same examination results at a rotation speed at which no backflow occurs are also shown, but it was confirmed that the output sharply increased at a throttle ratio R <70%. Therefore, the sectional area A1 of the main air passage in which the sub air passage is arranged
And the ratio of the cross-sectional area A2 of the inner diameter of the throttle to R (A2 / A1)
≧ 70% is considered reasonable. However, the aperture ratio R = 1
Considering the case of no aperture of 00 (%) (equivalent to the conventional art), to reduce the jumping error, 90 ≧ R ≧ 70
It can be said that the range of (%) is desirable. In particular, if the error is halved, the range of 80 ≧ R ≧ 70 (%) is desirable.
Further, the effect of reducing the jump error is as follows: 80 ≧ R ≧ 70
If the distance L from the stop 21 to the entrance opening 11 shown in FIG. 1 is in the vicinity of the relation of L = 0.7D as shown in FIG. Have been.

【0032】次に、絞りと副空気通路出入口との位置関
係と、定常流下における流量測定装置の出力ノイズとの
関係について、図7を参照して説明する。図7におい
て、縦軸は出力ノイズの値を、横軸は図6と同じように
絞り比Rを示している。なお、本実験検討に用いたサン
プル品の絞り寸法は、絞り比R=約60(%)である。し
たがって、絞り比Rが60(%)以下の範囲であるという
ことは、副空気通路の出入口位置が、それぞれ絞り21
の陰の領域(図1に示す主流線方向G1,G2で囲まれた
外側である壁側の領域)に入るものである。
Next, the relationship between the positional relationship between the throttle and the entrance and exit of the sub air passage and the output noise of the flow measuring device under a steady flow will be described with reference to FIG. 7, the vertical axis represents the value of the output noise, and the horizontal axis represents the aperture ratio R as in FIG. The drawing dimension of the sample product used in the present study was a drawing ratio R = about 60 (%). Accordingly, the fact that the throttle ratio R is within the range of 60 (%) or less means that the entrance / exit position of the sub air passage is the throttle 21
(The area on the wall side outside which is surrounded by the main streamline directions G1 and G2 shown in FIG. 1).

【0033】図7に示すように、絞り比R100〜60
(%)の範囲では、出力ノイズは、絞り比Rが小さくなる
につれて小さくなった。しかし、60%以下の範囲で
は、明らかに出力ノイズの増大が認められた。すなわ
ち、副空気通路の出入口の両位置が、領域D(図1に示
す主流線方向G1,G2で囲まれた内側の領域)にある場
合に出力ノイズは小さくなることである。基本的には絞
り比Rを大きくして、即ち、絞り寸法を小さくして、流
速を速めれば、出力ノイズを小さくできることが判明し
た。そして、上流側に絞りが有りその下流側が剥離を起
こしていると、換言すれば、副空気通路の出入口の両位
置が絞り21の陰の領域にあると、主空気通路の流れが
乱れて出力ノイズを大きくしてしまうことが判明した。
As shown in FIG. 7, the aperture ratio R100 to 60
In the range of (%), the output noise became smaller as the aperture ratio R became smaller. However, in the range of 60% or less, an increase in output noise was clearly observed. That is, when both positions of the entrance and exit of the sub air passage are in the area D (the area inside the main stream line direction G1 and G2 shown in FIG. 1), the output noise is reduced. Basically, it has been found that the output noise can be reduced by increasing the aperture ratio R, that is, by reducing the aperture size and increasing the flow velocity. If there is a restriction on the upstream side and separation occurs on the downstream side, in other words, if both positions of the entrance and exit of the sub air passage are in the shaded area of the restriction 21, the flow of the main air passage is disturbed and the output It turned out to increase the noise.

【0034】以上の結果から、副空気通路内を流れる流
速の値は、出入口の圧力差で決まるため、出入口双方と
も上流の流れを乱さない工夫が必要となる。このため副
空気通路の上流側に絞りなどを配置する場合には、出力
ノイズの面からの副空気通路出入口と絞り寸法の相対位
置に対して配慮することが必要であると言える。そし
て、図6と図7の結果から、跳ね上がり誤差および出力
ノイズの低減を図るには、90≧R≧70(%)の範囲が
望ましいと言える。
From the above results, since the value of the flow velocity flowing in the sub air passage is determined by the pressure difference between the entrance and the exit, it is necessary to take measures to disturb the upstream flow at both the entrance and the exit. Therefore, when a throttle or the like is arranged upstream of the sub air passage, it can be said that it is necessary to consider the relative position between the entrance and exit of the sub air passage and the size of the throttle from the viewpoint of output noise. From the results of FIGS. 6 and 7, it can be said that the range of 90 ≧ R ≧ 70 (%) is desirable in order to reduce the jump error and the output noise.

【0035】次に、他の実施例について、図8,9,1
0を参照し説明する。図8は、本発明による他の実施例
の発熱抵抗体式空気流量測定装置を示す断面図である。
エアクリーナ68のエアクリーナクリーンサイド41の
一部に、主空気通路を形成する絞り付き直管41aを一
体化した流量測定装置の横断面を示している。図におい
て、吸気系を形成する吸気管構成部材の一つであるエア
クリーナ68は、主空気通路体20としての絞り付き直
管41aを一体形成するエアクリーナクリーンサイド4
1とエアクリーナダーティサイドとエアフィルタエレメ
ント43とから構成される。
Next, another embodiment will be described with reference to FIGS.
0 will be described. FIG. 8 is a sectional view showing a heating resistor type air flow measuring device according to another embodiment of the present invention.
A cross section of a flow measuring device in which a straight pipe 41a with a throttle forming a main air passage is integrated with a part of the air cleaner clean side 41 of the air cleaner 68 is shown. In the figure, an air cleaner 68, which is one of the intake pipe constituent members forming the intake system, has an air cleaner clean side 4 integrally forming a straight pipe 41a with a throttle as the main air passage body 20.
1, an air cleaner dirty side, and an air filter element 43.

【0036】本実施例は、 エアクリーナクリーンサイ
ド41(エアフィルタ43の下流側に位置するダクト)の
吸気出口部位に絞り21を設け、 その下流に、主空気
通路体20としての絞り付き直管41aを一体で連接
し、該絞り付き直管41aの壁面に設けた穴25に、図
1に示した測定モジュール52(の副空気通路体10)を
挿入したものである。本実施例では、既存の吸気管構成
部材としてのエアクリーナ68に、絞り21と穴25と
を備える主空気通路体20を兼用させる構成であるの
で、専用空気通路レス化が図れ、顧客カーメーカでのシ
ステムコストの低減が可能となる。
In this embodiment, a throttle 21 is provided at an intake outlet of an air cleaner clean side 41 (a duct located downstream of an air filter 43), and a straight pipe 41a with a throttle as a main air passage body 20 is provided downstream of the throttle 21. The measurement module 52 shown in FIG. 1 (the sub air passage body 10) is inserted into the hole 25 provided on the wall surface of the straight pipe 41a with the throttle. In the present embodiment, the air cleaner 68 as an existing intake pipe component is configured so that the main air passage body 20 including the throttle 21 and the hole 25 is also used. System cost can be reduced.

【0037】図9は、本発明による別の実施例の発熱抵
抗体式空気流量測定装置を示す断面図である。エアクリ
ーナクリーンサイド41の一部に絞り21を設け、更に
エアクリーナクリーンサイド41に主空気通路体20を
接合した流量測定装置を示している。図10は、図9の
接合部を示す部分拡大図である。連結部としてのインロ
ー部47と接合部48との詳細を示している。
FIG. 9 is a sectional view showing a heating resistor type air flow measuring device according to another embodiment of the present invention. This figure shows a flow measurement device in which a throttle 21 is provided in a part of an air cleaner clean side 41 and a main air passage body 20 is further joined to the air cleaner clean side 41. FIG. 10 is a partially enlarged view showing the joint of FIG. The details of the spigot part 47 as a connecting part and the joining part 48 are shown.

【0038】本実施例は、図8の実施例と基本的には同
じであるが、エアクリーナ68の吸気出口部位としての
出口開口部を、ベルマウス状の絞り21として構成し、
その下流に流量測定装置の主空気通路体20としてのボ
ディ53を、インロー部47と接合部48とにおいて接
着或いはネジ止め等により機械的に連結した構成であ
る。すなわち、発熱抵抗体式空気流量測定装置を構成す
る主空気通路体の該主空気通路体から分離した絞りを、
主空気通路体が連接される当該吸気管構成部材の吸気出
口部位に有するものである。本実施例では、既存の吸気
管構成部材に、絞り21を兼用させるので、専用絞りレ
ス化が図れること、ならびに、既存の絞りの無い発熱抵
抗体式空気流量測定装置が流用できることにより、顧客
カーメーカでのシステムコストの低減が可能となる。
This embodiment is basically the same as the embodiment shown in FIG. 8, except that the outlet opening of the air cleaner 68 as a suction outlet portion is formed as a bell mouth-shaped throttle 21.
A body 53 serving as the main air passage body 20 of the flow rate measuring device is mechanically connected downstream of the body 53 by bonding or screwing at the spigot portion 47 and the joint portion 48. That is, the throttle of the main air passage body constituting the heating resistor type air flow measurement device, which is separated from the main air passage body,
It is provided at an intake outlet portion of the intake pipe component to which the main air passage body is connected. In the present embodiment, since the throttle 21 is also used as the existing intake pipe component member, it is possible to reduce the need for a dedicated throttle, and to use the existing heating resistor type air flow measuring device without the throttle, so that the customer car manufacturer can use it. System cost can be reduced.

【0039】図11は、本実施例の流量測定装置を実装
した一実施例の電子燃料噴射制御方式の内燃機関を示す
図である。本実施例の発熱抵抗体式空気流量測定装置か
ら得られる空気流量信号を用いて、燃料の供給量を制御
する内燃機関の燃料制御システムの実施例を示してい
る。図において、吸入される吸入空気67は、エアクリ
ーナ68,流量測定装置のボディ53,ダクト55,ス
ロットルボディ58,燃料が供給されるインジェクタ6
0を備える吸気マニホールド59などから形成される吸
気系を経て、エンジンシリンダ62に吸入される。一
方、エンジンシリンダ62で発生した排気ガス63は、
排気マニホールド64を経て排出される。
FIG. 11 is a diagram showing an electronic fuel injection control type internal combustion engine of one embodiment in which the flow rate measuring device of this embodiment is mounted. 1 shows an embodiment of a fuel control system for an internal combustion engine that controls a fuel supply amount using an air flow signal obtained from a heating resistor type air flow measuring device of the present embodiment. In the drawing, intake air 67 to be sucked is an air cleaner 68, a body 53 of a flow rate measuring device, a duct 55, a throttle body 58, and an injector 6 to which fuel is supplied.
The intake air is sucked into the engine cylinder 62 through an intake system formed by an intake manifold 59 having a zero. On the other hand, the exhaust gas 63 generated in the engine cylinder 62 is
The gas is exhausted through the exhaust manifold 64.

【0040】流量測定装置の測定モジュール52から出
力される空気流量信号,スロットル角度センサ57から
出力される スロットルバルブ角度信号, 排気マニホー
ルド64に設けられた酸素濃度計65から出力される酸
素濃度信号,エンジン回転速度計61から出力されるエ
ンジン回転速度信号等を入力するコントロールユニット
66は、これらの信号を逐次演算して、最適な燃料噴射
量とアイドルエアコントロールバルブ開度を求め、その
値を使ってインジェクタ60及びアイドルエアコントロ
ールバルブ56が吸入空気流量に見合った燃料の供給量
を制御する。そして、本実施例の流量測定装置を採用し
た電子燃料噴射方式内燃機関であれば、吸入空気流量が
適正に測定できるので、電子燃料噴射制御が適切に行わ
れ、排ガス中の未燃ガスの量を減らすことが可能とな
る。
The air flow rate signal output from the measurement module 52 of the flow rate measuring device, the throttle valve angle signal output from the throttle angle sensor 57, the oxygen concentration signal output from the oximeter 65 provided in the exhaust manifold 64, The control unit 66, which inputs an engine speed signal and the like output from the engine speed meter 61, sequentially calculates these signals to obtain an optimal fuel injection amount and an idle air control valve opening, and uses the values. Thus, the injector 60 and the idle air control valve 56 control the supply amount of fuel corresponding to the intake air flow rate. Then, in the case of an electronic fuel injection type internal combustion engine employing the flow rate measuring device of the present embodiment, the intake air flow rate can be measured properly, so that the electronic fuel injection control is appropriately performed and the amount of unburned gas in the exhaust gas is controlled. Can be reduced.

【0041】[0041]

【発明の効果】本発明によれば、単純な構成の絞りで形
成される流束領域の流速増加分が、実車装着時の逆流を
伴うような脈動流下における跳ね上がり誤差や二値現象
の悪影響を改善し、低価格で精度の良い発熱抵抗体式空
気流量測定装置を提供する効果がある。そして、ドライ
バーがアクセルを踏み込んだときの適切な流量制御が可
能となり、例えば、電子燃料噴射方式内燃機関の排ガス
清浄化に効果がある。
According to the present invention, the increase in the flow velocity in the flux region formed by the throttle having the simple structure can prevent the jumping error and the binary phenomenon under the pulsating flow accompanied by the reverse flow when the actual vehicle is mounted. It is effective in providing an improved, low-cost, and accurate heating resistor-type air flow measurement device. Then, appropriate flow control can be performed when the driver steps on the accelerator, which is effective, for example, in purifying exhaust gas from an electronic fuel injection type internal combustion engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例の発熱抵抗体式空気流量
測定装置を示す正面(断面)図である。
FIG. 1 is a front (cross-sectional) view showing a heating resistor type air flow measuring device according to an embodiment of the present invention.

【図2】図1の上流側から視た側面図である。FIG. 2 is a side view seen from the upstream side in FIG.

【図3】図1の発熱抵抗体式空気流量測定装置を示す回
路構成図である。
FIG. 3 is a circuit configuration diagram showing the heating resistor type air flow measuring device of FIG. 1;

【図4】本実施例の絞りによる跳ね上がり誤差低減のメ
カニズムを示す図である。
FIG. 4 is a diagram illustrating a mechanism for reducing a jump error by the diaphragm according to the embodiment.

【図5】本実施例の絞りによる二値現象低減のメカニズ
ムを示す図である。
FIG. 5 is a diagram showing a mechanism for reducing a binary phenomenon by the diaphragm according to the embodiment.

【図6】絞りの寸法と跳ね上がり誤差との関係を示す図
である。
FIG. 6 is a diagram showing the relationship between the size of a stop and a jump error.

【図7】絞りの出入口相対位置と出力ノイズとの関係を
示す図である。
FIG. 7 is a diagram showing the relationship between the entrance / exit relative position of the stop and output noise.

【図8】本発明による 他の実施例の発熱抵抗体式空気
流量測定装置を示す断面図である。
FIG. 8 is a sectional view showing a heating resistor type air flow measuring device according to another embodiment of the present invention.

【図9】本発明による 別の実施例の発熱抵抗体式空気
流量測定装置を示す断面図である。
FIG. 9 is a cross-sectional view showing a heating resistor type air flow measuring device according to another embodiment of the present invention.

【図10】図9の接合部を示す部分拡大図である。FIG. 10 is a partially enlarged view showing a joint of FIG. 9;

【図11】本実施例の流量測定装置を実装した一実施例
の電子燃料噴射制御方式の内燃機関を示す図である。
FIG. 11 is a view showing an internal combustion engine of an electronic fuel injection control system according to an embodiment in which the flow measuring device of the embodiment is mounted.

【図12】流量測定装置の脈動流下における跳ね上がり
誤差を説明する図である。
FIG. 12 is a diagram illustrating a bouncing error under a pulsating flow of the flow measuring device.

【図13】流量測定装置の脈動流下における二値現象を
説明する図である。
FIG. 13 is a diagram illustrating a binary phenomenon under a pulsating flow of the flow measuring device.

【符号の説明】[Explanation of symbols]

1…ハウジング、2…回路基板、3…発熱抵抗体、4…
感温抵抗体、5…支持体、7…ネジ、10…副空気通路
体、11…副空気通路入口(入口開口部)、12…副空気
通路出口(出口開口部)、13a…縦通路、13b…横通
路、20…主空気通路体、21…絞り、22…主空気通
路、23…順方向空気流れ、24…逆方向空気流れ、2
5…穴、41…エアクリーナクリーンサイド、41a…
絞り付き直管、42…エアクリーナダーティサイド、4
3…エアフィルタエレメント、47…インロー部、48
…接合部、52…測定モジュール、53…ボディ、54
a…ネジ、54b…シール、55…ダクト、56…アイ
ドルエアコントロールバルブ、57…スロットル角度セ
ンサ、58…スロットルボディ、59…吸気マニホール
ド、60…インジェクタ、61…回転速度計、62…エ
ンジンシリンダ、63…排気ガス、64…排気マニホー
ルド、65…酸素濃度計、66…コントロールユニッ
ト、67…吸入空気、68…エアクリーナ
DESCRIPTION OF SYMBOLS 1 ... Housing, 2 ... Circuit board, 3 ... Heating resistor, 4 ...
Temperature sensing resistor, 5: support, 7: screw, 10: auxiliary air passage, 11: auxiliary air passage inlet (inlet opening), 12: auxiliary air passage outlet (outlet opening), 13a: vertical passage, 13b: lateral passage, 20: main air passage, 21: throttle, 22: main air passage, 23: forward air flow, 24: reverse air flow, 2
5 ... hole, 41 ... air cleaner clean side, 41a ...
Straight pipe with throttle, 42 ... Air cleaner dirty side, 4
3 ... air filter element, 47 ... spigot part, 48
... Junction, 52 ... Measurement module, 53 ... Body, 54
a: screw, 54b: seal, 55: duct, 56: idle air control valve, 57: throttle angle sensor, 58: throttle body, 59: intake manifold, 60: injector, 61: tachometer, 62: engine cylinder, 63 ... exhaust gas, 64 ... exhaust manifold, 65 ... oxygen concentration meter, 66 ... control unit, 67 ... intake air, 68 ... air cleaner

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01F 1/72 F02D 35/00 366F (72)発明者 五十嵐 信弥 茨城県ひたちなか市高場2477番地 株式会 社日立カーエンジニアリング内 (72)発明者 高砂 晃 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) G01F 1/72 F02D 35/00 366F (72) Inventor Shinya Igarashi 2477 Takaba, Hitachinaka City, Ibaraki Prefecture Hitachi Car Engineering Co., Ltd. (72) Inventor Akira Takasago 2520 Takada, Hitachinaka City, Ibaraki Pref.Hitachi, Ltd.Automotive Equipment Division

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】被測定流体が流れる主空気通路を形成する
主空気通路体と、前記主空気通路体内に挿入されて前記
被測定流体の流量を測定する発熱抵抗体等を包含する測
定モジュールとを備える発熱抵抗体式空気流量測定装置
において、 前記測定モジュールは、前記被測定流体の主流線に対し
垂直方向に開口した入口開口部と前記主流線に対し平行
方向に開口した出口開口部とを含む略L字形の副空気通
路を形成している副空気通路体の内部に、前記発熱抵抗
体等を有し、 前記主空気通路体は、前記副空気通路体の上流側に位置
する内部側壁周囲に絞りを有し、 前記被測定流体が前記絞りの先端から前記主流線に平行
方向に延展して形成する流束領域の内側に、前記入口開
口部と前記出口開口部の両開口部が配設されていること
を特徴とする発熱抵抗体式空気流量測定装置。
A measuring module including a main air passage that forms a main air passage through which a fluid to be measured flows, a heating resistor inserted into the main air passage to measure a flow rate of the fluid to be measured, and the like. Wherein the measurement module includes an inlet opening that opens in a direction perpendicular to a main streamline of the fluid to be measured, and an outlet opening that opens in a direction parallel to the main streamline. The heating resistor and the like are provided inside a sub air passage that forms a substantially L-shaped sub air passage, and the main air passage is around an inner side wall located upstream of the sub air passage. The inlet and the outlet are arranged inside a flux region formed by the fluid to be measured extending from the tip of the throttle in a direction parallel to the main streamline. It is characterized by being established Thermal resistor type air flow rate measuring device.
【請求項2】請求項1において、前記絞りの寸法は、前
記絞り位置における前記主空気通路の有効断面積に対す
る前記絞りの有効断面積の比の関係が70〜90(%)の
範囲となっていることを特徴とする発熱抵抗体式空気流
量測定装置。
2. The throttle according to claim 1, wherein a ratio of a ratio of an effective sectional area of the throttle to an effective sectional area of the main air passage at the throttle position is in a range of 70 to 90 (%). A heating resistor type air flow measuring device, characterized in that:
【請求項3】請求項1において、前記絞りの形状は、当
該絞りの上流側半分がほぼ円弧形状であり、下流側半分
が前記主流線方向に対しほぼ垂直形状であることを特徴
とする発熱抵抗体式空気流量測定装置。
3. A heating device according to claim 1, wherein the shape of the throttle is such that an upstream half of the throttle is substantially arc-shaped and a downstream half is substantially perpendicular to the main streamline direction. Resistor type air flow measurement device.
【請求項4】請求項1記載の発熱抵抗体式空気流量測定
装置を構成する主空気通路体の絞りと測定モジュールが
挿入される穴とを有して、当該吸気管構成部材が前記主
空気通路体を兼用することを特徴とする吸気管構成部
材。
4. An air flow measuring device according to claim 1, further comprising a throttle of a main air passage body and a hole into which a measurement module is inserted, wherein said intake pipe constituting member is provided in said main air passage. An intake pipe component member, which also serves as a body.
【請求項5】請求項1記載の発熱抵抗体式空気流量測定
装置を構成する主空気通路体の該主空気通路体から分離
した絞りを、前記主空気通路体が連接される当該吸気管
構成部材の吸気出口部位に有することを特徴とする吸気
管構成部材。
5. The intake pipe forming member to which the main air passage is connected to a throttle which is separated from the main air passage in the heating resistor type air flow measuring device according to claim 1. An intake pipe component, which is provided at an intake outlet portion of the intake pipe.
【請求項6】請求項1記載の発熱抵抗体式空気流量測定
装置から得られる空気流量信号を用いて、燃料の供給量
を制御することを特徴とする内燃機関の燃料制御システ
ム。
6. A fuel control system for an internal combustion engine, wherein a fuel supply amount is controlled using an air flow signal obtained from the heating resistor type air flow measuring device according to claim 1.
JP2000249997A 2000-08-21 2000-08-21 Heat resistor type air flowrate measuring device Withdrawn JP2001091324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000249997A JP2001091324A (en) 2000-08-21 2000-08-21 Heat resistor type air flowrate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249997A JP2001091324A (en) 2000-08-21 2000-08-21 Heat resistor type air flowrate measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23162096A Division JP3527813B2 (en) 1996-09-02 1996-09-02 Heating resistor type air flow measurement device

Publications (2)

Publication Number Publication Date
JP2001091324A true JP2001091324A (en) 2001-04-06
JP2001091324A5 JP2001091324A5 (en) 2005-04-07

Family

ID=18739651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249997A Withdrawn JP2001091324A (en) 2000-08-21 2000-08-21 Heat resistor type air flowrate measuring device

Country Status (1)

Country Link
JP (1) JP2001091324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207539A (en) * 2011-03-29 2012-10-25 Kubota Corp Air cleaner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207539A (en) * 2011-03-29 2012-10-25 Kubota Corp Air cleaner

Similar Documents

Publication Publication Date Title
JP3527813B2 (en) Heating resistor type air flow measurement device
JP3193837B2 (en) Heating resistance type flow measurement device
JP3783896B2 (en) Air flow measurement device
JP2006242748A (en) Heating resistor type air flow measurement apparatus and its measurement error correction method
JP2001091324A (en) Heat resistor type air flowrate measuring device
JPH0953482A (en) Throttle body integrated air flow measuring device
JPH11325998A (en) Gas flow rate measuring apparatus
JP4909561B2 (en) Heating resistor type air flow measuring device
JP2009063391A (en) Intake-system component mounted with heating resistor type air flow rate measuring device
JP3200005B2 (en) Heating resistance type air flow measurement device
JP2009085855A (en) Flow-measuring device and control system for internal combustion engine
JPH06265385A (en) Air flow rate measuring instrument
JP2002310756A (en) Air-flow-rate measuring device
JP2000310552A (en) Air flowmeter
JP3383779B2 (en) Heating resistance type flow measurement device and internal combustion engine control device
JP3189636B2 (en) Heating resistance type flow measurement device
JP2001108500A (en) Heat generation resistance-type flow rate-measuring device
JPH08278179A (en) Exothermic resistance type air flow measuring device
JP5010877B2 (en) Thermal gas flow measuring device
JPH10197307A (en) Air flowmeter
JP2001099688A (en) Heating resistance type apparatus for measuring air flow rate
JPH08297039A (en) Heating element type air flow measuring apparatus
JPH1114420A (en) Heating resistor-type air-flow-rate measuring instrument
JP2993912B2 (en) Air flow meter and internal combustion engine using it
JP2000314646A (en) Heating resistance-type flow-rate measuring apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051219