JP2003161652A - Flow rate measuring device - Google Patents
Flow rate measuring deviceInfo
- Publication number
- JP2003161652A JP2003161652A JP2001360220A JP2001360220A JP2003161652A JP 2003161652 A JP2003161652 A JP 2003161652A JP 2001360220 A JP2001360220 A JP 2001360220A JP 2001360220 A JP2001360220 A JP 2001360220A JP 2003161652 A JP2003161652 A JP 2003161652A
- Authority
- JP
- Japan
- Prior art keywords
- measuring device
- flow rate
- fluid
- bypass passage
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は流量を測定する装置
に関する。特には、内燃機関の空燃費制御等に用いる各
種センサを始め、流体流量の計測センサ全般及びその制
御システムに関するものである。TECHNICAL FIELD The present invention relates to a device for measuring a flow rate. In particular, the present invention relates to a general sensor for measuring a fluid flow rate and various control systems including various sensors used for air-fuel consumption control of an internal combustion engine.
【0002】[0002]
【従来の技術】バイパス通路を傾けて取付ける構造は、
独出願番号DE19547915A1により公知であ
り、特性ばらつきのクリティカルポイントを避けて、予
め鈍感な領域にバイパス通路を傾けることで特性ばらつ
きを抑えるという技術が明らかになっている。2. Description of the Related Art A structure in which a bypass passage is inclined and installed is
It is known from German Application No. DE19547915A1 and a technique has been clarified in which the critical point of the characteristic variation is avoided and the characteristic variation is suppressed by preliminarily inclining the bypass passage to an insensitive region.
【0003】また、発熱抵抗体を流れの影に設置して、
汚損物質や水滴の飛来を慣性分離により避ける構造がD
E19815654A1により明らかにされている。In addition, a heating resistor is installed in the shadow of the flow,
D has a structure that avoids fouling substances and water droplets by inertial separation.
It is revealed by E19815654A1.
【0004】しかし双方を組み合わせ、更に発熱抵抗体
や感温抵抗体の設置位置を工夫すると、汚損物質や水滴
の飛来を回避可能になるのは勿論のこと、制御回路基板
の発熱に起因する温度特性の問題や、耐振性の問題、更
には逆流が発生する流路においては流量計測誤差の問題
などが全て対策可能になる。上記公知例にはこれらに関
する記載はない。However, if both are combined and the installation position of the heat-generating resistor or the temperature-sensitive resistor is devised, it is possible to avoid flying of pollutants and water droplets, and the temperature caused by heat generation of the control circuit board can be avoided. It is possible to solve all of the problems of characteristics, the problem of vibration resistance, and the problem of flow rate measurement error in the flow path where the backflow occurs. There is no description about these in the above-mentioned known example.
【0005】[0005]
【発明が解決しようとする課題】特に周囲環境が厳しい
内燃機関などで使用する流量測定装置にあっては、以下
の課題がある。
(1)汚損物質や水滴の飛来を回避する。
(2)回路の発熱に起因する温度特性問題を解決する。
(3)流量測定装置の小型化による耐振性の問題を解決
する。
(4)逆流発生時の流量計測誤差を抑える。
(5)低コスト化を達成する。The flow measuring device used in an internal combustion engine or the like, which has a particularly severe environment, has the following problems. (1) Avoid the arrival of fouling substances and water droplets. (2) To solve the temperature characteristic problem caused by the heat generation of the circuit. (3) To solve the problem of vibration resistance due to downsizing of the flow rate measuring device. (4) Suppress flow rate measurement error when backflow occurs. (5) Achieve cost reduction.
【0006】本発明の主たる目的は、(1)を解決する
ことにある。A main object of the present invention is to solve (1).
【0007】[0007]
【課題を解決するための手段】上記目的は、特許請求の
範囲の欄に記載の発明により達成される。例えば、
(1)発熱抵抗体が設置されるバイパス通路部材の開口
部、即ちバイパス入口が、長方形断面を構成するある1
面に対して、垂直,水平ではないある角度を持って配置
され、且つ、長方形断面を構成するある1面について
も、メイン流路を流れる流体の流れ方向に対して垂直方
向、或いは水平方向ではないある角度を持って配置す
る。
(2)他の構成部品より金属ベース部材が最も流体に直
接触れる方向に傾けて取付ける。
(3)構造体を傾けて取付け、金属ベース部材やバイパ
ス部材など、構造体を挿入穴から挿入する際には、挿入
穴と十分なクリアランスを保ち、ネジ止め等による装着
終了時には、クリアランスが4辺不均等になるように装
着する。
(4)発熱抵抗体をバイパス通路内部に設置し、感温抵
抗体、及び吸気温度センサをバイパス通路外部に設置す
る。
(5)発熱抵抗体と感温抵抗体、更に吸気温度センサは
メイン流路の上流側から流れる順流、下流から流れる逆
流の中に置き、発熱抵抗体は順流に良く晒される位置
に、感温抵抗体は逆流に良く晒される位置に、吸気温度
センサは順流,逆流双方の流れに良く晒される位置にそ
れぞれ配置する。
(6)バイパス通路部材側に設置されたバイパス通路出
口を、金属ベース部材側のバイパス通路出口やバイパス
通路入口に対して下流側にオフセットする。
(7)コネクタを長方形断面と同じ角度、即ち、平行に
配置する。The above object can be achieved by the inventions described in the claims. For example, (1) The opening of the bypass passage member in which the heating resistor is installed, that is, the bypass inlet has a rectangular cross section.
One surface that is arranged at an angle that is neither vertical nor horizontal with respect to the surface and that has a rectangular cross section also has a vertical or horizontal direction with respect to the flow direction of the fluid flowing through the main flow path. Place it at an angle. (2) The metal base member is mounted so as to be tilted in the direction in which the metal base member comes into direct contact with the fluid most than other components. (3) When mounting the structure by inclining it and inserting the structure, such as a metal base member or a bypass member, from the insertion hole, maintain a sufficient clearance with the insertion hole, and when mounting by screwing or the like, the clearance is 4 mm. Wear it so that the sides are not even. (4) The heating resistor is installed inside the bypass passage, and the temperature sensitive resistor and the intake air temperature sensor are installed outside the bypass passage. (5) The heat-generating resistor and the temperature-sensitive resistor, and the intake air temperature sensor are placed in the forward flow flowing from the upstream side of the main flow path and the reverse flow flowing from the downstream side, and the heat-generating resistor is placed at a position where it is well exposed to the forward flow. The resistor is placed at a position well exposed to backflow, and the intake air temperature sensor is placed at a position well exposed to both forward and reverse flows. (6) The bypass passage outlet installed on the bypass passage member side is offset to the downstream side with respect to the bypass passage outlet and the bypass passage inlet on the metal base member side. (7) Arrange the connectors at the same angle as the rectangular cross section, that is, in parallel.
【0008】[0008]
【発明の実施の形態】図1は本発明を発熱抵抗式空気流
量測定装置に適用した場合の一実施例を示す正面図とそ
の断面A−A図である。流体の流量を検出する発熱抵抗
体1と、吸入空気の温度を検出し温度補償を行うための
感温抵抗体2、更にはそれ単独で吸気温度を検出するサ
ーミスタ3が、ハウジング部材4に一体成形された金属
ターミナル部材5に固定されている。このハウジング部
材4と回路基板6、更には前記回路基板6を保護するた
めのカバー部材7や、バイパス通路を形成するためのサ
ブ通路部材8を、金属ベース9上に積み重ねて組立て、
前記ハウジング部材4に設けられている金属ターミナル
部材5と回路基板6、更には、前記ハウジング部材4に
設けられている、電気信号の入出力に用いるコネクタタ
ーミナル10と回路基板6を電気的に接続して発熱抵抗
式空気流量測定装置が成り立っている。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a front view showing a preferred embodiment of the present invention applied to a heating resistance type air flow rate measuring device and a sectional view taken along line AA. A heating resistor 1 for detecting the flow rate of a fluid, a temperature sensitive resistor 2 for detecting the temperature of intake air and performing temperature compensation, and a thermistor 3 for independently detecting the intake air temperature are integrated in a housing member 4. It is fixed to the molded metal terminal member 5. The housing member 4 and the circuit board 6, the cover member 7 for protecting the circuit board 6, and the sub-passage member 8 for forming a bypass passage are stacked and assembled on a metal base 9,
The metal terminal member 5 provided on the housing member 4 and the circuit board 6 are electrically connected to each other, and further, the connector terminal 10 provided on the housing member 4 for inputting and outputting an electric signal is electrically connected to the circuit board 6. Then, a heating resistance type air flow rate measuring device is established.
【0009】実際には空気が流通する主通路11等に挿
入穴を設けて、この穴より挿入して使用する。ところ
が、自動車などの内燃機関などに用いられる場合、実際
には吸入空気に微粒子のダストが含まれていたり、更に
は水分やオイル成分を含む空気も流れてくる。これらの
汚損物質が発熱抵抗体1に付着すると、瞬時に測定流量
値が大きく変化したり、経年変化を生んでしまう。特に
水滴が飛散してきた場合には瞬時に測定流量値が大きく
変化するため、この水滴飛散時の対策が重要な課題にな
っている。Actually, an insertion hole is provided in the main passage 11 or the like through which air flows, and the insertion hole is used for insertion. However, when used in an internal combustion engine of an automobile or the like, the intake air actually contains fine particle dust, and further air containing water and oil components also flows. If these fouling substances adhere to the heat-generating resistor 1, the measured flow rate value may change instantly and may change over time. In particular, when water droplets are scattered, the measured flow rate value greatly changes instantaneously, so countermeasures against such water droplet scattering have become an important issue.
【0010】そこで図1のようにバイパス通路への空気
取り込み口12を空気の流れ方向13に対して正面とな
るように開口させず、ある角度をもって配置した。また
空気流量測定装置自体を回転させてバイパス通路を空気
の流れ方向13に対して斜めになるように取付けた。こ
の構成によって、水滴のバイパス内進入を困難にでき、
水滴の飛散時でも精度良く空気流量を計測することがで
きる。Therefore, as shown in FIG. 1, the air intake 12 to the bypass passage is not opened so as to face the air flow direction 13, but is arranged at an angle. Further, the air flow rate measuring device itself was rotated and the bypass passage was attached so as to be oblique to the air flow direction 13. This configuration makes it difficult for water droplets to enter the bypass,
The air flow rate can be accurately measured even when water droplets are scattered.
【0011】また、この方法は、特に水滴や汚損物質へ
の対策が要求されるケースでの特殊な取付けであり、こ
のような心配が無い場合は、空気取り込み口12を空気
の流れ方向13に対して垂直、即ち正面に向けて開口さ
せるのが望ましい。水滴や汚損物質飛散などに対する特
殊品を製造すると低コスト化を達成できないので、本発
明のようにサブ通路部材8を交換し、傾けて取付けるだ
けで課題を達成できる構造が好ましい。Further, this method is a special attachment in the case where measures against water droplets and fouling substances are particularly required, and when there is no such a concern, the air intake port 12 is arranged in the air flow direction 13. On the other hand, it is desirable that the opening be vertical, that is, toward the front. Since it is not possible to reduce the cost by manufacturing a special product against water droplets or scattering of pollutants, it is preferable to use a structure capable of achieving the problem simply by replacing the sub passage member 8 and mounting it at an angle as in the present invention.
【0012】斜め取付けは、水滴や汚損物質の飛散を避
けること以外にも大きな効果がある。図1のA−A断面
図に示すように、長方形断面の長辺長さが、短辺長さの
3倍以上となるような板状に近い形状であり、且つ、自
動車などの内燃機関に本発明品を適用すると、機械的強
度不足が懸念され、特に共振等による故障が考えられ
る。そこで、前述したように空気流量測定装置自体を回
転させてバイパス通路を空気の流れ方向13に対して斜
めになるように取付ける。すると長方形断面の長辺長さ
が3aから5a程度であれば共振が発生する領域は比較
的エンジンの高回転域、即ち空気の流速が速い領域にな
り、バイパス通路を空気の流れ方向13に対して斜めに
取付けているために大きな揚力と抗力を発生させること
ができる。つまり最も共振時に振れやすい先端部を抑え
るような力が加わり、共振による故障を防ぐことが可能
になる。The diagonal mounting has a great effect in addition to avoiding the scattering of water droplets and pollutants. As shown in the cross-sectional view taken along the line A-A in FIG. 1, the rectangular cross section has a shape close to a plate in which the long side length is three times or more the short side length and is used in an internal combustion engine such as an automobile. When the product of the present invention is applied, insufficient mechanical strength is feared, and in particular, failure due to resonance or the like is considered. Therefore, as described above, the air flow rate measuring device itself is rotated and the bypass passage is attached so as to be oblique to the air flow direction 13. Then, if the long side length of the rectangular cross section is about 3a to 5a, the region where the resonance occurs is a relatively high engine speed region, that is, the region where the air velocity is high, and the bypass passage with respect to the air flow direction 13 is formed. Since it is installed diagonally, large lift and drag can be generated. That is, a force that suppresses the tip portion that is most likely to shake at the time of resonance is applied, and it becomes possible to prevent a failure due to resonance.
【0013】図2は本発明を発熱抵抗式空気流量測定装
置に適用した場合の一実施例を示す上面図である。製造
上低コスト化を図るため、電気信号の入出力を行うコネ
クタ14が、前述した長方形断面と平行に配置されてい
る。このため、空気流量測定装置自体を回転させてバイ
パス通路を空気の流れ方向13に対して斜めになるよう
に取付けた際、コネクタ14も同一角度に傾いて取付け
られる。FIG. 2 is a top view showing an embodiment in which the present invention is applied to a heating resistance type air flow rate measuring device. In order to reduce the manufacturing cost, the connector 14 for inputting / outputting an electric signal is arranged in parallel with the rectangular cross section. Therefore, when the air flow rate measuring device itself is rotated and the bypass passage is attached so as to be inclined with respect to the air flow direction 13, the connector 14 is also attached at the same angle.
【0014】図3は本発明を発熱抵抗式空気流量測定装
置に適用した場合の一実施例を示す断面図である。バイ
パス通路を空気の流れ方向13に対して斜めになるよう
に取付ける際、金属ベース9を最も空気に晒される方向
に傾けている。金属ベース9には回路基板6が固定され
ており、金属ベース9には回路基板6が発した熱を放熱
させる役目がある。この構成であれば、回路基板6が発
した熱をより効率良く放熱することができる。FIG. 3 is a sectional view showing an embodiment in which the present invention is applied to a heating resistance type air flow rate measuring device. When the bypass passage is attached so as to be inclined with respect to the air flow direction 13, the metal base 9 is inclined in the direction most exposed to air. The circuit board 6 is fixed to the metal base 9, and the metal base 9 has a role of radiating the heat generated by the circuit board 6. With this configuration, the heat generated by the circuit board 6 can be radiated more efficiently.
【0015】また、発熱抵抗体1をバイパス通路内部
に、感温抵抗体2を発熱抵抗体1の上流側で、且つバイ
パス通路外部に、サーミスタ3を感温抵抗体2の上流側
で、且つバイパス通路外部にそれぞれ配置している。こ
の時、サーミスタ3が主通路11を流れる順流15,逆
流16の双方向から空気流に良く晒される位置、感温抵
抗体2が逆流16に良く晒される位置、発熱抵抗体1が
順流に良く晒される位置となるようにバイパス通路が傾
けられている。この構成により、エンジンの脈動流に起
因する発熱抵抗式空気流量測定装置の誤差を低減するこ
とができる。The heating resistor 1 is inside the bypass passage, the temperature sensing resistor 2 is upstream of the heating resistor 1, and outside the bypass passage, the thermistor 3 is upstream of the temperature sensing resistor 2, and They are located outside the bypass passages. At this time, the thermistor 3 is well exposed to the air flow from both the forward flow 15 and the reverse flow 16 flowing in the main passage 11, the position where the temperature sensitive resistor 2 is well exposed to the reverse flow 16, and the heating resistor 1 is good to the forward flow. The bypass passage is inclined so that it is exposed. With this configuration, it is possible to reduce the error of the heating resistance type air flow rate measuring device due to the pulsating flow of the engine.
【0016】ここで発熱抵抗式空気流量測定装置におけ
る脈動影響誤差について述べる。Here, the pulsation influence error in the heating resistance type air flow rate measuring device will be described.
【0017】エンジンの吸気管内を流れる空気は吸気バ
ルブの開閉に伴い脈動流になる。この脈動の大きさはス
ロットルバルブが比較的閉じた場合には小さく、スロッ
トルバルブが全開付近となるにつれて大きくなり、更に
脈動振幅が大きくなると吸気管内の流れは逆流を伴うよ
うな流れになる。しかしながら発熱抵抗体はその構造上
流れの方向を検出することは困難であり、順流でも逆流
でも単に流速として検出する。そのため逆流が生じた
際、発熱抵抗体はそれを単に流速として検出し、その結
果プラス誤差を生じる。The air flowing in the intake pipe of the engine becomes a pulsating flow as the intake valve opens and closes. The magnitude of this pulsation is small when the throttle valve is relatively closed, and increases as the throttle valve is near full opening. When the pulsation amplitude further increases, the flow in the intake pipe becomes a flow accompanied by backflow. However, it is difficult for the heating resistor to detect the flow direction due to its structure, and the forward flow or the reverse flow is simply detected as the flow velocity. Therefore, when a backflow occurs, the heating resistor simply detects it as a flow velocity, and as a result, a positive error occurs.
【0018】このプラスの出力誤差は、発熱抵抗体1と
感温抵抗体2間の温度を一定温度に制御している動作を
利用して、その一部を除算することができる。具体的に
は感温抵抗体2を若干加熱しておき、逆流発生時のみ感
温抵抗体2に空気が当たるように角度を付けて取付けて
おく。すると逆流発生時のみ若干加熱された感温抵抗体
2が冷却され、その結果、感温抵抗体2との温度差を一
定に保たれている発熱抵抗体1の加熱温度が下げられ
る。つまり逆流時のみ発熱抵抗体1の加熱電流を減ら
す、即ち空気流量が減少したような信号を出すことにな
り、その分プラス誤差がカットできる。この原理によ
り、前述したようにエンジン脈動流に起因する発熱抵抗
式空気流量測定装置の誤差を低減することができ、傾け
て取付けることにより達成できる。This positive output error can be partly divided by utilizing the operation of controlling the temperature between the heating resistor 1 and the temperature sensitive resistor 2 to a constant temperature. Specifically, the temperature sensitive resistor 2 is slightly heated, and the temperature sensitive resistor 2 is attached at an angle so that the air hits the temperature sensitive resistor 2 only when backflow occurs. Then, only when the backflow occurs, the slightly heated temperature sensitive resistor 2 is cooled, and as a result, the heating temperature of the heat generating resistor 1 whose temperature difference from the temperature sensitive resistor 2 is kept constant is lowered. That is, the heating current of the heating resistor 1 is reduced only when the backflow occurs, that is, a signal indicating that the air flow rate is reduced is output, and the plus error can be cut by that amount. By this principle, as described above, the error of the heat generation resistance type air flow measuring device due to the engine pulsating flow can be reduced, and it can be achieved by mounting the device at an angle.
【0019】図4は本発明を発熱抵抗式空気流量測定装
置に適用した場合の一実施例を示す正面図とその断面B
−B図である。発熱抵抗体1が設置されるバイパス通路
構造を一度迂回する迂回式構造とし、その出口が金属ベ
ース9側に1箇所、サブ通路部材8側に1箇所設けられ
ている。発熱抵抗式空気流量測定装置における脈動影響
誤差は、前述したように、エンジンからの逆流によりプ
ラス誤差を生じる。それが今度は逆流発生までには至ら
ないある程度大きな振幅をもった脈動流域になると、発
熱抵抗体1と空気流量との関係が非線形であることと、
発熱抵抗体1自身に応答遅れがあることで真の空気流量
に対しマイナス誤差を生じてしまう。これらプラスマイ
ナスの出力誤差は、バイパス通路内部に及んだ吸気脈動
を減衰させ、更に逆流が生じた際はその逆流をバイパス
通路内部に入りにくい構造とすることで低減することが
できる。これらはバイパス通路内部を流れる空気流の慣
性を大きくすることで達成でき、具体的には、空気の流
れ方向13で見たバイパス通路の出入口間距離に対し、
バイパス通路の全長を長く構成する、即ちこの迂回式構
造とするのが理想的である。FIG. 4 is a front view showing an embodiment of the present invention applied to a heating resistance type air flow rate measuring device and its cross section B.
FIG. The bypass passage structure in which the heating resistor 1 is installed has a detour structure that bypasses once, and its outlet is provided at one location on the metal base 9 side and at one location on the sub-passage member 8 side. As described above, the pulsation influence error in the heating resistance type air flow rate measuring device causes a plus error due to the backflow from the engine. When it becomes a pulsating flow region with a certain large amplitude that does not lead to backflow, the relationship between the heating resistor 1 and the air flow rate is non-linear.
Due to the response delay of the heating resistor 1 itself, a minus error occurs with respect to the true air flow rate. These positive and negative output errors can be reduced by attenuating the intake pulsation that has reached the inside of the bypass passage, and when a backflow occurs, the backflow is less likely to enter the bypass passage. These can be achieved by increasing the inertia of the air flow flowing inside the bypass passage. Specifically, with respect to the distance between the entrance and the exit of the bypass passage seen in the air flow direction 13,
Ideally, the entire length of the bypass passage is configured to be long, that is, this bypass structure is used.
【0020】図5は本発明を発熱抵抗式空気流量測定装
置に適用した場合の一実施例を示す側面図とその断面C
−C図である。バイパス出口17は分流ガイド18を介
して2方向に分流される。バイパス出口17の開口面積
は大きい方がバイパス流速を向上に効果が高いが、1箇
所で大きく開口させると、バイパス通路の全長が短くな
り脈動流の影響を受けやすくなる。このため2方向に分
流しバイパス流速向上と脈動誤差の低減を図っている。FIG. 5 is a side view showing an embodiment in which the present invention is applied to a heating resistance type air flow rate measuring device and its cross section C.
FIG. The bypass outlet 17 is diverted in two directions via the diverter guide 18. A larger opening area of the bypass outlet 17 is more effective in improving the bypass flow velocity. However, if the bypass outlet 17 is opened at one place, the entire length of the bypass passage is shortened and the bypass flow is easily affected. Therefore, the flow is divided into two directions to improve the bypass flow velocity and reduce the pulsation error.
【0021】図6は本発明を発熱抵抗式空気流量測定装
置に適用した場合の一実施例を示す側面図とその断面D
−D図である。金属ベース9側のバイパス出口17に対
して、サブ通路部材8側のバイパス出口17が下流側に
オフセットして配置されている。発熱抵抗式空気流量測
定装置を傾けて取付けた場合、サブ通路部材8側のバイ
パス出口17の位置によって脈動誤差の調整が可能にな
る。脈動影響はエンジンの種類や吸気系の形状などによ
って大きく異なるので機種毎に脈動誤差の個別調整が可
能になる。FIG. 6 is a side view showing an embodiment of the present invention applied to a heating resistance type air flow rate measuring device and its cross section D.
FIG. The bypass outlet 17 on the side of the sub-passage member 8 is offset downstream from the bypass outlet 17 on the side of the metal base 9. When the heat generation resistance type air flow rate measuring device is tilted and attached, the pulsation error can be adjusted by the position of the bypass outlet 17 on the side of the sub passage member 8. Since the influence of pulsation varies greatly depending on the type of engine and the shape of the intake system, it is possible to individually adjust the pulsation error for each model.
【0022】図7は本発明を発熱抵抗式空気流量測定装
置に適用した場合の一実施例を示す正面図とその断面E
−E図である。発熱抵抗式空気流量測定装置を主通路1
1に挿入した際、主通路11と金属ベース9,主通路1
1とハウジング部材4,主通路11とカバー部材7の間
にできるクリアランス量を任意に設定している。特に下
流側クリアランス19をゼロ即ち接触、または小さく設
定することにより、バイパス通路が風圧を受けた際に、
各構成部品が主通路11に押し付けられ、更に共振に対
しての耐力が向上する。また、主通路や各構成部品に接
触用の突起などを設けると、面接触から点または線接触
となり発熱抵抗式空気流量測定装置を主通路11へ挿入
する際の装着性が向上する。FIG. 7 is a front view showing an embodiment in which the present invention is applied to a heating resistance type air flow rate measuring device and its cross section E.
FIG. Main path for heating resistance type air flow measuring device 1
1, the main passage 11, the metal base 9 and the main passage 1 when inserted
1 and the housing member 4, the clearance amount formed between the main passage 11 and the cover member 7 is arbitrarily set. Especially when the downstream side clearance 19 is set to zero, that is, contact or small, when the bypass passage receives wind pressure,
Each component is pressed against the main passage 11, and the proof strength against resonance is further improved. Further, when the main passage or each component is provided with a contacting protrusion or the like, it becomes a point contact or a line contact from the surface contact, and the mountability when the heating resistance type air flow rate measuring device is inserted into the main passage 11 is improved.
【0023】図8は本発明を発熱抵抗式空気流量測定装
置に適用した場合の一実施例を示す断面図である。発熱
抵抗式空気流量測定装置を斜めに取付けると、若干、吸
気系の圧力損失が大きくなる。このため最上流側形状に
丸みを持たせている。FIG. 8 is a sectional view showing an embodiment in which the present invention is applied to a heating resistance type air flow rate measuring device. If the heating resistance type air flow rate measuring device is installed at an angle, the pressure loss of the intake system will increase slightly. For this reason, the shape on the most upstream side is rounded.
【0024】最後に図9を使い、発熱抵抗式空気流量測
定装置として電子燃料噴射方式の内燃機関に本発明品を
適用した一実施例を示す。エアクリーナ51から吸入さ
れた吸入空気52は吸入ダクト53,スロットルボディ
54及び燃料が供給されるインジェクタ55を備えた吸
気マニホールド56を経て、エンジンシリンダ57に吸
入される。一方、エンジンシリンダで発生したガス58
は排気マニホールド59を経て排出される。Finally, referring to FIG. 9, an embodiment in which the product of the present invention is applied to an electronic fuel injection type internal combustion engine as a heating resistance type air flow rate measuring device will be shown. The intake air 52 sucked from the air cleaner 51 is sucked into the engine cylinder 57 via an intake duct 53, a throttle body 54, and an intake manifold 56 including an injector 55 to which fuel is supplied. On the other hand, the gas generated in the engine cylinder 58
Are discharged through the exhaust manifold 59.
【0025】発熱抵抗式空気流量測定装置の回路モジュ
ール60から出力される空気流量信号及び圧力信号,吸
気温度センサ61からの吸入空気温度信号,スロットル
角度センサ62から出力されるスロットルバルブ角度信
号,排気マニホールド59に設けられた酸素濃度計63
から出力される酸素濃度信号及び、エンジン回転速度計
64から出力されるエンジン回転速度信号等、これらを
入力するコントロールユニット65はこれらの信号を逐
次演算して最適な燃料噴射量とアイドルエアコントロー
ルバルブ開度を求め、その値を使って前記インジェクタ
55及びアイドルエアコントロールバルブ66を制御す
る。The air flow rate signal and pressure signal output from the circuit module 60 of the heating resistance type air flow rate measuring device, the intake air temperature signal from the intake air temperature sensor 61, the throttle valve angle signal output from the throttle angle sensor 62, and the exhaust gas. Oxygen concentration meter 63 provided on the manifold 59
A control unit 65 for inputting the oxygen concentration signal output from the engine and the engine rotation speed signal output from the engine tachometer 64, etc., sequentially calculates these signals to optimize the fuel injection amount and the idle air control valve. The opening is obtained, and the injector 55 and the idle air control valve 66 are controlled using the values.
【0026】次に、他の実施例について簡単に説明する
(図1参照)。気体が流れる主通路中に挿入された副通
路を構成する副通路構成部材(4)と、前記副通路に設
けられた発熱抵抗体(1)と、を備えた熱式の流量測定
装置であって、前記副通路を前記主通路に対して傾けて
設置し、前記主通路の上流側から前記副通路の入口が直
接に見えないようにした流量測定装置。さらに、前記主
通路の上流側から前記発熱抵抗体が直接に見えないよう
にしたことを特徴とする流量測定装置。Next, another embodiment will be briefly described (see FIG. 1). A thermal type flow rate measuring device, comprising: a sub-passage forming member (4) that forms a sub-passage inserted in a main passage through which gas flows; and a heating resistor (1) provided in the sub-passage. And a flow measuring device in which the sub passage is installed so as to be inclined with respect to the main passage so that an inlet of the sub passage cannot be directly seen from an upstream side of the main passage. Further, the flow rate measuring device is characterized in that the heating resistor is not directly visible from the upstream side of the main passage.
【0027】以下に、本実施例の効果を説明する。
(1)バイパス通路への空気取り込み口を空気の流れ方
向に対して正面となるように開口させず、ある角度をも
って配置し、更に空気流量測定装置自体を回転させてバ
イパス通路を空気の流れ方向に対して斜めになるように
取付けることで、水滴のバイパス内進入を困難にでき、
水滴の飛散時でも精度良く空気流量を計測することがで
きる。
(2)サブ通路部材を交換し、傾けて取付けるだけで課
題を達成できる構造のため、特殊品であっても低コスト
化が図れる。
(3)空気流量測定装置自体を回転させてバイパス通路
を空気の流れ方向に対して斜めに取付けると、大きな揚
力と抗力を得ることができ、最も共振時に振れやすい先
端部を抑える力が加わる。この結果、共振による故障を
防ぐことが可能になる。
(4)バイパス通路を空気の流れ方向に対して斜めにな
るように取付ける際、金属ベースを最も空気に晒される
方向に傾けている。この構成により、回路基板が発した
熱をより効率良く放熱することができる。
(5)発熱抵抗体をバイパス通路内部に、感温抵抗体を
発熱抵抗体の上流側で、且つバイパス通路外部に、サー
ミスタを感温抵抗体の上流側で、且つバイパス通路外部
にそれぞれ配置し、サーミスタが主通路を流れる順流,
逆流の双方向から空気流に良く晒される位置,感温抵抗
体が逆流に良く晒される位置,発熱抵抗体が順流に良く
晒される位置となるようにバイパス通路を傾けること
で、エンジンの脈動流に起因する発熱抵抗式空気流量測
定装置の誤差を低減することができる。
(6)発熱抵抗式空気流量測定装置を主通路に挿入した
際、主通路と金属ベース,主通路とハウジング部材,主
通路とカバー部材の間にできるクリアランス量を任意に
設定している。特に下流側のクリアランスをゼロまたは
小さく設定することにより、バイパス通路が風圧を受け
た際に、各構成部品が主通路に押し付けられ、更に共振
に対しての耐力が向上する。また、主通路や各構成部品
に接触用の突起などを設けると、面接触から点または線
接触となり発熱抵抗式空気流量測定装置を主通路へ挿入
する際の装着性が向上する。The effects of this embodiment will be described below. (1) The air intake port to the bypass passage is not opened so as to be in front of the air flow direction, but is arranged at an angle, and the air flow rate measuring device itself is rotated to move the bypass passage in the air flow direction. It is possible to make it difficult for water droplets to enter the bypass by installing it at an angle to the
The air flow rate can be accurately measured even when water droplets are scattered. (2) Since the structure is such that the problem can be achieved simply by replacing the sub-passage member and mounting it at an angle, cost reduction can be achieved even with a special product. (3) When the air flow rate measuring device itself is rotated and the bypass passage is obliquely attached to the air flow direction, a large lift and drag force can be obtained, and a force that suppresses the tip end portion that easily shakes at the time of resonance is added. As a result, it becomes possible to prevent a failure due to resonance. (4) When the bypass passage is mounted so as to be oblique to the air flow direction, the metal base is tilted in the direction most exposed to air. With this configuration, the heat generated by the circuit board can be radiated more efficiently. (5) The heating resistor is arranged inside the bypass passage, the temperature sensing resistor is arranged upstream of the heating resistor and outside the bypass passage, and the thermistor is arranged upstream of the temperature sensing resistor and outside the bypass passage. , The thermistor is a forward flow through the main passage,
Pulsating flow of the engine by tilting the bypass passage so that it is well exposed to air flow from both directions of backflow, the temperature sensitive resistor is well exposed to backflow, and the heat generating resistor is well exposed to forward flow. It is possible to reduce the error of the heating resistance type air flow rate measuring device due to the above. (6) When the heating resistance type air flow rate measuring device is inserted into the main passage, the amount of clearance formed between the main passage and the metal base, between the main passage and the housing member, and between the main passage and the cover member is arbitrarily set. In particular, by setting the clearance on the downstream side to be zero or small, each component is pressed against the main passage when the bypass passage receives wind pressure, and the proof strength against resonance is further improved. Further, when the main passage or each component is provided with a contacting protrusion or the like, the surface contact becomes a point or line contact, and the mountability at the time of inserting the heating resistance type air flow rate measuring device into the main passage is improved.
【0028】[0028]
【発明の効果】本発明によれば、汚損物質や水滴により
精度悪化を少なくすることができる。According to the present invention, it is possible to reduce deterioration in accuracy due to fouling substances and water droplets.
【図1】本発明の一実施例を示す正面図とそのA−A断
面図。FIG. 1 is a front view showing an embodiment of the present invention and an AA sectional view thereof.
【図2】本発明の一実施例を示す上面図。FIG. 2 is a top view showing an embodiment of the present invention.
【図3】本発明の一実施例を示す断面図。FIG. 3 is a sectional view showing an embodiment of the present invention.
【図4】本発明の一実施例を示す正面図とそのB−B断
面図。FIG. 4 is a front view showing a first embodiment of the present invention and a BB sectional view thereof.
【図5】本発明の一実施例を示す側面図とそのC−C断
面図。FIG. 5 is a side view showing the embodiment of the present invention and a cross-sectional view taken along the line CC.
【図6】本発明の一実施例を示す側面図とそのD−D断
面図。FIG. 6 is a side view showing the embodiment of the present invention and a sectional view taken along the line D-D thereof.
【図7】本発明の一実施例を示す正面図とそのE−E断
面図。7A and 7B are a front view and an EE cross-sectional view showing an embodiment of the present invention.
【図8】本発明の一実施例を示す断面図。FIG. 8 is a sectional view showing an embodiment of the present invention.
【図9】本発明の一実施例を示す正面図。FIG. 9 is a front view showing an embodiment of the present invention.
1…発熱抵抗体、2…感温抵抗体、3…サーミスタ、4
…ハウジング部材、5…金属ターミナル部材、6…回路
基板、7…カバー部材、8…サブ通路部材、9…金属ベ
ース、10…コネクタターミナル、11…主通路、12
…空気取り込み口、13…空気の流れ方向、14…コネ
クタ、15…順流、16…逆流、17…バイパス出口、
18…分流ガイド、19…下流側クリアランス、51…
エアクリーナ、52…吸入空気、53…吸入ダクト、5
4…スロットルボディ、55…インジェクタ、56…吸
気マニホールド、57…エンジンシリンダ、58…ガ
ス、59…排気マニホールド、60…回路モジュール、
61…吸気温度センサ、62…スロットル角度センサ、
63…酸素濃度計、64…回転速度計、65…コントロ
ールユニット、66…アイドルエアコントロールバル
ブ。1 ... Heating resistor, 2 ... Temperature sensitive resistor, 3 ... Thermistor, 4
... Housing member, 5 ... Metal terminal member, 6 ... Circuit board, 7 ... Cover member, 8 ... Sub passage member, 9 ... Metal base, 10 ... Connector terminal, 11 ... Main passage, 12
... air intake port, 13 ... air flow direction, 14 ... connector, 15 ... forward flow, 16 ... backflow, 17 ... bypass outlet,
18 ... Diversion guide, 19 ... Downstream clearance, 51 ...
Air cleaner, 52 ... Intake air, 53 ... Intake duct, 5
4 ... Throttle body, 55 ... Injector, 56 ... Intake manifold, 57 ... Engine cylinder, 58 ... Gas, 59 ... Exhaust manifold, 60 ... Circuit module,
61 ... Intake air temperature sensor, 62 ... Throttle angle sensor,
63 ... Oxygen concentration meter, 64 ... Tachometer, 65 ... Control unit, 66 ... Idle air control valve.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 33/00 318J (72)発明者 鬼川 博 茨城県ひたちなか市高場2477番地 株式会 社日立カーエンジニアリング内 Fターム(参考) 2F035 AA02 EA00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F02D 33/00 318J (72) Inventor Hiroshi Onikawa 2477 Takaba, Hitachinaka City, Ibaraki Stock Company Hitachi Car Engineering Co., Ltd. Inner F term (reference) 2F035 AA02 EA00
Claims (19)
を構成する副通路構成部材と、 前記副通路に設けられた発熱抵抗体と、を備えた熱式の
流量測定装置であって、 前記副通路を前記主通路に対して傾けて設置し、前記主
通路の上流側から前記副通路の入口が直接に見えないよ
うにした流量測定装置。1. A thermal type flow rate measuring device comprising: a sub-passage forming member that forms a sub-passage inserted in a main passage through which gas flows; and a heating resistor provided in the sub-passage. A flow rate measuring device in which the sub passage is installed so as to be inclined with respect to the main passage so that an inlet of the sub passage cannot be directly seen from an upstream side of the main passage.
いようにしたことを特徴とする流量測定装置。2. The flow measuring device according to claim 1, wherein the heating resistor is not directly visible from the upstream side of the main passage.
熱電流を流して発熱させ、測定対象流体への放熱量から
流体流量に応じた信号を出力するもので、特に、発熱抵
抗体を内装保護し、流体を導くためのバイパス通路部材
や、制御回路基板など各構成部品を支持、或いは内装保
護するためのハウジング部材など、前記流体流路に挿入
される部分の形状が概略長方形断面であり、その寸法が
短辺に対して長辺が3倍以上の、より板状に近い縦横比
を有する流量測定装置において、発熱抵抗体が設置され
るバイパス通路部材の開口部、即ちバイパス入口が、前
記長方形断面を構成するある1面に対して、垂直、或い
は水平ではないある角度を持って開口されていることを
特徴とする流量測定装置。3. A device which is used by being inserted into a fluid flow path to cause a heating current to flow through a resistor to generate heat, and which outputs a signal according to the fluid flow rate from the amount of heat radiated to a fluid to be measured. The shape of the portion to be inserted into the fluid flow path, such as the bypass passage member for protecting the resistor internally and guiding the fluid, the housing member for supporting each component such as the control circuit board, or protecting the interior, is roughly In a flow rate measuring device having a rectangular cross-section and having a length-to-length ratio with respect to the short side being three times or more and having a more plate-like aspect ratio, the opening of the bypass passage member in which the heating resistor is installed, that is, A flow measuring device, wherein the bypass inlet is opened at a certain angle which is not vertical or horizontal with respect to a certain surface constituting the rectangular cross section.
材の開口部、即ちバイパス入口を通過した直後、前記流
体の流れ方向がメイン流路を流れる流体の流れ方向に対
して垂直方向、或いは水平方向ではないある角度を持っ
て流れることを特徴とする流量測定装置。4. The flow direction of fluid according to claim 3, immediately after the fluid has passed through the opening of the bypass passage member, that is, the bypass inlet, and the flow direction of the fluid is vertical or horizontal to the flow direction of the fluid flowing through the main flow path. A flow measuring device characterized by flowing at an angle that is not a direction.
分を通過する流体が、メイン流路を流れる流体の流れ方
向に対して垂直方向、或いは水平方向ではなく、ある角
度を持って流れることを特徴とする流量測定装置。5. The fluid according to claim 3 or 4, wherein the fluid passing through the heating resistor portion flows at a certain angle, not in the vertical or horizontal direction with respect to the flow direction of the fluid flowing in the main flow path. A flow measuring device characterized by.
熱電流を流して発熱させ、測定対象流体への放熱量から
流体流量に応じた信号を出力するもので、特に、発熱抵
抗体を内装保護し、流体を導くためのバイパス通路部材
や、制御回路基板など各構成部品を支持、或いは内装保
護するためのハウジング部材など、前記流体流路に挿入
される部分の形状が概略長方形断面であり、その寸法が
短辺に対して長辺が3倍以上の、より板状に近い縦横比
を有する流量測定装置において、発熱抵抗体が設置され
るバイパス通路部材の開口部、即ちバイパス入口が、前
記長方形断面を構成するある1面に対して、垂直、或い
は水平ではないある角度を持って配置され、且つ、前記
長方形断面を構成するある1面についても、メイン流路
を流れる流体の流れ方向に対して垂直方向、或いは水平
方向ではないある角度、即ち傾きを持って配置されてい
ることを特徴とする流量測定装置。6. A device which is used by inserting it into a fluid flow path to cause a heating current to flow through a resistor to generate heat, and which outputs a signal according to the fluid flow rate from the amount of heat released to the fluid to be measured. The shape of the portion to be inserted into the fluid flow path, such as the bypass passage member for protecting the resistor internally and guiding the fluid, the housing member for supporting each component such as the control circuit board, or protecting the interior, is roughly In a flow rate measuring device having a rectangular cross-section and having a length-to-length ratio with respect to the short side being three times or more and having a more plate-like aspect ratio, the opening of the bypass passage member in which the heating resistor is installed, that is, The bypass inlet is arranged at an angle that is not vertical or horizontal with respect to one surface forming the rectangular cross section, and the one surface forming the rectangular cross section also flows through the main flow path. Fluid flow Flow measuring apparatus characterized by being arranged at an angle, i.e. with an inclination not vertically or horizontally with respect to the direction.
て、電気信号等の入出力を行うコネクタが前記長方形断
面と同じ角度、即ち、平行関係を持って配置されている
ことを特徴とする流量測定装置。7. The connector according to any one of claims 3 to 6, wherein the connectors for inputting and outputting electric signals and the like are arranged at the same angle as the rectangular cross section, that is, in a parallel relationship. Flow rate measuring device.
と、前記制御回路基板を内装保護し、電気信号入出力用
のコネクタを一体化したハウジング部材と、流体検出用
の発熱抵抗体、及び温度補償用の感温抵抗体、更にはサ
ーミスタ式の吸気温度センサ等を内装保護するバイパス
通路部材と、ハウジング部材を閉空間として前記制御回
路基板を保護するためのカバー部材から成り、それぞれ
を重ね合わせることで組立てが可能な積層構造を有し、
且つ組立て後、前記金属ベースの長手方向に対して垂直
方向の断面形状が、短辺に対して長辺が3倍以上の概略
長方形断面を持つ流量測定装置において、他の構成部品
より前記金属ベース部材が最も流体に直接触れる方向に
傾けて取付けられていることを特徴とする流量測定装
置。8. A metal base member for fixing a control circuit board, a housing member for internally protecting the control circuit board, and a connector for electric signal input / output, a heating resistor for fluid detection, and a temperature. It consists of a temperature sensing resistor for compensation, a bypass passage member for internally protecting the thermistor type intake air temperature sensor and the like, and a cover member for protecting the control circuit board with the housing member as a closed space, which are superposed. It has a laminated structure that can be assembled by
In addition, after assembly, in a flow rate measuring device in which the cross-sectional shape of the metal base in the direction perpendicular to the longitudinal direction has a substantially rectangular cross section in which the long side is three times or more the short side, the metal base is better than other components. A flow measuring device, wherein the member is attached so as to be inclined in a direction in which it comes into direct contact with the fluid most.
パス通路内部に設置し、前記感温抵抗体、及び吸気温度
センサをバイパス通路外部に設置したことを特徴とする
流量測定装置。9. The flow rate measuring device according to claim 8, wherein the heating resistor is installed inside the bypass passage, and the temperature sensitive resistor and the intake air temperature sensor are installed outside the bypass passage.
熱抵抗体と感温抵抗体、更に前記吸気温度センサはメイ
ン流路の上流側から流れる順流、下流から流れる逆流の
中に置かれ、前記発熱抵抗体は順流に良く晒される位置
に、前記感温抵抗体は逆流に良く晒される位置に、吸気
温度センサは順流,逆流双方の流れに良く晒される位置
にそれぞれ配置されていることを特徴とする流量測定装
置。10. The heating resistor and the temperature-sensitive resistor according to claim 8, wherein the intake air temperature sensor is placed in a forward flow flowing from an upstream side of the main flow path and a reverse flow flowing from a downstream side of the main flow path. The heating resistor is disposed at a position well exposed to forward flow, the temperature-sensitive resistor is disposed at a position well exposed to backflow, and the intake air temperature sensor is disposed at a position well exposed to both forward and reverse flows. A characteristic flow measurement device.
側から、吸気温度センサ,感温抵抗体,発熱抵抗体の順
に配置されていることを特徴とする流量測定装置。11. A flow rate measuring device according to claim 10, wherein an intake air temperature sensor, a temperature sensitive resistor, and a heat generating resistor are arranged in this order from the upstream side of the main flow path.
おいて、バイパス通路構造が迂回する構造を有し、更に
バイパス通路の出口が、前記金属ベース側に1箇所、前
記バイパス通路部材側に1箇所設けられていることを特
徴とする流量測定装置。12. The bypass passage structure according to any one of claims 8 to 11, wherein the bypass passage structure has a bypass structure, and the outlet of the bypass passage is located at one location on the metal base side and the bypass passage member side. A flow rate measuring device, characterized in that it is provided at one location.
の出口がバイパス通路迂回後のメイン流路の最も上流
側、即ち、構造体の先端部で2箇所に分流していること
を特徴とする流量測定装置。13. The flow rate according to claim 12, wherein the outlet of the bypass passage is divided into two parts at the most upstream side of the main passage after bypassing the bypass passage, that is, at the tip of the structure. measuring device.
イパス通路部材側に設置されたバイパス通路出口が、金
属ベース部材側のバイパス通路出口やバイパス通路入口
に対して下流側にオフセット配置されていることを特徴
とする流量測定装置。14. The bypass passage outlet installed on the side of the bypass passage member according to any one of claims 12 to 13, wherein the bypass passage outlet on the side of the metal base member is offset from the bypass passage outlet on the side of the metal base member or on the downstream side. A flow measuring device characterized by the above.
と、前記制御回路基板を内装保護し、電気信号入出力用
のコネクタを一体化したハウジング部材と、流体検出用
の発熱抵抗体、及び温度補償用の感温抵抗体、更にはサ
ーミスタ式の吸気温度センサ等を内装保護するバイパス
通路部材と、ハウジング部材を閉空間として前記制御回
路基板を保護するためのカバー部材から成り、それぞれ
を重ね合わせることで組立てが可能な積層構造を有し、
且つ組立て後、前記金属ベースの長手方向に対して垂直
方向の断面形状が、短辺に対して長辺が3倍以上の概略
長方形断面を持ち、流体が流通するメイン流路に開けら
れた概略長方形の挿入穴に前記金属ベース部材が流体に
十分晒される位置まで挿入して使用する流量測定装置に
おいて、他の構成部品より前記金属ベース部材が最も流
体に直接触れる方向に傾けて取付けられ、前記金属ベー
ス部材やバイパス部材など、構造体を前記挿入穴から挿
入する際には、挿入穴との必要で且つ十分なクリアラン
スを保ち、ネジ止め等による装着終了時には、前記クリ
アランスが4辺不均等になるように装着されることを特
徴とする流量測定装置。15. A metal base member for fixing a control circuit board, a housing member for internally protecting the control circuit board, and a connector for integrating an electric signal input / output, a heating resistor for detecting a fluid, and a temperature. It consists of a temperature sensing resistor for compensation, a bypass passage member for internally protecting the thermistor type intake air temperature sensor and the like, and a cover member for protecting the control circuit board with the housing member as a closed space, which are superposed. It has a laminated structure that can be assembled by
In addition, after assembly, the metal base has a cross-sectional shape in a direction perpendicular to the longitudinal direction of the metal base, which has a substantially rectangular cross section in which the long side is three times or more the short side, and the cross section is opened in the main channel through which the fluid flows. In a flow rate measuring device that is used by inserting the metal base member into a rectangular insertion hole to a position where the metal base member is sufficiently exposed to fluid, the metal base member is attached so as to be tilted in a direction in which the metal base member comes into direct contact with the fluid most than other components, When inserting a structure such as a metal base member or a bypass member through the insertion hole, maintain a necessary and sufficient clearance with the insertion hole, and at the end of mounting by screwing or the like, the clearance becomes uneven on four sides. A flow rate measuring device, characterized in that it is mounted as described above.
挿入穴とのクリアランスが広く、カバー部材と前記挿入
穴とのクリアランスがほとんど無い状態でメイン流路に
装着されていることを特徴とする流量測定装置。16. The flow rate according to claim 15, wherein the metal base member and the insertion hole have a large clearance and the clearance is almost zero between the cover member and the insertion hole. measuring device.
アランスが広く、下流側2辺のクリアランスがほとんど
無い状態でメイン流路に装着されていることを特徴とす
る流量測定装置。17. The flow rate measuring device according to claim 15, wherein the flow path measuring device is mounted in the main flow path in such a state that a clearance on the upstream side is wide and a clearance on the downstream side is almost zero.
上流側の構造体形状が、丸みを帯びた流線形形状である
ことを特徴とする流量測定装置。18. The flow rate measuring device according to claim 3, wherein the shape of the structure on the most upstream side is a rounded streamlined shape.
れかの流量測定装置を用い、内燃機関の制御を行うこと
を特徴とする内燃機関の制御システム。19. A control system for an internal combustion engine, which controls the internal combustion engine by using the flow rate measuring device according to any one of claims 3 to 18.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001360220A JP2003161652A (en) | 2001-11-27 | 2001-11-27 | Flow rate measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001360220A JP2003161652A (en) | 2001-11-27 | 2001-11-27 | Flow rate measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003161652A true JP2003161652A (en) | 2003-06-06 |
Family
ID=19171077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001360220A Pending JP2003161652A (en) | 2001-11-27 | 2001-11-27 | Flow rate measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003161652A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005038222A1 (en) * | 2003-09-26 | 2005-04-28 | Keihin Corporation | Intake device for internal combustion engine and method of measuring intake air amount |
JP2011252796A (en) * | 2010-06-02 | 2011-12-15 | Denso Corp | Air flow rate measuring device |
-
2001
- 2001-11-27 JP JP2001360220A patent/JP2003161652A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005038222A1 (en) * | 2003-09-26 | 2005-04-28 | Keihin Corporation | Intake device for internal combustion engine and method of measuring intake air amount |
EP1679431A1 (en) * | 2003-09-26 | 2006-07-12 | Keihin Corporation | Intake device for internal combustion engine and method of measuring intake air amount |
US7395700B2 (en) | 2003-09-26 | 2008-07-08 | Keihin Corporation | Intake device for internal combustion engine and method of measuring intake air amount |
CN100458125C (en) * | 2003-09-26 | 2009-02-04 | 株式会社京滨 | Intake device for internal combustion engine and method of measuring intake air amount |
EP1679431A4 (en) * | 2003-09-26 | 2009-04-29 | Keihin Corp | Intake device for internal combustion engine and method of measuring intake air amount |
JP2011252796A (en) * | 2010-06-02 | 2011-12-15 | Denso Corp | Air flow rate measuring device |
US8677811B2 (en) | 2010-06-02 | 2014-03-25 | Denso Corporation | Air flow rate measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5396410B2 (en) | Sensor structure | |
JP5049996B2 (en) | Thermal flow meter | |
JP5178388B2 (en) | Air flow measurement device | |
JP5183164B2 (en) | Flow measuring device | |
JP4929333B2 (en) | Sensor structure | |
JP4416012B2 (en) | Intake air flow rate measuring device | |
CN1072798C (en) | Device for measuring mass of flowing medium | |
JP3709373B2 (en) | Flow measuring device | |
EP1855090A2 (en) | Measurement of the pulsating air mass flow in the intake duct of an internal combustion engine | |
JP4707412B2 (en) | Gas flow measuring device | |
US6298720B1 (en) | Measurement device for measuring the mass of a medium flowing in a line | |
WO2020202722A1 (en) | Physical-quantity detection device | |
JP4836179B2 (en) | Heating resistor type fluid flow measuring device | |
JP5542614B2 (en) | Flow measuring device | |
JP2003161652A (en) | Flow rate measuring device | |
US20010006005A1 (en) | Flow rate measuring apparatus with a flow rate detector protecting structure | |
JP3561219B2 (en) | Heating resistance type flow measurement device | |
JP2009063391A (en) | Intake-system component mounted with heating resistor type air flow rate measuring device | |
JP5462114B2 (en) | Heating resistor type air flow measuring device | |
JP3378833B2 (en) | Heating resistor type air flow measurement device | |
JP5010877B2 (en) | Thermal gas flow measuring device | |
JPH08297039A (en) | Heating element type air flow measuring apparatus | |
JP2001059759A (en) | Exothermic resistance type flow rate measuring apparatus | |
JP2000314646A (en) | Heating resistance-type flow-rate measuring apparatus | |
JPH109921A (en) | Air flow rate measuring apparatus |