JPH11118558A - Air flow rate measuring apparatus - Google Patents

Air flow rate measuring apparatus

Info

Publication number
JPH11118558A
JPH11118558A JP9278758A JP27875897A JPH11118558A JP H11118558 A JPH11118558 A JP H11118558A JP 9278758 A JP9278758 A JP 9278758A JP 27875897 A JP27875897 A JP 27875897A JP H11118558 A JPH11118558 A JP H11118558A
Authority
JP
Japan
Prior art keywords
flow path
air flow
air
flow rate
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9278758A
Other languages
Japanese (ja)
Inventor
Tomoyuki Takiguchi
智之 滝口
Yasushi Kono
泰 河野
Makoto Tsunekawa
誠 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP9278758A priority Critical patent/JPH11118558A/en
Publication of JPH11118558A publication Critical patent/JPH11118558A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for measuring the air flow rate with high accuracy by suppressing disturbance of air flow in a bypath through a simple structure. SOLUTION: A bypath 34 comprises an upstream channel 34a for passing the air from an intake port 31d in one radial direction of an air channel 2, a downstream channel 34b for passing the air in the opposite radial direction to the upstream channel 34a disposed in parallel with the upstream channel 34a on the downstream side thereof, and a channel 34c communicating between the upstream channel 34a and the downstream channel 34b. A corner part 35 facing the joint between the upstream channel 34a and the downstream channel 34b is formed into a smooth concave face having arcuate cross-section. Since generation of vortexes in the air flow passing a heat-sensitive resistor 25 and a heating resistor 26 arranged in the vicinity of the corner part 35 or disturbance of the air flow can be suppressed, fluctuation in the output of air flow rate being detected by the heat-sensitive resistor 25 and the heating resistor 26 can be suppressed and the air flow rate can be detected with high accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気流路内にバイ
パス流路を設け、バイパス流路を流れる空気流量を測定
することにより空気流路を流れる空気流量を測定する空
気流量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow measuring device for measuring a flow rate of air flowing through an air flow path by providing a bypass flow path in an air flow path and measuring the flow rate of air flowing through the bypass flow path.

【0002】[0002]

【従来の技術】従来より、空気流路内にバイパス流路を
設け、バイパス流路内に配設した流量測定素子部により
バイパス流路を流れる空気流量を測定することにより空
気流路を流れる空気流量を測定する空気流量測定装置が
知られている。このようにバイパス流路内に配設した流
量測定素子部により間接的に空気流路の空気流量を測定
するものでは、バイパス流路の形状によっては流量測定
素子部近傍に渦流や空気の疎密等の空気流れの乱れが生
じることにより、流量測定素子部で検出する空気流量の
変動幅が大きくなることがある。実際に空気流路を流れ
る空気流量とバイパス流路内に配設された流量測定素子
部で検出した空気流量との差が大きいと、例えば測定し
た空気流量が制御要因となっている燃料噴射量をエンジ
ン運転状態に応じて最適に制御することができなくな
り、排気ガス中に排出される有害物質が増加するという
問題が生じる。特に、流量測定素子部に発熱抵抗体を用
いる熱式流量測定装置では、発熱抵抗体が微小で流量変
動に対する応答が早いため空気流れの乱れに敏感に応答
する。したがって、空気流れの乱れにより測定流量が変
動しやすい。
2. Description of the Related Art Conventionally, a bypass flow path is provided in an air flow path, and the flow rate of the air flowing through the bypass flow path is measured by a flow rate measuring element disposed in the bypass flow path. BACKGROUND ART An air flow measuring device for measuring a flow rate is known. In this way, the air flow rate in the air flow path is indirectly measured by the flow rate measurement element disposed in the bypass flow path. Depending on the shape of the bypass flow path, eddy currents, air density, etc. may be present in the vicinity of the flow rate measurement element. In some cases, the fluctuation of the air flow detected by the flow measuring element unit becomes large due to the turbulence of the air flow. If the difference between the air flow actually flowing in the air flow passage and the air flow detected by the flow measurement element disposed in the bypass flow passage is large, for example, the fuel injection amount in which the measured air flow is a control factor Cannot be optimally controlled in accordance with the operating state of the engine, resulting in a problem that harmful substances discharged into the exhaust gas increase. Particularly, in the thermal type flow rate measuring device using a heating resistor in the flow rate measuring element portion, the heating resistor is minute and quickly responds to the fluctuation of the flow rate, so that it responds sensitively to the turbulence of the air flow. Therefore, the measured flow rate tends to fluctuate due to turbulence in the air flow.

【0003】そこで特開平8−5428号公報に開示さ
れる空気流量測定装置では、軸方向バイパスと半径方向
バイパスとの接続部において、ボディの角部を円弧状に
形成することにより、バイパス流路内を流れる空気流れ
に渦流や空気の疎密等の乱れが生じることを低減し、測
定流量の変動幅を低減しようとしている。
In the air flow measuring device disclosed in Japanese Patent Application Laid-Open No. Hei 8-5428, the corner of the body is formed in a circular arc shape at the connection between the axial bypass and the radial bypass, so that the bypass flow passage is formed. An attempt is made to reduce turbulence such as eddy currents and air density in an air flow flowing through the inside, thereby reducing the fluctuation range of a measured flow rate.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開平
8−5428号公報に開示される空気流量測定装置で
は、軸方向バイパスに配設した流量測定素子部としての
発熱抵抗体および感温抵抗体に空気流路内の空気が直接
衝突する。したがって、空気流路内の付着力のある異物
が直接発熱抵抗体および感温抵抗体に衝突し各抵抗体に
付着するので、各抵抗体の制御電流が変化し測定流量が
経時変化するという問題がある。
However, in the air flow measuring device disclosed in Japanese Patent Application Laid-Open No. 8-5428, a heating resistor and a temperature-sensitive resistor as flow measuring elements disposed in the axial bypass are used. The air in the air flow path collides directly. Therefore, the adhesive foreign matter in the air flow path directly collides with the heating resistor and the temperature-sensitive resistor and adheres to each resistor, so that the control current of each resistor changes and the measured flow rate changes with time. There is.

【0005】また、種々の吸気管に搭載される空気流量
測定装置を汎用的に用いるには、流速が安定しているダ
クト中心付近にバイパス流路入口があることが望まし
い。L字状のバイパス流路は、バイパス流路入口をダク
ト中心に配置することが困難である。本発明の目的は、
簡単な構成でバイパス流路内の空気流れの乱れを低減
し、高精度に空気流量を測定する空気流量測定装置を提
供することにある。
In order to generally use an air flow measuring device mounted on various intake pipes, it is desirable to have a bypass flow passage inlet near the center of the duct where the flow velocity is stable. In the L-shaped bypass flow passage, it is difficult to arrange the bypass flow passage inlet at the center of the duct. The purpose of the present invention is
It is an object of the present invention to provide an air flow measuring device that has a simple configuration, reduces turbulence in the air flow in a bypass flow path, and accurately measures an air flow.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1記載の
空気流量測定装置によると、U字状に形成されたバイパ
ス流路において、上流流路と連通流路との連通部、なら
びに下流流路と連通流路との連通部の少なくともいずれ
か一方に面するバイパス部材の角部を曲面状に形成して
いる。したがって、バイパス流路を流れる空気流れが円
滑化され、空気流れに渦流や空気の疎密等の乱れが生じ
ることを低減する。したがって、流量測定素子部におい
て高精度に空気流量を検出し、この検出信号に基づき高
精度に空気流量を測定できる。
According to the air flow measuring device according to the first aspect of the present invention, in the U-shaped bypass flow passage, the communication portion between the upstream flow passage and the communication flow passage, and the downstream flow passage. The corner of the bypass member facing at least one of the communicating portions between the flow path and the communication flow path is formed in a curved shape. Therefore, the air flow flowing through the bypass flow path is smoothed, and the occurrence of turbulence such as eddy currents and air density is reduced in the air flow. Therefore, the air flow rate can be detected with high accuracy in the flow rate measuring element section, and the air flow rate can be measured with high accuracy based on the detection signal.

【0007】また、バイパス流路がU字状に形成されて
いるため、空気流路から流入する空気が流量測定素子部
に衝突する前にバイパス部材の内壁に衝突し、付着力の
ある空気中の異物が内壁に付着して除去される。これに
より、空気流路内の異物が流量測定素子部に直接衝突し
て流量測定素子部に付着することを低減するので、測定
流量が経時変化することを防止できる。
Further, since the bypass flow path is formed in a U-shape, the air flowing from the air flow path collides with the inner wall of the bypass member before colliding with the flow rate measuring element portion, and the air in the air having an adhesive force is formed. Foreign matter adheres to the inner wall and is removed. This reduces foreign substances in the air flow path from directly colliding with the flow rate measuring element and adhering to the flow rate measuring element, so that the measured flow rate can be prevented from changing over time.

【0008】さらに、U字状に形成されたバイパス流路
は、バイパス流路入口をダクトの中心近くに配設できる
ので安定した流れを測定することができ、高精度に空気
流量を測定することができる。本発明の請求項2記載の
空気流量測定装置によると、連通流路の上流側および下
流側に形成される角部の両方を曲面状に形成することに
より、バイパス流路を流れる空気流れがさらに円滑化さ
れ、空気流れに渦流や空気の疎密等の乱れが生じること
を低減する。
Further, since the bypass passage formed in a U-shape can arrange the bypass passage entrance near the center of the duct, a stable flow can be measured, and the air flow rate can be measured with high accuracy. Can be. According to the air flow measuring device according to the second aspect of the present invention, by forming both the upstream and downstream corners of the communication flow path in a curved shape, the air flow flowing through the bypass flow path is further increased. It is smoothed and reduces the occurrence of turbulence such as eddies and air density in the air flow.

【0009】本発明の請求項3記載の空気流量測定装置
によると、曲面状に形成されたいずれかの角部近傍に流
量測定素子部を配設することにより、バイパス部材に囲
まれたバイパス流路の奥に流量測定素子部が配設される
ので、空気内の異物が流量測定素子部に付着しにくい。
さらに、空気流れ方向が変わる角部近傍に流量測定素子
部を配設しても、角部が曲面状に形成されているので角
部近傍の空気流れに渦流や空気の疎密等の乱れが生じる
ことを低減している。したがって、高精度に空気流量を
測定することができる。
According to the air flow measuring device according to the third aspect of the present invention, by disposing the flow measuring element in the vicinity of one of the corners formed in a curved surface, the bypass flow surrounded by the bypass member is provided. Since the flow measuring element is disposed in the back of the road, foreign matter in the air is less likely to adhere to the flow measuring element.
Furthermore, even if the flow rate measuring element is arranged near the corner where the air flow direction changes, the air flow near the corner may be disturbed by eddy currents and air density due to the curved corner. That has been reduced. Therefore, the air flow rate can be measured with high accuracy.

【0010】本発明の請求項4記載の空気流量測定装置
によると、流量測定素子部が発熱抵抗体および感温抵抗
体で構成されているので、空気流量の変動に素早く対応
し高精度に空気流量を測定できる。
According to the air flow measuring device according to the fourth aspect of the present invention, since the flow measuring element is composed of the heating resistor and the temperature-sensitive resistor, the air flow can be quickly responded to the fluctuation of the air flow and the air can be precisely measured. The flow rate can be measured.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を示す
複数の実施例を図面に基づいて説明する。 (第1実施例)本発明の第1実施例による空気流量測定
装置を内燃機関の吸気管に取付けた例を図1および図2
に示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention; (First Embodiment) FIGS. 1 and 2 show an example in which an air flow measuring device according to a first embodiment of the present invention is attached to an intake pipe of an internal combustion engine.
Shown in

【0012】図2に示すように、空気流量測定装置10
は、回路モジュール20およびバイパス部材30からな
る。バイパス部材30は吸気管1に設けた取付孔1aに
挿入され、空気流路2内に配設されている。回路モジュ
ール20は吸気管1にボルト29で取付けられている。
回路モジュール20とバイパス部材30とは接着または
溶着で結合されている。
[0012] As shown in FIG.
Consists of a circuit module 20 and a bypass member 30. The bypass member 30 is inserted into a mounting hole 1 a provided in the intake pipe 1 and disposed in the air flow path 2. The circuit module 20 is attached to the intake pipe 1 with bolts 29.
The circuit module 20 and the bypass member 30 are connected by bonding or welding.

【0013】回路モジュール20は回路部および流量測
定素子部を有する。この他に回路モジュール20は、空
気流路2の空気温度を測定する空気温度測定素子として
のサーミスタ27を備えている。回路部は、ハウジング
21、制御回路22、放熱板23、コネクタ24および
カバー28を有し、流量測定素子部は、図1に示す感温
抵抗体25および発熱抵抗体26を有する。
The circuit module 20 has a circuit section and a flow measuring element section. In addition, the circuit module 20 includes a thermistor 27 as an air temperature measuring element for measuring the air temperature in the air flow path 2. The circuit section has a housing 21, a control circuit 22, a heat sink 23, a connector 24, and a cover 28, and the flow measuring element section has a temperature-sensitive resistor 25 and a heating resistor 26 shown in FIG.

【0014】図2に示すように、制御回路22は樹脂製
のハウジング21内に収容されており、制御回路22か
ら発生する熱を放熱する放熱部材としてのアルミ製の放
熱板23に保持されている。アルミではなく他の金属材
で放熱板23を形成してもよい。放熱板23に設けた取
付部23aをボルト29で吸気管1に締付けることによ
り回路モジュール20は吸気管1に取付けられる。回路
モジュール20およびバイパス部材30はモジュール化
されているので、吸気管1に回路モジュール20を取付
けることにより、空気流量測定装置10が吸気管1に取
付けられる。
As shown in FIG. 2, the control circuit 22 is accommodated in a resin housing 21 and is held by an aluminum heat radiating plate 23 as a heat radiating member for radiating heat generated from the control circuit 22. I have. The heat radiating plate 23 may be formed of another metal material instead of aluminum. The circuit module 20 is mounted on the intake pipe 1 by fastening the mounting portion 23 a provided on the heat sink 23 to the intake pipe 1 with a bolt 29. Since the circuit module 20 and the bypass member 30 are modularized, the air flow measuring device 10 is attached to the intake pipe 1 by attaching the circuit module 20 to the intake pipe 1.

【0015】図1および図2に示すように、制御回路2
2は感温抵抗体25、発熱抵抗体26およびサーミスタ
27と支持部材25a、26a、27aを介して電気的
に接続している。制御回路22は、感温抵抗体25およ
び発熱抵抗体26への通電を制御するとともに、後述す
るバイパス流路34を流れる空気流量に応じて感温抵抗
体25および発熱抵抗体26で検出した空気流量の検出
信号、ならびにサーミスタ27で検出した空気温度の検
出信号をコネクタ24から出力する。
As shown in FIGS. 1 and 2, the control circuit 2
2 is electrically connected to the temperature-sensitive resistor 25, the heating resistor 26, and the thermistor 27 via support members 25a, 26a, 27a. The control circuit 22 controls energization of the temperature-sensitive resistor 25 and the heat-generating resistor 26, and detects air detected by the temperature-sensitive resistor 25 and the heat-generating resistor 26 in accordance with the flow rate of air flowing through a bypass passage 34 described later. The detection signal of the flow rate and the detection signal of the air temperature detected by the thermistor 27 are output from the connector 24.

【0016】感温抵抗体25および発熱抵抗体26は、
バイパス流路34の上流流路34aと後述する連通流路
34cとの連通部近傍に配設されている。感温抵抗体2
5は、発熱抵抗体26に触れる空気の温度を測定するた
め、発熱抵抗体26の放熱の影響を受けない範囲で発熱
抵抗体26の近くに設置することが好ましい。バイパス
部材30は、外管31と、外管31と一体に成形された
ベンチュリ管32とを有する。外管31およびベンチュ
リ管32は空気流れに平行に配置されている。ベンチュ
リ管32は外管31の回路モジュール20と反対側の底
部に位置し、ベンチュリ管32から回路モジュール20
に向かって隔壁33が延びている。隔壁33は、後述す
る上流流路34aと下流流路34bとを仕切っている。
The temperature-sensitive resistor 25 and the heating resistor 26 are
The bypass passage 34 is provided near a communicating portion between an upstream passage 34a and a communication passage 34c described later. Temperature sensitive resistor 2
In order to measure the temperature of the air that touches the heating resistor 26, it is preferable to install the heater 5 near the heating resistor 26 within a range that is not affected by the heat radiation of the heating resistor 26. The bypass member 30 has an outer tube 31 and a venturi tube 32 formed integrally with the outer tube 31. The outer tube 31 and the venturi tube 32 are arranged parallel to the air flow. The Venturi tube 32 is located at the bottom of the outer tube 31 on the side opposite to the circuit module 20, and is connected to the circuit module 20 from the Venturi tube 32.
The partition wall 33 extends toward. The partition wall 33 partitions an upstream channel 34a and a downstream channel 34b, which will be described later.

【0017】バイパス流路34は、外管31の内壁およ
び隔壁33で画成されている。外管31の内壁面は、空
流流路2の横断面方向に広がる上流側平面31aと、上
流側平面31aの下流側に位置し空流流路2の横断面方
向に広がる下流側平面31bと、バイパス流路34の底
に位置し、上流側平面31aと上流側平面31aとのそ
れぞれに垂直な底平面31cとを有する。上流側平面3
1aと底平面31cとを接続する角部35は断面円弧状
の滑らかな凹曲面に形成されており、下流側平面31b
と底平面31cとが交差する角部36は直角に形成され
ている。滑らかな凹曲面であれば、角部35の断面形状
は円弧状に限るものではない。隔壁33は薄板状に形成
されており、連通流路34c側の端部は凸曲面状に丸め
られている。
The bypass passage 34 is defined by the inner wall of the outer tube 31 and the partition wall 33. The inner wall surface of the outer tube 31 has an upstream flat surface 31a extending in the cross-sectional direction of the air flow channel 2 and a downstream flat surface 31b located downstream of the upstream flat surface 31a and expanding in the cross-sectional direction of the air flow channel 2. And a bottom plane 31c located at the bottom of the bypass flow path 34 and perpendicular to each of the upstream plane 31a and the upstream plane 31a. Upstream plane 3
The corner 35 connecting the first flat surface 1a and the bottom flat surface 31c is formed in a smooth concave curved surface having an arc-shaped cross section, and the downstream flat surface 31b
36, which intersects with the bottom plane 31c, are formed at right angles. If it is a smooth concave curved surface, the cross-sectional shape of the corner portion 35 is not limited to an arc shape. The partition wall 33 is formed in a thin plate shape, and the end on the side of the communication flow path 34c is rounded into a convex curved shape.

【0018】バイパス流路34は、吸気入口31dから
流入した空気が空気流路2の一方の径方向に流れる上流
流路34aと、上流流路34aの下流側に上流流路34
aと平行に設けられ上流流路34aと反対の径方向に空
気が流れる下流流路34bと、上流流路34aと下流流
路34bとを連通するバイパス流路34の屈曲部として
の連通流路34cとを有する。上流流路34aから下流
流路34bに向かう空気流れは、連通流路34cで流れ
方向が変わる。
The bypass flow passage 34 has an upstream flow passage 34a in which air flowing from the intake inlet 31d flows in one radial direction of the air flow passage 2, and an upstream flow passage 34 downstream of the upstream flow passage 34a.
and a communication flow path as a bent portion of a bypass flow path which connects the upstream flow path and the downstream flow path, the flow path being provided in parallel with the downstream flow path and flowing air in a radial direction opposite to the upstream flow path a. 34c. The flow direction of the air flowing from the upstream flow path 34a toward the downstream flow path 34b changes in the communication flow path 34c.

【0019】上流流路34aの流路面積は下流流路34
bの流路面積よりも小さいので、上流流路34aを流れ
る空気流れの流速は下流流路34bを流れる空気流れの
流速よりも速い。前述したように、感温抵抗体25およ
び発熱抵抗体26は上流流路34aと連通流路34cと
の連通部近傍、すなわちバイパス流路34内の流速が速
い箇所に配設されているので、感温抵抗体25および発
熱抵抗体26で高精度に空気流量を検出し、この検出信
号に基づいて高精度に空気流量を測定できる。
The flow passage area of the upstream flow passage 34a is
b, the flow velocity of the air flow flowing through the upstream flow path 34a is faster than the flow velocity of the air flow flowing through the downstream flow path 34b. As described above, since the temperature-sensitive resistor 25 and the heat-generating resistor 26 are disposed near the communication portion between the upstream flow path 34a and the communication flow path 34c, that is, at a location where the flow velocity is high in the bypass flow path 34, The air flow rate can be detected with high accuracy by the temperature-sensitive resistor 25 and the heating resistor 26, and the air flow rate can be measured with high accuracy based on the detection signal.

【0020】次に、空気流量測定装置10の作動につい
て図1に基づいて説明する。吸気流路2から外管31の
吸気入口31dに流入した空気は、バイパス流路34の
上流流路34aに向かう流れと、ベンチュリ管32内の
ベンチュリ流路32aに向かう流れとに別れる。上流流
路34aを流れる空気流れは、凹曲面状の角部35に沿
って滑らかに連通流路34cに流れる。連通流路34c
から下流流路34bに流れる空気流れは、ベンチュリ管
32の下流側でベンチュリ流路32aを通過した空気と
合流し、吸気出口31eから空気流路2に流出する。ベ
ンチュリ管32の下流側は空気の流速が増加するので負
圧が発生する。この負圧によりバイパス流路34の空気
が吸引されバイパス流路34内の空気の流速が速くな
る。
Next, the operation of the air flow measuring device 10 will be described with reference to FIG. The air flowing from the intake passage 2 into the intake inlet 31 d of the outer pipe 31 is divided into a flow toward the upstream passage 34 a of the bypass passage 34 and a flow toward the Venturi passage 32 a in the Venturi tube 32. The air flow flowing in the upstream flow path 34a smoothly flows to the communication flow path 34c along the concave curved corner 35. Communication channel 34c
The airflow flowing from the airflow to the downstream flow path 34b merges with the air passing through the venturi flow path 32a on the downstream side of the venturi pipe 32, and flows out to the air flow path 2 from the intake outlet 31e. On the downstream side of the Venturi tube 32, a negative pressure is generated because the flow velocity of the air increases. The air in the bypass passage 34 is sucked by the negative pressure, and the flow velocity of the air in the bypass passage 34 is increased.

【0021】発熱抵抗体26に供給する電流値から算出
される発熱抵抗体26の温度と感温抵抗体25で検出す
る空気温度との差が一定になるように制御回路22で発
熱抵抗体26に供給する電流値を制御し、制御回路22
からこの電流値を流量検出信号として出力する。ここ
で、第1実施例の空気流量測定装置10の効果を図4に
示す比較例と比較して説明する。
The control circuit 22 controls the heating resistor 26 so that the difference between the temperature of the heating resistor 26 calculated from the current value supplied to the heating resistor 26 and the air temperature detected by the temperature-sensitive resistor 25 becomes constant. Control the current value supplied to the
Output this current value as a flow rate detection signal. Here, the effect of the air flow measuring device 10 of the first embodiment will be described in comparison with a comparative example shown in FIG.

【0022】比較例では、連通流路34cの上流側およ
び下流側に形成される二箇所の角部42、43がいずれ
も平面同士が交差した直角に形成されている。これ以外
の構成は第1実施例と同一である。したがって、感温抵
抗体25および発熱抵抗体26が配設されている角部4
2近傍において、空気流れに渦流や空気の疎密等の乱れ
が生じやすい。この空気流れの乱れにより、図3に示す
ように、空気流量が増加するにしたがい感温抵抗体25
および発熱抵抗体26で検出される空気流量の出力の変
動幅が大きくなる。
In the comparative example, two corners 42 and 43 formed on the upstream side and the downstream side of the communication channel 34c are both formed at right angles where planes intersect. The other configuration is the same as that of the first embodiment. Therefore, the corner 4 where the temperature-sensitive resistor 25 and the heat-generating resistor 26 are disposed is provided.
In the vicinity of 2, the air flow is likely to be disturbed such as a vortex or air density. Due to the turbulence of the air flow, as shown in FIG.
In addition, the fluctuation range of the output of the air flow rate detected by the heating resistor 26 increases.

【0023】これに対し第1実施例の空気流量測定装置
10では、感温抵抗体25および発熱抵抗体26が配設
されている近傍に位置する角部35が凹曲面状に形成さ
れているので、空気流れに生じる渦流や空気の疎密等の
乱れが抑制される。したがって、空気流量が増加しても
比較例に比べ感温抵抗体25および発熱抵抗体26で検
出される空気流量の出力の変動幅が小さいので、感温抵
抗体25および発熱抵抗体26で空気流量を高精度に検
出し、この検出信号に基づいて空気流量を高精度に測定
できる。
On the other hand, in the air flow measuring device 10 of the first embodiment, the corner 35 located near the position where the temperature-sensitive resistor 25 and the heat-generating resistor 26 are disposed is formed in a concave curved surface. Therefore, turbulence such as a vortex generated in the air flow and air density is suppressed. Therefore, even when the air flow rate increases, the fluctuation range of the output of the air flow rate detected by the temperature-sensitive resistor 25 and the heating resistor 26 is smaller than that in the comparative example. The flow rate can be detected with high accuracy, and the air flow rate can be measured with high accuracy based on the detection signal.

【0024】第1実施例では、空気流路2内の空気温度
を検出するサーミスタ27を備えているが、サーミスタ
を設置しない構成としてもよい。 (第2実施例)本発明の第2実施例を図5に示す。第1
実施例と実質的に同一構成部分には同一符号を付す。
In the first embodiment, the thermistor 27 for detecting the temperature of the air in the air flow path 2 is provided. However, a configuration without the thermistor may be adopted. (Second Embodiment) FIG. 5 shows a second embodiment of the present invention. First
Components that are substantially the same as those in the embodiment are denoted by the same reference numerals.

【0025】第2実施例では、連通流路34cの上流側
に形成され近傍に感温抵抗体25および発熱抵抗体26
が配設される角部52だけでなく、連通流路34cの下
流側に形成される角部53も円弧状の凹曲面に形成され
ている。したがって、第1実施例よりもバイパス流路3
4内を流れる空気流れに渦流や空気の疎密等の乱れが生
じることが抑制されるので、感温抵抗体25および発熱
抵抗体26で検出される空気流量の出力の変動幅がさら
に減少し、空気流量を高精度に測定できる。
In the second embodiment, the temperature-sensitive resistor 25 and the heat-generating resistor 26
The corner 53 formed downstream of the communication flow path 34c as well as the corner 52 at which is disposed is formed in an arcuate concave curved surface. Therefore, the bypass flow path 3 is larger than in the first embodiment.
Since the turbulence such as the vortex and the density of the air is suppressed from occurring in the air flow flowing through the inside 4, the fluctuation range of the output of the air flow rate detected by the temperature-sensitive resistor 25 and the heating resistor 26 is further reduced, Air flow rate can be measured with high accuracy.

【0026】以上説明した上記複数の実施例では、少な
くとも感温抵抗体25および発熱抵抗体26が近傍に配
設される角部を円弧状の凹曲面に形成したことにより、
感温抵抗体25および発熱抵抗体26を流れる空気流れ
に渦流や空気の疎密等の乱れが生じることが抑制され
る。したがって、バイス流路34内を流れる空気流量を
測定することにより空気流路2を流れる空気流量を高精
度に測定することができる。
In the embodiments described above, at least the corners where the temperature-sensitive resistor 25 and the heat-generating resistor 26 are disposed in the vicinity are formed in an arcuate concave curved surface.
The turbulence such as eddy currents and air density is suppressed from occurring in the airflow flowing through the temperature-sensitive resistor 25 and the heating resistor 26. Therefore, by measuring the air flow rate flowing in the vise flow path 34, the air flow rate flowing in the air flow path 2 can be measured with high accuracy.

【0027】さらに、バイス流路34がU字状に形成さ
れているので、空気流路2内に含まれる付着力のある異
物が感温抵抗体25および発熱抵抗体26に直接衝突せ
ず、隔壁33に衝突して付着するので、感温抵抗体25
および発熱抵抗体26に異物が付着することを低減でき
る。したがって、感温抵抗体25および発熱抵抗体26
に異物が付着することを抑制できるので、発熱温度が変
化し流量出力が経時変化することを低減できる。
Further, since the vise flow path 34 is formed in a U-shape, the foreign matter having an adhesive force contained in the air flow path 2 does not directly collide with the temperature-sensitive resistor 25 and the heat-generating resistor 26. Since it collides with and adheres to the partition wall 33, the temperature-sensitive resistor 25
In addition, the adhesion of foreign matter to the heating resistor 26 can be reduced. Therefore, the temperature-sensitive resistor 25 and the heating resistor 26
Since it is possible to suppress the foreign matter from adhering to the surface, it is possible to reduce a change in the flow rate output with time due to a change in the heat generation temperature.

【0028】さらに、バイパス流路入口をダクトの中心
近くに配設できるので安定した流れを測定することがで
き、高精度に空気流量を測定することができる。上記複
数の実施例では、連通流路34cの上流側に感温抵抗体
25および発熱抵抗体26を配設したが、連通流路34
cの下流側に配設してもよい。この場合、連通流路34
cの下流側に位置する角部は円弧状の滑らかな凹曲面に
形成される。連通流路34cの上流側に位置する角部は
直角または凹曲面状のいずれの形状に形成されていても
よい。
Further, since the bypass flow path inlet can be arranged near the center of the duct, a stable flow can be measured, and the air flow rate can be measured with high accuracy. In the above embodiments, the temperature-sensitive resistor 25 and the heating resistor 26 are disposed on the upstream side of the communication channel 34c.
It may be arranged downstream of c. In this case, the communication channel 34
The corner located on the downstream side of c is formed into a circular arc-shaped smooth concave curved surface. The corner located on the upstream side of the communication flow path 34c may be formed in any shape of a right angle or a concave curved surface.

【0029】また凹曲面状に形成された角部の近傍では
なく、バイパス流路内であればどの位置に感温抵抗体2
5および発熱抵抗体26を配設してもよい。また上記複
数の実施例では、薄板状の隔壁33の連通流路34c側
端部を丸めて凸曲面状に形成したが、隔壁の厚みが厚い
場合、隔壁の連通流路34c側端部の上流側および下流
側に形成される凸状の角部の内、感温抵抗体25および
発熱抵抗体26が近傍に配設される角部を凸曲面状に形
成することが望ましい。
Further, the temperature-sensitive resistor 2 may be located at any position in the bypass flow path, not in the vicinity of the corner formed in the concave curved shape.
5 and the heating resistor 26 may be provided. Further, in the above-described plurality of embodiments, the end of the thin plate-like partition 33 on the side of the communication channel 34c is rounded to form a convex curved surface. However, when the thickness of the partition is thick, the upstream of the end of the partition 33 on the side of the communication channel 34c. It is desirable that, of the convex corners formed on the side and the downstream side, the corners where the temperature-sensitive resistor 25 and the heating resistor 26 are disposed in the vicinity are formed in a convex curved shape.

【0030】本発明は、内燃機関の空気流量を測定する
装置に限定されず、種々の空気流路を流れる空気流量を
測定する装置として利用できる。
The present invention is not limited to an apparatus for measuring the air flow rate of an internal combustion engine, but can be used as an apparatus for measuring an air flow rate flowing through various air flow paths.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による空気流量測定装置を
吸気管に取付けた状態を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a state in which an air flow measuring device according to a first embodiment of the present invention is attached to an intake pipe.

【図2】図1のII方向矢視図である。FIG. 2 is a view in the direction of arrow II in FIG. 1;

【図3】第1実施例および比較例の流量と出力変動幅と
の関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a flow rate and an output fluctuation width in the first embodiment and a comparative example.

【図4】第1実施例の比較例を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a comparative example of the first embodiment.

【図5】本発明の第2実施例による空気流量測定装置を
吸気管に取付けた状態を示す縦断面図である。
FIG. 5 is a longitudinal sectional view showing a state in which an air flow measuring device according to a second embodiment of the present invention is attached to an intake pipe.

【符号の説明】[Explanation of symbols]

1 吸気管 2 空気流路 10 空気流量測定装置 20 回路モジュール 22 制御回路 23a 取付部 25 感温抵抗体 26 発熱抵抗体 27 サーミスタ 30 バイパス部材 31 外管 32 ベンチュリ管 33 隔壁 34 バイパス流路 34a 上流流路 34b 下流流路 34c 連通流路 35、36、52、53 角部 DESCRIPTION OF SYMBOLS 1 Intake pipe 2 Air flow path 10 Air flow measuring device 20 Circuit module 22 Control circuit 23a Attachment part 25 Temperature sensitive resistor 26 Heating resistor 27 Thermistor 30 Bypass member 31 Outer pipe 32 Venturi pipe 33 Partition wall 34 Bypass flow path 34a Upstream flow Road 34b Downstream flow path 34c Communication flow path 35, 36, 52, 53 Corner

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 空気流路を流れる空気流量を測定する空
気流量測定装置であって、 前記空気流路内に配設されるバイパス部材であって、前
記空気流路内を流れる空気の一部が流入するU字状のバ
イパス流路を形成するバイパス部材と、 前記バイパス流路内に配設される流量測定素子部と、 前記流量測定素子部と電気的に接続し、前記流量測定素
子部で検出した空気流量の検出信号を出力する制御回路
とを備え、 前記バイパス流路は、前記空気流路の一方の径方向に空
気が流れる上流流路と、前記上流流路の下流側に設けら
れ前記上流流路と反対の径方向に空気が流れる下流流路
と、前記上流流路と前記下流流路とを連通する連通流路
とを有し、前記上流流路と前記連通流路との連通部、な
らびに前記下流流路と前記連通流路との連通部の少なく
ともいずれか一方に面する前記バイパス部材の角部を曲
面状に形成することを特徴とする空気流量測定装置。
1. An air flow measuring device for measuring an air flow rate flowing through an air flow path, a bypass member disposed in the air flow path, and a part of the air flowing through the air flow path. A bypass member that forms a U-shaped bypass flow path into which a fluid flows, a flow rate measurement element section disposed in the bypass flow path, and an electrical connection with the flow rate measurement element section, wherein the flow rate measurement element section A control circuit that outputs a detection signal of the air flow rate detected in the above, wherein the bypass flow path is provided on an upstream flow path through which air flows in one radial direction of the air flow path, and on a downstream side of the upstream flow path. A downstream flow path in which air flows in a radial direction opposite to the upstream flow path, and a communication flow path that communicates the upstream flow path and the downstream flow path, the upstream flow path and the communication flow path And a small number of communication parts between the downstream flow path and the communication flow path. Ku even air flow rate measuring apparatus characterized by forming the corners of the bypass member facing either a curved surface.
【請求項2】 前記連通流路の上流側および下流側に位
置する前記角部の両方を曲面状に形成することを特徴と
する請求項1記載の空気流量測定装置。
2. The air flow measuring device according to claim 1, wherein both the corners located on the upstream side and the downstream side of the communication flow path are formed in a curved shape.
【請求項3】 曲面状に形成されたいずれかの前記角部
近傍に前記流量測定素子部を配設することを特徴とする
請求項1または2記載の空気流量測定装置。
3. The air flow measuring device according to claim 1, wherein the flow measuring element is provided near one of the corners formed in a curved shape.
【請求項4】 前記流量測定素子部は、発熱抵抗体およ
び感温抵抗体を有することを特徴とする請求項1、2ま
たは3記載の空気流量測定装置。
4. The air flow measuring device according to claim 1, wherein the flow measuring element has a heating resistor and a temperature-sensitive resistor.
JP9278758A 1997-10-13 1997-10-13 Air flow rate measuring apparatus Pending JPH11118558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9278758A JPH11118558A (en) 1997-10-13 1997-10-13 Air flow rate measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9278758A JPH11118558A (en) 1997-10-13 1997-10-13 Air flow rate measuring apparatus

Publications (1)

Publication Number Publication Date
JPH11118558A true JPH11118558A (en) 1999-04-30

Family

ID=17601787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9278758A Pending JPH11118558A (en) 1997-10-13 1997-10-13 Air flow rate measuring apparatus

Country Status (1)

Country Link
JP (1) JPH11118558A (en)

Similar Documents

Publication Publication Date Title
KR100402728B1 (en) Heating resistance flow measurement device and internal combustion engine control system using the same
JP5049996B2 (en) Thermal flow meter
JP3783896B2 (en) Air flow measurement device
JP3758111B2 (en) Air flow measurement device
JP3292817B2 (en) Thermal flow sensor
JP4169803B2 (en) Measuring device for measuring the mass of a flowing medium
JPH0988658A (en) Air fuel measuring device
US6612167B2 (en) Air flow meter having turbulence reduction member
JP2005201684A (en) Measuring apparatus for air flow rate
JP2003315126A (en) Air flow meter
WO2002103301A1 (en) Heating resistor flow rate measuring instrument
JPH085427A (en) Heating resistance type air flow rate measuring apparatus
JP2003090750A (en) Flow rate/flow velocity measuring apparatus
JPH11118558A (en) Air flow rate measuring apparatus
JP3561219B2 (en) Heating resistance type flow measurement device
JP6674917B2 (en) Thermal flow meter
JP3378833B2 (en) Heating resistor type air flow measurement device
JP3443324B2 (en) Flow measurement device and air cleaner
JPH11229979A (en) Air cleaner
JP3975556B2 (en) Air cleaner
JPH06288805A (en) Air flowmeter
JPH0943020A (en) Heating resistance-type flow-rate measuring apparatus
JP2001033288A (en) Air flow rate measuring device
JP2001059759A (en) Exothermic resistance type flow rate measuring apparatus
JPH08297039A (en) Heating element type air flow measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060406