JP4909561B2 - Heating resistor type air flow measuring device - Google Patents

Heating resistor type air flow measuring device Download PDF

Info

Publication number
JP4909561B2
JP4909561B2 JP2005303819A JP2005303819A JP4909561B2 JP 4909561 B2 JP4909561 B2 JP 4909561B2 JP 2005303819 A JP2005303819 A JP 2005303819A JP 2005303819 A JP2005303819 A JP 2005303819A JP 4909561 B2 JP4909561 B2 JP 4909561B2
Authority
JP
Japan
Prior art keywords
heating resistor
air flow
measuring device
type air
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005303819A
Other languages
Japanese (ja)
Other versions
JP2007113978A (en
Inventor
千尋 小林
信弥 五十嵐
幸夫 加藤
聖智 井手
毅 森野
裕樹 岡本
直生 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2005303819A priority Critical patent/JP4909561B2/en
Publication of JP2007113978A publication Critical patent/JP2007113978A/en
Application granted granted Critical
Publication of JP4909561B2 publication Critical patent/JP4909561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は自動車用の内燃機関に吸入される空気流量を測定するために用いられる発熱抵抗体式空気流量測定装置に関し、特に吸気管内に空気と一緒に吸入される塵等による空気流量計測誤差の低減に関する発明である。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating resistor type air flow rate measuring device used for measuring an air flow rate sucked into an internal combustion engine for automobiles, and in particular, to reduce an air flow measurement error due to dust or the like sucked together with air in an intake pipe. It is invention regarding.

内燃機関用の流量測定技術としては発熱抵抗体式空気流量測定装置が知られている。これは発熱抵抗体の奪われる熱量が流入流量に対し単調に増加する関係が有ることを利用したものであり、質量流量を直接測定出来るため特に自動車の空燃比制御用流量計として広く使われている。特許文献1では発熱抵抗体の上流側に迂回部を設け、遠心力により塵と空気を分離させる通路が公知技術として知られている。   A heating resistor type air flow rate measuring device is known as a flow rate measuring technique for an internal combustion engine. This is based on the fact that the amount of heat taken away by the heating resistor increases monotonously with the inflow rate, and since it can directly measure the mass flow rate, it is widely used especially as an air-fuel ratio control flow meter for automobiles. Yes. In Patent Document 1, a bypass for providing a detour portion on the upstream side of the heating resistor and separating dust and air by centrifugal force is known as a known technique.

また、本発明の構成に最も近い公知技術として特許文献2がある。これは、副空気通路内の制限された空間に長い発熱抵抗体を斜めに配置して応答性の改善を行ったものである。   Further, there is Patent Document 2 as a known technique closest to the configuration of the present invention. This is an improvement in the responsiveness by arranging a long heating resistor obliquely in a limited space in the sub air passage.

特開2004−37131号公報JP 2004-37131 A 特公平6−17809号公報Japanese Examined Patent Publication No. 6-17809

発熱抵抗体式空気流量測定装置は車輌の吸気ダクトの一部に装着され、吸入空気流量を測定する役割を持つ。車輌の吸気ダクトは通常、アクセルに連動して吸入空気流量が流れ、アクセルを踏み込み量が増加するとダクト内へ吸入される空気流量も増加する。吸入空気量が増加すると空気だけでなく、空気中に浮遊するダストや、前を走行する車輌のタイヤでまき上げられた塵等も空気と一緒に吸入されてしまう。発熱抵抗体は加熱されているため、一般的には塵は付着し難いとされているが、塵の種類と飛来量によっては経年的には少しずつではあるが塵の付着が認められる。発熱抵抗体式空気流量測定装置の流量検出部である発熱抵抗体部に塵が付着すると、発熱抵抗体からの放熱量が変化してしまい発熱抵抗体式空気流量測定装置の計測誤差となってしまう。   The heating resistor type air flow measuring device is attached to a part of the intake duct of the vehicle and has a role of measuring the intake air flow rate. The intake air flow of a vehicle usually flows in conjunction with the accelerator, and the amount of air sucked into the duct increases as the amount of depression of the accelerator increases. When the amount of intake air increases, not only air but also dust floating in the air, dust blown up by a tire of a vehicle traveling ahead, and the like are sucked together with air. Since the heating resistor is heated, it is generally considered that dust does not easily adhere to it. However, depending on the type of dust and the amount of flying dust, adhesion of dust is recognized little by little over time. If dust adheres to the heating resistor part, which is the flow rate detection unit of the heating resistor type air flow measuring device, the amount of heat released from the heating resistor changes, resulting in a measurement error of the heating resistor type air flow measuring device.

塵等はエアクリーナ内のエアフィルタで捕獲する事は可能であるが、塵の大きさによってはエアフィルタを通過してエンジン内へ入り込んでしまう。エアフィルタで捕獲できる塵の粒子径は一般的には約10μm程度であるとされており、それ以下の粒子径では容易にエアフィルタを通過してしまう。   Dust and the like can be captured by the air filter in the air cleaner, but depending on the size of the dust, the dust passes through the air filter and enters the engine. The particle size of the dust that can be captured by the air filter is generally about 10 μm, and if the particle size is smaller than that, it easily passes through the air filter.

近年、特にディーゼルエンジンにおいては、排気ガスのクリーン化が施され、目視で判るような大きさの煤(カーボン)を大気に排出することは少なくなってきている。しかし、燃料噴射時の微粒化等により、目視では判別出来ないような細かな粒子径の煤が排出されるようになってきている。この粒子は数十ナノメートルであり、このナノ粒子径の煤が前記した理由により発熱抵抗体に付着してしまう事が近年課題として取り上げられるようになってきている。   In recent years, especially in diesel engines, exhaust gas has been cleaned, and the emission of soot (carbon) in a size that can be seen with the naked eye has been reduced. However, due to atomization at the time of fuel injection and the like, soot with fine particle diameters that cannot be discerned visually has been discharged. These particles are several tens of nanometers, and it has recently been taken up as a problem that wrinkles of this nanoparticle diameter adhere to the heating resistor for the reasons described above.

ナノ粒子径の煤ではその細かさから、付着した際に今までの煤と比べ高密度に堆積してしまい、その堆積力が非常に強いものとなる。従来の煤であれば堆積した際の密度は低いため堆積力は弱く、例えばエンジンの振動等により堆積物が落下してしまう事も有り、発熱抵抗体の放熱量の変化が初期状態に戻る事も有った。しかし、高密度に堆積した煤では従来の煤と比べエンジンの振動等での落下がし難くなってしまい、発熱抵抗体にいつまでも煤が堆積したままとなってしまい、放熱量が変化したままとなってしまう。また、ナノ粒子径の煤は非常に重量が軽いため、従来技術では効果の有った遠心分離による塵(煤)の分離効果は十分には発揮できないといった課題も有る。   Because of the fineness of the soot with a nanoparticle size, it deposits at a higher density when attached, compared to the soot so far, and its deposition power is very strong. In the case of conventional soot, the density at the time of deposition is low, so the deposition force is weak. For example, the deposit may fall due to engine vibration, etc., and the change in the heat dissipation amount of the heating resistor returns to the initial state. There was also. However, it is difficult for the soot deposited at high density to drop due to engine vibration, etc., compared to the conventional soot, so that soot remains accumulated on the heating resistor indefinitely, and the amount of heat released remains unchanged. turn into. In addition, since the soot having a nanoparticle diameter is very light, there is a problem that the effect of separating dust (soot) by centrifugal separation which is effective in the prior art cannot be sufficiently exhibited.

本課題に対応するため発熱抵抗体の放熱面と空気の流れ及び塵の衝突角度に着目をし改良を行う。   In order to respond to this problem, attention is paid to the heat dissipation surface of the heating resistor, the air flow, and the collision angle of dust, and improvements are made.

まず、空気の流れに対して発熱抵抗体の放熱面を傾ける事とした。これにより放熱面の止水域(空気流れの留まる領域)が無くなり、更に傾けた事で発熱面の流れによるせん断応力が大きくなり、塵が付着しても流れの力で塵を引き剥がそうとする力が働く。このため、発熱抵抗体の放熱面には常に空気の流れが生じるため塵は付着し難くなる。この傾ける角度をきつくするほど放熱面への塵の付着は減少するが、逆に空気の当たる表面積が減少してしまい、流速(流量)に対する感度が鈍ってしまい、流量計としての計測精度が悪化してしまう。このため傾ける角度には限界があり、それと同時に塵の付着を防止するのにも限界が生じてしまう。   First, the heat radiation surface of the heating resistor is inclined with respect to the air flow. This eliminates the water stop area (area where the air flow stays) on the heat radiating surface, and further tilting increases the shear stress due to the flow on the heat generating surface. Power works. For this reason, since an air flow always occurs on the heat radiating surface of the heating resistor, it is difficult for dust to adhere to it. The tighter the tilt angle, the less dust adheres to the heat dissipation surface. However, the surface area that the air is exposed to decreases, and the sensitivity to the flow velocity (flow rate) decreases, resulting in poor measurement accuracy as a flow meter. Resulting in. For this reason, there is a limit to the angle of inclination, and at the same time, there is a limit to preventing the adhesion of dust.

このため、空気の当たる角度と塵の衝突する角度に差を持たせる事で、流量計の計測精度と塵の付着低減を両立する事とした。これは例えば、曲り通路の曲り頂点以降に発熱抵抗体を傾けて配置する事で達成される。曲り通路途中では例え重量の軽い煤であっても、遠心力により曲りの外側に分離される方向に塵は副空気通路内を流れる。このため、この遠心力により生じる空気の流れ方向との角度差により、発熱抵抗体の放熱面への衝突角度と空気の流れ方向の角度を変える事が出来るのである。つまり、空気の流れは流量計の計測精度を保ちながら、発熱抵抗体の放熱面への塵の衝突する角度をきつくして塵を更に付着し難くする事が可能となるのである。   For this reason, the measurement accuracy of the flowmeter and the reduction of dust adhesion are both achieved by providing a difference between the angle of air contact and the angle of dust collision. This is achieved, for example, by placing the heating resistor tilted after the bending vertex of the bending path. Even in the middle of a curved passage, even if the weight is light, dust flows in the auxiliary air passage in the direction separated by the centrifugal force to the outside of the curved portion. For this reason, the angle of the collision between the heat generating resistor and the heat radiation surface and the angle of the air flow direction can be changed by the angle difference from the air flow direction caused by the centrifugal force. In other words, while maintaining the measurement accuracy of the flow meter, the air flow makes it possible to make dust more difficult to adhere by tightening the angle at which the dust collides with the heat radiating surface of the heating resistor.

上記の構成により、発熱抵抗体への塵の付着を低減する事が可能となる。特に今後のディーゼルエンジン等で課題となるナノ粒子径の煤(カーボン)の付着による発熱抵抗体式空気流量測定装置の経年による特性変化量を低減する事が可能となる。これにより、エンジンの燃料制御を長期間高精度に保つ事が可能となり、長期間に渡り排出ガスのクリーンな車輌を市場に送り込むことが可能となる。   With the above configuration, it is possible to reduce the adhesion of dust to the heating resistor. In particular, it becomes possible to reduce the amount of change in characteristics over time of the heating resistor type air flow measuring device due to the adhesion of carbon with a nanoparticle diameter, which will be a problem in future diesel engines and the like. As a result, it is possible to maintain the fuel control of the engine with high accuracy for a long time, and it is possible to send a clean vehicle of exhaust gas to the market for a long time.

本発明は自動車用の内燃機関に吸入される空気流量を測定するために用いられる発熱抵抗体式空気流量測定装置の吸気管内に空気と一緒に吸入される水等の液体による空気流量計測誤差の低減方法として考案したものである。   The present invention reduces an air flow measurement error due to a liquid such as water sucked together with air into an intake pipe of a heating resistor type air flow measuring device used for measuring an air flow taken into an internal combustion engine for an automobile. It was devised as a method.

本発明の実施例を以下の図面に従い詳細に説明する。   Embodiments of the present invention will be described in detail with reference to the following drawings.

まず、最初に発熱抵抗体式空気流量測定装置の動作原理について説明する。図6は発熱抵抗体式空気流量測定装置の概略構成回路図である。発熱抵抗体式空気流量測定装置の駆動回路は大きく分けてブリッジ回路とフィードバック回路から成り立っている。吸入空気流量測定を行うための発熱抵抗体3RH、吸入空気温度を補償するための感温抵抗体4RC及びR10,R11でブリッジ回路を組み、オペアンプOP1を使いフィードバックをかけながら発熱抵抗体3RHと感温抵抗体4RCの間に一定温度差を保つように発熱抵抗体3RHに加熱電流Ihを流して空気流量に応じた出力信号V2を出力する。つまり流速の速い場合には発熱抵抗体3RHから奪われる熱量が多いため加熱電流Ihを多く流す。これに対して流速の遅い場合には発熱抵抗体Rhから奪われる熱量が少ないため加熱電流も少なくてすむのである。   First, the operation principle of the heating resistor type air flow measuring device will be described. FIG. 6 is a schematic circuit diagram of a heating resistor type air flow rate measuring device. The driving circuit of the heating resistor type air flow measuring device is roughly divided into a bridge circuit and a feedback circuit. A heating resistor 3RH for measuring the intake air flow rate and a temperature sensing resistor 4RC and R10, R11 for compensating the intake air temperature are combined to form a bridge circuit. A heating current Ih is supplied to the heating resistor 3RH so as to maintain a constant temperature difference between the temperature resistors 4RC, and an output signal V2 corresponding to the air flow rate is output. That is, when the flow rate is high, a large amount of heat is taken from the heating resistor 3RH, so that a large amount of heating current Ih flows. On the other hand, when the flow rate is low, the amount of heat taken away from the heating resistor Rh is small, so that the heating current can be reduced.

図7は発熱抵抗式空気流量計の一例を示す横断面であり、図8はその上流(左側)から見た外観図である。   FIG. 7 is a cross-sectional view showing an example of a heating resistance type air flow meter, and FIG. 8 is an external view as viewed from the upstream side (left side).

発熱抵抗体式空気流量測定装置の構成部品としては駆動回路を構成する回路基板2を内蔵するハウジング部材1及び非導電性部材により形成される副空気通路構成部材10等があり、副空気通路構成部材10の中には空気流量検出のための発熱抵抗体3,吸入空気温度を補償するための感温抵抗体4が導電性部材により構成された支持体5を介して回路基板2と電気的に接続されるように配置され、ハウジング,回路基板,副空気通路,発熱抵抗体,感温抵抗体等、これらを発熱抵抗体式空気流量測定装置の一体のモジュールとして構成されている。また、吸気管路を構成する主空気通路構成部材20の壁面には穴25があけられており、この穴25より前記発熱抵抗体式空気流量測定装置の副空気通路部分を外部より挿入して副空気通路構成部材の壁面とハウジング部材1とをネジ7等で機械的強度を保つように固定されている。また、副空気通路構成部材10と主空気通路構成部材の間にシール材6を取り付けて、吸気管内外との気密性を保っている。   Components of the heating resistor type air flow rate measuring device include a housing member 1 containing a circuit board 2 constituting a driving circuit, a sub air passage constituent member 10 formed by a non-conductive member, and the like. 10, a heating resistor 3 for detecting the air flow rate 3 and a temperature sensitive resistor 4 for compensating the intake air temperature are electrically connected to the circuit board 2 via a support 5 made of a conductive member. The housing, the circuit board, the auxiliary air passage, the heating resistor, the temperature sensing resistor, and the like are arranged as an integrated module of the heating resistor type air flow measuring device. Further, a hole 25 is formed in the wall surface of the main air passage constituting member 20 constituting the intake pipe line, and a sub air passage portion of the heating resistor type air flow rate measuring device is inserted from the outside through the hole 25 to make a sub The wall surface of the air passage constituting member and the housing member 1 are fixed with screws 7 or the like so as to maintain the mechanical strength. Moreover, the sealing material 6 is attached between the auxiliary air passage constituting member 10 and the main air passage constituting member, and the airtightness between the inside and outside of the intake pipe is maintained.

副空気通路内に設置される発熱抵抗体3RHは例えば図3のような形状であり、アルミナ等の耐熱絶縁材で構成された筒状のボビンに白金線等を巻線したり、或いは白金膜を蒸着し、両端を導電性部材により構成されるリード材と支持材を介して、電気的導通を取ると同時に機械的な固定を行う。また、白金線等の上にはガラス材等によりコーティングを施し、耐腐食性の向上を図ると同時に、表面の凹凸を無くして塵等の異物の付着を最小限に抑える工夫が取られている。   The heating resistor 3RH installed in the auxiliary air passage has a shape as shown in FIG. 3, for example, a platinum bobbin wound around a cylindrical bobbin made of a heat-resistant insulating material such as alumina, or a platinum film. Is vapor-deposited, and both ends are electrically connected through a lead material and a support material composed of a conductive member, and at the same time, mechanical fixing is performed. In addition, the platinum wire is coated with a glass material, etc. to improve the corrosion resistance, and at the same time, the surface unevenness is eliminated to minimize the adhesion of foreign matters such as dust. .

次に発熱抵抗体の汚損時の特性変化について説明する。図4に示したようなボビン状の発熱抵抗体の場合には、空気の当たる正面が最も発熱が促進され、特に高流速時にはこの正面での発熱が支配的となる。一方で図に示すA点では空気の流れがよどんでしまうため、空気の流れによるせん断力が最も弱い位置であり、塵が付着し易い場所でもある。つまり、吸入空気中に塵等が入り込み、図示A点に付着するとA点を基点としてその周囲にも塵が積もり最終的には三角状の山形に塵が付着してしまう。このため、最も発熱量が多い部分が塵で覆われてしまうため、発熱量が減少してしまい特性変化量としてはマイナスの特性変化を示すのである。これを横軸を流速として、縦軸を特性変化量とすると図5に示すように高流速ほどマイナスとなる右下がりの特性変化を示し、実際の空気量に対して少ない空気量であると検出するのである。このため、内燃機関でこの現象が生じると、実際の空気量に対して、少ない燃料を噴射する事となり空燃比が薄くなり、燃焼温度が高くなって最悪の場合にはエンジンの焼付け等の不具合を起こしてしまうのである。   Next, a change in characteristics when the heating resistor is soiled will be described. In the case of a bobbin-like heating resistor as shown in FIG. 4, heat generation is most promoted on the front surface where the air hits, and heat generation on this front surface becomes dominant particularly at a high flow rate. On the other hand, since the air flow is stagnant at the point A shown in the figure, it is a position where the shearing force due to the air flow is the weakest and also a place where dust is likely to adhere. That is, when dust or the like enters the intake air and adheres to the point A in the figure, dust accumulates around the point A as a base point, and eventually adheres to a triangular mountain shape. For this reason, since the part with the largest amount of heat generation is covered with dust, the amount of heat generation decreases, and the characteristic change amount shows a negative characteristic change. If the horizontal axis is the flow velocity and the vertical axis is the characteristic change amount, as shown in FIG. 5, the characteristic change is a downward-sloping characteristic that becomes negative as the flow velocity increases, and it is detected that the air amount is smaller than the actual air amount. To do. For this reason, when this phenomenon occurs in an internal combustion engine, less fuel is injected than the actual amount of air, the air-fuel ratio becomes thin, the combustion temperature rises, and in the worst case, problems such as engine burning It will cause.

次に本発明の具体的な副空気通路と発熱抵抗体の設置位置について図1を使い説明する。主空気通路構成部材100にて構成される主空気通路101内に配置された副空気通路120は副空気通路構成部材102により形成され、副空気通路入口121,曲り通路
122,曲り下流直線部123,副空気通路出口124から構成される。また、曲り通路122は主空気通路下流側から上流側へほぼ180°迂回する形となっており、迂回部では最も下流側となる場所が曲り通路の頂点125となる。流量計測部である発熱抵抗体
110は曲り通路の曲り終端または、曲り下流直線部123の始点近傍の位置に設置されており、リード材111と一体で支持材103を介して駆動回路(図示せず)と電気的に接続されている。本来であれば駆動回路の一部を構成する感温抵抗体も図示すべきであるが、今回の発明には感温抵抗体の位置には特に重要視しないため、発熱抵抗体近傍に有れば良いとして今回の図示には省略した。
Next, the specific sub air passage and the installation position of the heating resistor of the present invention will be described with reference to FIG. The sub air passage 120 disposed in the main air passage 101 constituted by the main air passage constituting member 100 is formed by the sub air passage constituting member 102, and the sub air passage inlet 121, the curved passage 122, and the curved downstream straight portion 123 are formed. , The auxiliary air passage outlet 124. Further, the curved passage 122 has a shape that makes a detour of about 180 ° from the downstream side to the upstream side of the main air passage, and the most downstream side of the bypass portion becomes the apex 125 of the curved passage. The heating resistor 110 serving as a flow rate measuring unit is installed at the end of the bent passage or near the starting point of the bent downstream straight portion 123, and is integrated with the lead material 111 via the support member 103 to drive a circuit (not shown). Are electrically connected. Although the temperature sensitive resistor that constitutes a part of the drive circuit should be illustrated in the original, the position of the temperature sensitive resistor is not particularly important in the present invention. It is omitted in this illustration as it should be.

発熱抵抗体110近傍の構成と副空気通路120内の流線を図2に示す。空気の流れる流線はほぼ通路の形状に沿った流線方向を示し、発熱抵抗体110とリード材111は共に副空気通路内の空気の流線に対して傾いて取り付けられる。一方、空気と一緒に副空気通路120内に流れ込んだ塵150は副空気通路120の曲り通路122を通過する際に遠心力により曲りの外側に進行しようとする流線となる。このため、空気はほぼ発熱抵抗体110の傾けた角度で発熱抵抗体110に当たるが、塵が当たる角度は更にきつい角度となる。つまり、塵150は発熱抵抗体110の放熱面と平行に近い角度で発熱抵抗体
110に衝突しようとするため、衝突の際のエネルギーが分散され発熱抵抗体110に付着し難くなり、更に空気の流れが発熱抵抗体110の放熱面に沿って流れるため、付着しようとする塵を剥がすようなせん断応力が働き、更に塵の付着をし難くくするのである。本実施例では、発熱抵抗体を曲り通路122の下流端に設置した位置で説明をしたが、曲り通路下流端からあまり離れすぎると効果は充分に発揮できない。効果を期待できる範囲としては、下流端から曲り通路の半径以内の距離であれば効果は期待できる。また、今回は円筒状のボビン形の発熱抵抗体を例に取ったが、板材に抵抗体を蒸着したような構造体で有っても同様な効果は得られる。
A configuration in the vicinity of the heating resistor 110 and a streamline in the sub air passage 120 are shown in FIG. A streamline through which air flows indicates a streamline direction substantially along the shape of the passage, and both the heating resistor 110 and the lead material 111 are attached to be inclined with respect to the streamline of air in the sub air passage. On the other hand, the dust 150 that has flowed into the auxiliary air passage 120 together with the air becomes a streamline that tends to travel outside the bend due to centrifugal force when passing through the bend passage 122 of the sub air passage 120. For this reason, air strikes the heating resistor 110 at an angle that is substantially inclined by the heating resistor 110, but the angle that the dust strikes becomes even tighter. In other words, the dust 150 tries to collide with the heat generating resistor 110 at an angle close to parallel to the heat radiating surface of the heat generating resistor 110, so that the energy at the time of collision is dispersed and hardly adheres to the heat generating resistor 110. Since the flow flows along the heat radiating surface of the heat generating resistor 110, a shearing stress that peels off the dust to be attached acts and makes it difficult to attach the dust. In this embodiment, the heating resistor has been described at the position where it is installed at the downstream end of the curved passage 122. However, if the heating resistor is too far away from the downstream end of the curved passage, the effect cannot be exhibited sufficiently. As a range where the effect can be expected, the effect can be expected as long as the distance is within the radius of the curved path from the downstream end. In addition, although a cylindrical bobbin-shaped heating resistor is taken as an example this time, the same effect can be obtained even if it is a structure in which a resistor is deposited on a plate material.

尚、当然ではあるが、曲り通路122の曲り途中に発熱抵抗体を設置しても効果は同様に得られる。しかし、遠心分離の効果を充分に発揮するためには曲り通路122の曲り頂点125より下流に有る事が望ましい。   Needless to say, the same effect can be obtained by installing a heating resistor in the middle of the bending passage 122. However, in order to fully exhibit the effect of centrifugal separation, it is desirable that it is downstream of the bending vertex 125 of the bending passage 122.

最後に、図9を使い電子燃料噴射方式の内燃機関に本発明品を適用した一実施例を示す。エアクリーナ54から吸入された吸入空気67は、発熱抵抗式空気流量測定装置のボディ53,吸入ダクト55,スロットルボディ58及び燃料が供給されるインジェクタ60を備えた吸気マニホールド59を経て、エンジンシリンダ62に吸入される。一方、エンジンシリンダで発生したガス63は排気マニホールド64を経て排出される。   Finally, FIG. 9 shows an embodiment in which the product of the present invention is applied to an electronic fuel injection type internal combustion engine. The intake air 67 sucked from the air cleaner 54 passes through the intake manifold 59 including the body 53, the suction duct 55, the throttle body 58, and the injector 60 to which fuel is supplied in the heating resistance type air flow rate measuring device, and then enters the engine cylinder 62. Inhaled. On the other hand, the gas 63 generated in the engine cylinder is discharged through the exhaust manifold 64.

発熱抵抗式空気流量測定装置の回路モジュール52から出力される空気流量信号,温度センサからの吸入空気温度信号,スロットル角度センサ57から出力されるスロットルバルブ角度信号,排気マニホールド64に設けられた酸素濃度計65から出力される酸素濃度信号及び、エンジン回転速度計61から出力されるエンジン回転速度信号等、これらを入力するコントロールユニット66はこれらの信号を逐次演算して最適な燃料噴射量とアイドルエアコントロールバルブ開度を求め、その値を使って前記インジェクタ60及びアイドルエアコントロールバルブ56を制御する。   The air flow rate signal output from the circuit module 52 of the heating resistance air flow rate measuring device, the intake air temperature signal from the temperature sensor, the throttle valve angle signal output from the throttle angle sensor 57, and the oxygen concentration provided in the exhaust manifold 64 The control unit 66 for inputting the oxygen concentration signal output from the meter 65 and the engine rotational speed signal output from the engine rotational speed meter 61, etc., sequentially calculates these signals to obtain the optimum fuel injection amount and idle air. The control valve opening is obtained, and the injector 60 and the idle air control valve 56 are controlled using the values.

車輌でのエンジン制御が主な使用用途になるが、船舶や発電機等のディーゼルエンジンを使った制御に対しても同様に利用が可能となる。   Engine control in a vehicle is the main use, but it can be used for control using a diesel engine such as a ship or a generator.

本発明の一実施例を示す副通路の縦断面図。The longitudinal cross-sectional view of the subchannel | path which shows one Example of this invention. 図1の発熱抵抗体近傍詳細図。FIG. 2 is a detailed view of the vicinity of a heating resistor in FIG. 1. 発熱抵抗体の構造を示す。The structure of a heating resistor is shown. 発熱抵抗体への塵堆積を示す図。The figure which shows the dust accumulation on a heating resistor. 発熱抵抗体へ塵が付着した場合の特性変化を示す。The characteristic change when dust adheres to the heating resistor is shown. 発熱抵抗体式空気流量測定装置の略駆動回路。Approximate drive circuit for heating resistor type air flow measuring device. 代表的な発熱抵抗体式空気流量測定装置横断面図。1 is a cross-sectional view of a typical heating resistor type air flow measuring device. 図7を上流側から見た図。The figure which looked at FIG. 7 from the upstream. 発熱抵抗体式空気流量測定装置を使ったシステム概略図。The system schematic using a heating resistor type air flow measuring device.

符号の説明Explanation of symbols

1…ハウジング部材、2…回路基板、3,110…発熱抵抗体、4…感温抵抗体、5…導電性支持体、6…シール材、7…ネジ部材、10,102…副空気通路構成部材、14,120…副空気通路、20,100…主空気通路構成部材、22,101…主空気通路、25…副空気通路挿入穴、51…吸気温度センサ、52…モジュール、53…ボディ、54…エアクリーナ、55…ダクト、56…アイドルエアコントロールバルブ、57…スロットル角度センサ、58…スロットルボディ、59…吸気マニホールド、60…インジェクタ、61…回転速度計、62…エンジンシリンダ、63…ガス、64…排気マニホールド、65…酸素濃度計、66…コントロールユニット、67…吸入空気、103…支持材、111…リード材、121…副空気通路入口、122…曲り通路、123…直線部、124…副空気通路出口、125…曲り頂点、150…塵。   DESCRIPTION OF SYMBOLS 1 ... Housing member, 2 ... Circuit board, 3,110 ... Heat generating resistor, 4 ... Temperature-sensitive resistor, 5 ... Conductive support body, 6 ... Sealing material, 7 ... Screw member, 10,102 ... Sub air passage structure Member, 14, 120 ... sub air passage, 20,100 ... main air passage constituent member, 22,101 ... main air passage, 25 ... sub air passage insertion hole, 51 ... intake air temperature sensor, 52 ... module, 53 ... body, 54 ... Air cleaner, 55 ... Duct, 56 ... Idle air control valve, 57 ... Throttle angle sensor, 58 ... Throttle body, 59 ... Intake manifold, 60 ... Injector, 61 ... Tachometer, 62 ... Engine cylinder, 63 ... Gas, 64 ... Exhaust manifold, 65 ... Oxygen concentration meter, 66 ... Control unit, 67 ... Intake air, 103 ... Support material, 111 ... Lead material, 121 Auxiliary air passage inlet, 122 ... curved passage, 123 ... straight portion, 124 ... auxiliary air passage outlet, 125 ... bending vertices, 150 ... dust.

Claims (3)

加熱電流を流して発熱し、吸入空気への放熱を基に空気流量を測定する発熱抵抗体式空気流量測定装置であり、主空気通路の一部の空気の流れを取り込む開口部を有する副空気通路内に前記空気流量を計測するための発熱抵抗体を有する発熱抵抗体式空気流量測定装置において、
前記発熱抵抗体は、前記発熱抵抗体の両端に導電性を有するリード材が取り付けられた筒状のボビンからなり、
前記副空気通路は、少なくとも一つの曲がり部を有しており、前記曲がり部の下流側に直線通路部を有し、前記直線通路部に前記発熱抵抗体が配置されており、
前記直線通路部の軸方向をx方向とし、前記曲がり部によって定義される平面上においてx方向と直交する方向をy方向としたとき、前記発熱抵抗体および前記リード材は、xy平面上にあり、かつy軸に対して傾けて設置された事を特徴とする発熱抵抗体式空気流量測定装置。
A heating resistor type air flow measurement device that generates heat by flowing a heating current and measures the air flow rate based on heat radiation to the intake air, and has a sub air passage having an opening for taking in a part of the air flow of the main air passage In the heating resistor type air flow rate measuring device having a heating resistor for measuring the air flow rate in,
The heating resistor consists of a cylindrical bobbin in which lead materials having conductivity are attached to both ends of the heating resistor,
The sub air passage has at least one bent portion, has a straight passage portion on the downstream side of the bent portion, and the heating resistor is arranged in the straight passage portion,
When the axial direction of the straight passage portion is the x direction and the direction orthogonal to the x direction is the y direction on the plane defined by the bent portion, the heating resistor and the lead material are on the xy plane. And a heating resistor type air flow rate measuring device characterized by being inclined with respect to the y-axis .
請求項1に記載の発熱抵抗体式空気流量測定装置において、前記発熱抵抗体および前記リード材の設置角度は、前記y軸に対して略20〜50度の傾きの範囲にある事を特徴とする発熱抵抗体式空気流量測定装置。 2. The heating resistor type air flow measuring device according to claim 1, wherein an installation angle of the heating resistor and the lead material is in a range of approximately 20 to 50 degrees with respect to the y-axis . Heating resistor type air flow measuring device. 請求項1または請求項2に記載の発熱抵抗体式空気流量測定装置を使用してなる事を特徴とする内燃機関の燃料噴射システム。   A fuel injection system for an internal combustion engine, characterized in that the heating resistor type air flow rate measuring device according to claim 1 or 2 is used.
JP2005303819A 2005-10-19 2005-10-19 Heating resistor type air flow measuring device Active JP4909561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005303819A JP4909561B2 (en) 2005-10-19 2005-10-19 Heating resistor type air flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005303819A JP4909561B2 (en) 2005-10-19 2005-10-19 Heating resistor type air flow measuring device

Publications (2)

Publication Number Publication Date
JP2007113978A JP2007113978A (en) 2007-05-10
JP4909561B2 true JP4909561B2 (en) 2012-04-04

Family

ID=38096315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303819A Active JP4909561B2 (en) 2005-10-19 2005-10-19 Heating resistor type air flow measuring device

Country Status (1)

Country Link
JP (1) JP4909561B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404104B2 (en) 2007-03-29 2010-01-27 株式会社デンソー Air flow measurement device
JP5548538B2 (en) 2010-06-30 2014-07-16 大王製紙株式会社 Pants-type disposable diaper

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663798B2 (en) * 1986-05-09 1994-08-22 日本電装株式会社 Thermal flow sensor
JPH0617809B2 (en) * 1988-02-06 1994-03-09 株式会社日立製作所 Air flow meter
JP2860041B2 (en) * 1993-06-17 1999-02-24 株式会社日立製作所 Air flow meter and air flow detecting element
JPH11183218A (en) * 1997-12-17 1999-07-09 Hitachi Ltd Heating resistor-type airflow rate measuring device
JP3782669B2 (en) * 2001-02-28 2006-06-07 株式会社日立製作所 Thermal flow meter

Also Published As

Publication number Publication date
JP2007113978A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
EP2056076B1 (en) Heating resistor type air flow rate measuring device
JP5183164B2 (en) Flow measuring device
JP3527813B2 (en) Heating resistor type air flow measurement device
JP4416012B2 (en) Intake air flow rate measuring device
US7661303B2 (en) Flow measuring device having heating resistor in inclined position with respect to the flow direction
JP3709373B2 (en) Flow measuring device
JPH0692900B2 (en) Intake pipe unit for automobile internal combustion engine
US7775104B2 (en) Thermal flowmeter in which relationship among length of heat resistor, heating temperature for the heat resistor, and power supplied to the heat resistor is prescribed
JP4845440B2 (en) Thermal flow meter
JP4909561B2 (en) Heating resistor type air flow measuring device
JP4836179B2 (en) Heating resistor type fluid flow measuring device
US7383725B2 (en) Flow detecting device having heating element
JP5542614B2 (en) Flow measuring device
JP5010877B2 (en) Thermal gas flow measuring device
JP2009063391A (en) Intake-system component mounted with heating resistor type air flow rate measuring device
JP2003262144A (en) Flow rate measuring device
JP2008249635A (en) Airflow measuring device
JP2002005710A (en) Bypass type measuring device for flow and flow velocity in pipe of small diameter
JP2007285950A (en) Heating resistor type air flowmeter
US20010052262A1 (en) Mass flowmeter
JP2000002568A (en) Air flow rate measuring apparatus
JP3064106B2 (en) Air flow measurement device
JPH08278179A (en) Exothermic resistance type air flow measuring device
JP2003161652A (en) Flow rate measuring device
JP2001091324A (en) Heat resistor type air flowrate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4909561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250