JP2001099688A - Heating resistance type apparatus for measuring air flow rate - Google Patents

Heating resistance type apparatus for measuring air flow rate

Info

Publication number
JP2001099688A
JP2001099688A JP2000254272A JP2000254272A JP2001099688A JP 2001099688 A JP2001099688 A JP 2001099688A JP 2000254272 A JP2000254272 A JP 2000254272A JP 2000254272 A JP2000254272 A JP 2000254272A JP 2001099688 A JP2001099688 A JP 2001099688A
Authority
JP
Japan
Prior art keywords
flow path
sub
passage
resistance type
type air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000254272A
Other languages
Japanese (ja)
Other versions
JP3782650B2 (en
Inventor
Shinya Igarashi
信弥 五十嵐
Chihiro Kobayashi
千尋 小林
Hiroshi Hirayama
平山  宏
Takayuki Saito
孝行 斉藤
Nobukatsu Arai
信勝 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2000254272A priority Critical patent/JP3782650B2/en
Publication of JP2001099688A publication Critical patent/JP2001099688A/en
Application granted granted Critical
Publication of JP3782650B2 publication Critical patent/JP3782650B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating resistance type apparatus for measuring air flow rate which can reduce costs and has a superior fitness in an internal combustion engine. SOLUTION: A sub air path is integrally formed to part of a module, so that the module singly provides all necessary functions for the heating resistance type apparatus for measuring air flow rate. The module of the apparatus of one kind can be set to every engine. Costs can be reduced including a system cost of an internal combustion engine. Moreover, the module can be set to, e.g. an air cleaner or the like of a suction system. A heating resistance type air flowmeter of a superior fitness can be provided accordingly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の吸気系
を構成してその吸入空気流量を測定する空気流量測定装
置に係り、特に自動車のエンジンに吸入される空気流量
を測定するのに適する発熱抵抗式空気流量測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow measuring device for measuring an intake air flow rate of an intake system of an internal combustion engine and particularly suitable for measuring an air flow rate taken into an automobile engine. The present invention relates to a heating resistance type air flow measuring device.

【0002】[0002]

【従来の技術】本発明に最も近い公知例として、特許公
報平4−75385号記載の空気流量計がある。しかし、特許
公報平4−75385号では、主流路,副流路及び回路部の取
付固定法については開示されておらず、また、副流路が
主流路内をブリッジ状に両端支持される構造となってい
るため、本発明の第一の目的である回路部と副流路部を
一体のモジュール化し、主流路の大きさによらず標準化
したモジュールを種々の内燃機関に適用可能な構造とは
なっていない。また、副流路の構造が複雑になるため計
測精度の劣化が懸念され、数部品を結合して形成する必
要が生じるためコストが高くなること等から実用化に適
するものには至っていない。さらに、主流路が吸気系の
異なる位置に配置されることによる環境の変化への対応
やモジュールと主流路の取付ばらつきへの対応について
十分考慮した構造とはなっていない。
2. Description of the Related Art An air flow meter described in Japanese Patent Application Laid-Open No. 4-75385 is a known example closest to the present invention. However, Japanese Patent Application Laid-Open No. 4-75385 does not disclose a method for mounting and fixing the main flow path, the sub flow path, and the circuit portion. Therefore, the first object of the present invention is to integrate the circuit section and the sub flow path section into an integrated module, and to have a structure in which a standardized module can be applied to various internal combustion engines regardless of the size of the main flow path. Not. In addition, the structure of the sub flow path becomes complicated, and there is a concern that the measurement accuracy may be degraded. Further, since it is necessary to form several parts by combining them, the cost increases, and the like, so that they are not suitable for practical use. Furthermore, the structure does not sufficiently take into account the response to environmental changes due to the main flow path being arranged at a different position in the intake system, and the response to the mounting variation between the module and the main flow path.

【0003】[0003]

【発明が解決しようとする課題】本発明は、発熱抵抗式
空気流量測定装置の最大の課題である内燃機関のシステ
ムコストの低減を達成するために、回路部と副流路部を
一体化したモジュールに発熱抵抗式空気流量測定装置の
ほとんどの機能を持たせ、そのモジュールをひとつの製
品として取り扱えるようにしたものである。また、これ
を真に実用化可能とするために、小形,軽量化,環境変
化や取付ばらつきによる計測精度悪化の低減を図り、さ
らに取り扱い性の向上を図ったものである。
SUMMARY OF THE INVENTION According to the present invention, a circuit section and an auxiliary flow path section are integrated in order to reduce the system cost of an internal combustion engine, which is the greatest problem of a heating resistance type air flow measuring apparatus. The module has most of the functions of a heating resistance type air flow measurement device so that the module can be handled as a single product. Further, in order to make this practically practical, the size and weight are reduced, the measurement accuracy is degraded due to environmental changes and mounting variations, and the handling is further improved.

【0004】[0004]

【課題を解決するための手段】内燃機関のシステムコス
トを低減するために、発熱抵抗式空気流量測定装置のコ
スト低減と他の吸気系部品との一体化によるシステムの
部品点数の削減を図っている。まず、回路部と副流路部
を一体化したモジュールとすることによって、比較的コ
ストの高い流量計ボディを単純管路である主流路と主流
路の壁面に設けた穴と回路の固定面で構成し、大幅なコ
スト低減を可能とした。また、副流路を構成する部品の
形状も単純化及び小型化し、回路部との一体化も容易と
し、回路部と副流路部を結合する部品の一体化を図り空
気流量測定装置のコスト低減を達成した。さらに、流量
計ボディの形状が単純化されたため、流量計ボディを別
部材で作成せず他の吸気系部品と一体に形成することを
可能とし、システムの部品点数を削減した。また、主流
路の設定される位置や主流路の大きさが変わっても標準
化したモジュールを適用可能としている。
In order to reduce the system cost of an internal combustion engine, the cost of a heating resistance type air flow measuring device is reduced and the number of components of the system is reduced by integration with other intake system components. I have. First, by using a module in which the circuit section and the sub-flow path section are integrated, a relatively expensive flowmeter body can be mounted on the main flow path, which is a simple conduit, and with holes provided in the wall of the main flow path and the fixing surface of the circuit. With this configuration, significant cost reductions have been made possible. In addition, the shape of the components constituting the sub flow path is simplified and reduced in size, the integration with the circuit section is facilitated, and the components connecting the circuit section and the sub flow path section are integrated to reduce the cost of the air flow measurement device. Reduction achieved. Furthermore, since the shape of the flowmeter body has been simplified, the flowmeter body can be formed integrally with other intake system components without being formed as a separate member, thereby reducing the number of system components. Further, even if the position where the main flow path is set or the size of the main flow path changes, a standardized module can be applied.

【0005】小形・軽量化のためには、副流路をその機
能を損なうことなく、副流路形状の単純化,曲がり流路
による通路全長の維持、感温抵抗体の副流路の直角曲が
り部への配置、副流路の主流方向に垂直な第2通路を主
流方向より主流と垂直な方向が長い断面形状とすること
などで副流路の主流方向長さを低減し、副流路の主流方
向に垂直な第2通路も短く抑えて副流路を構成する部材
を小形・軽量化するとともに、主流路中の副流路構成部
材の占める割合を小さくし、副流路形状も圧力損失を生
じにくくすることで主流路の断面積を大きくせずにすむ
構造として主流路の小型・軽量化を可能としている。ま
た、副流路を挿入するための主流路壁面の穴は、副流路
を構成する部材の幅と長さの比を大きくしないようにし
て径の小さい円形とすることを可能として、挿入穴の形
成を容易化し、回路の小型化に対応できるようにした。
In order to reduce the size and weight, the sub flow path is simplified without impairing its function, the shape of the sub flow path is maintained, the entire length of the sub flow path is maintained by a curved flow path, and the sub flow path of the temperature-sensitive resistor is formed at a right angle. The length in the main flow direction of the sub flow path is reduced by disposing the second flow path perpendicular to the main flow direction of the sub flow path in a cross-sectional shape longer in the direction perpendicular to the main flow direction than in the main flow direction. The second passage perpendicular to the main flow direction of the passage is also kept short to reduce the size and weight of the member constituting the sub flow passage, reduce the proportion of the sub flow passage constituting member in the main flow passage, and reduce the shape of the sub flow passage. By making the pressure loss less likely to occur, it is possible to reduce the size and weight of the main flow path as a structure that does not increase the cross-sectional area of the main flow path. Also, the hole in the main flow path wall surface for inserting the sub flow path can be formed into a circular shape having a small diameter without increasing the ratio of the width to the length of the member forming the sub flow path. Simplifies the formation of the circuit and can be adapted to miniaturization of the circuit.

【0006】環境変化への対応としては、主流路内の空
気の流れが吸気系の位置によって変化することへの対応
と、空気流量測定装置の置かれる位置による温度変化へ
の対応を図っている。主流路中に脈動流が生じることに
よる計測誤差に対しては、副流路をL字形の曲がり流路
とし、主流方向に平行な第1通路と垂直な第2通路の長
さの比を最適化しており、逆流の発生に対しては、副流
路の出口開口面を主流方向と平行な面に形成し、出口部
の上流にひさし状の突起を設けている。主流路の偏流に
よる計測誤差に対しては、副流路の入口開口面を受皿状
とし、出口上流に傾斜面を設けるとともに、主流路中の
副流路の出入口の配置を最適化している。主流路の乱
流,旋回流に対しては、副流路の全長を十分長くし、第
1通路の断面積に対して第2通路の断面積を大きくする
ことを可能とし、出口上流に両側に壁のある傾斜面を設
けている。温度変化に対しては、吸入空気の温度を計測
する感温抵抗体をベース部材から離れた位置で副流路の
直角曲がり部の内側コーナの近くに固定し、発熱抵抗体
は感温抵抗体よりもベース部材に近い位置に固定してい
る。また、発熱抵抗体の固定位置による計測精度の悪化
を防止するために、副流路の入口開口部の受皿状の底面
と第1通路が作るコーナから発熱抵抗体の間隔を適正化
している。
In order to cope with environmental changes, it is necessary to cope with changes in the flow of air in the main flow path depending on the position of the intake system and to cope with temperature changes depending on the position of the air flow measuring device. . For measurement errors caused by pulsating flow in the main flow path, the sub flow path is an L-shaped curved flow path, and the ratio of the length of the first passage parallel to the main flow direction and the length of the second passage perpendicular to the main flow direction is optimized. To prevent backflow, the outlet opening surface of the sub flow path is formed in a plane parallel to the main flow direction, and an eave-shaped projection is provided upstream of the outlet portion. With respect to the measurement error due to the drift of the main flow path, the inlet opening surface of the sub flow path is formed as a saucer, an inclined surface is provided upstream of the outlet, and the arrangement of the entrance and exit of the sub flow path in the main flow path is optimized. With respect to the turbulent flow and swirling flow of the main flow path, the total length of the sub flow path is made sufficiently long, so that the cross sectional area of the second flow path can be made larger than the cross sectional area of the first flow path. There is an inclined surface with a wall. For temperature changes, a temperature-sensitive resistor that measures the temperature of the intake air is fixed near the inner corner of the right-angle bend of the sub flow path at a position away from the base member, and the heating resistor is a temperature-sensitive resistor It is fixed at a position closer to the base member. Further, in order to prevent the measurement accuracy from deteriorating due to the fixing position of the heating resistor, the interval between the heating resistor and the corner formed by the first passage and the bottom surface of the receiving passage is optimized.

【0007】モジュールの主流路への取付ばらつきに対
しては、副流路を構成する部材の副流路部のベース部材
と平行な断面の外形を長方形あるいは台形等副流路の入
口開口面のある主流方向と垂直な面と主流方向と平行な
面が設けられる形状とすること、副流路の出口開口面を
主流方向と平行な面に形成し、入口開口面の出口方向を
堀り込んだ受皿状としていることにより対応している。
[0007] Regarding the variation in the mounting of the module to the main flow path, the outer shape of the cross-section parallel to the base member of the sub-flow path portion of the sub-flow path member is defined by the rectangular or trapezoidal shape of the entrance opening surface of the sub-flow path. A shape perpendicular to the main flow direction and a shape parallel to the main flow direction are provided. The exit opening surface of the sub flow path is formed in a plane parallel to the main flow direction, and the exit direction of the entrance opening surface is dug. This is supported by the shape of a saucer.

【0008】取り扱い性の向上に対しては、回路部と副
流路部が一体のモジュールとなっていること、主流路の
挿入穴はベース部材で覆いかくされる大きさとし、Oリ
ング,パッキンガスケット等により、挿入穴部からの空
気もれを防止可能としていること、Oリングを装着する
溝を形成しOリング付のモジュール化を達成しているこ
と及びモジュールを主流路に着脱可能に固定しているこ
とにより対応している。
In order to improve the handleability, the circuit section and the sub-flow path section are formed as an integrated module, the insertion hole of the main flow path is sized to be covered by a base member, and an O-ring, packing gasket, etc. Thereby, it is possible to prevent air leakage from the insertion hole portion, to form a groove for mounting an O-ring to achieve modularization with an O-ring, and to detachably fix the module to the main flow path. To respond.

【0009】回路部と副流路部を一体化したモジュール
とし、そのモジュールに発熱抵抗式空気流量測定装置の
ほとんどの機能を持たせたことにより、モジュールはひ
とつの製品として取り扱えるものとなった。これによ
り、内燃機関を取りまとめる企業、例えば自動車メーカ
は、安価な発熱抵抗式空気流量測定装置を得ることがで
き、また、吸気系の自由なレイアウトが可能となる。
The module and the sub-flow path are integrated into a module, and the module is provided with most of the functions of a heating resistance type air flow measuring device, so that the module can be handled as a single product. As a result, a company that integrates internal combustion engines, for example, a car maker, can obtain an inexpensive heating resistance type air flow measurement device, and a free layout of the intake system becomes possible.

【0010】モジュールは、電子回路を回路ハウジング
及びカバーにより保護し、発熱抵抗体及び感温抵抗体は
副流路構成部材により保護されているため、取り扱いに
よる事故を防止している。
In the module, the electronic circuit is protected by the circuit housing and the cover, and the heating resistor and the temperature-sensitive resistor are protected by the sub-flow path constituting member, thereby preventing an accident due to handling.

【0011】副流路をL字形の曲がり流路とすることに
より、副流路の全長を十分に長く設定できるため、副流
路の出口部の主流路の空気の流れの乱れによる発熱抵抗
体付近の空気の流れへの影響を軽減している。また、副
流路の出口上流に両側に壁のある傾斜面を設けた構造に
より、副流路出口部の主流路の流れを方向性の整った慣
性力の強い安定した流れと、主流路の流れの乱れ自体を
低減している。副流路の入口開口面を主流路の流れ方向
に垂直な面に開口し、出口開口面を主流方向に平行な面
に開口しているのは、入口に動圧を受け出口を静圧で引
くようにして出入口間の圧力差を高め、副流路に流入す
る空気の流速を高めて副流路内の流れを安定化するため
である。さらに、副流路の第2通路の断面形状を幅広く
しているのは、副流路構成部材の主流方向の長さを短く
抑えながら断面積を確保して副流路が直角に曲がること
で生じる流れのはく離による第2通路の流れ面積の減少
を補い、副流路に流入する空気の流速減少を防止して発
熱抵抗体付近の流れを安定化するためである。このよう
に、副流路内、特に発熱抵抗体付近の流れを安定化する
ことにより空気流量測定装置の出力ノイズを減少し計測
精度を高める効果がある。また、L字形の副流路は、主
流路に脈動流が生じた時の発熱抵抗体の放熱特性の非線
形性と応答遅れにより生じるマイナス誤差を、副流路の
出入口間の主流路の相対長さに対して副流路の長さを長
くとり造流路内の流れに慣性効果を持たせることで脈動
時の出力をプラス変化させて前記マイナス誤差を相殺
し、脈動による出力誤差を低減する効果がある。副流路
の第1通路の長さに対して第2通路の長さを2倍として
いるのは、前記のL字形副流路における慣性効果の度合
を前記マイナス誤差を相殺するのに最適な長さ比とした
ものである。さらに、副流路の出口開口面をベース部材
と平行な面に設け、副流路構成部材を回路側に固定した
片持ち構造としているため、主流路の壁面に回路部を固
定することで副流路部も主流路に固定され、片持ちのた
め主流路の大きさが異なる場合でも主流路の中心と回路
部取付面の間隔を一定にすることにより、主流路の中心
と副流路の出入口の位置を変えずに標準化したモジュー
ルを適用することが可能である。
Since the length of the sub-flow path can be set sufficiently long by forming the sub-flow path as an L-shaped curved flow path, the heating resistor due to the turbulence of the air flow in the main flow path at the outlet of the sub-flow path can be set. The effect on the flow of air in the vicinity has been reduced. In addition, the structure in which the inclined surface having walls on both sides is provided on the upstream side of the outlet of the sub flow passage, the flow of the main flow passage at the outlet of the sub flow passage has a stable flow with a strong directional inertia force, and the flow of the main flow passage. The turbulence itself is reduced. The inlet opening of the sub flow path is opened in a plane perpendicular to the flow direction of the main flow path, and the outlet opening face is opened in a plane parallel to the main flow direction. This is to increase the pressure difference between the inlet and outlet by pulling, to increase the flow velocity of the air flowing into the sub flow path, and to stabilize the flow in the sub flow path. Furthermore, the reason why the cross-sectional shape of the second passage of the sub-flow passage is widened is that the sub-flow passage is bent at a right angle while securing a cross-sectional area while keeping the length of the sub-flow passage constituent member in the main flow direction short. This is for compensating for the decrease in the flow area of the second passage due to the separation of the generated flow, preventing the flow velocity of the air flowing into the sub flow passage from decreasing, and stabilizing the flow near the heating resistor. As described above, by stabilizing the flow in the sub flow path, particularly in the vicinity of the heating resistor, there is an effect that the output noise of the air flow measurement device is reduced and the measurement accuracy is improved. In addition, the L-shaped sub-flow path reduces the negative error caused by the non-linearity of the heat radiation characteristic of the heating resistor and the response delay when a pulsating flow occurs in the main flow path, and the relative length of the main flow path between the entrance and exit of the sub-flow path. On the other hand, by increasing the length of the sub flow path and giving an inertial effect to the flow in the flow path, the output during pulsation is positively changed to offset the negative error, thereby reducing the output error due to pulsation. effective. The reason why the length of the second passage is twice as long as the length of the first passage of the sub-flow passage is that the degree of the inertial effect in the L-shaped sub-flow passage is optimal for canceling the minus error. It is a length ratio. Furthermore, since the outlet opening surface of the sub-flow path is provided on a surface parallel to the base member and the sub-flow path constituting member has a cantilever structure fixed to the circuit side, the circuit section is fixed to the wall surface of the main flow path. The flow path is also fixed to the main flow path, and even when the size of the main flow path is different because of the cantilever, the distance between the center of the main flow path and the circuit part mounting surface is kept constant, so that the center of the main flow path and the sub flow path are It is possible to apply a standardized module without changing the position of the doorway.

【0012】発熱抵抗体を第1通路中に、感温抵抗体を
直角曲がり部に配置するのは、第1通路の長さを短く抑
えることを可能とするためで、両抵抗体を近接して配置
することによる熱的流れ的干渉を防止し、発熱抵抗体は
流れの安定化を図りやすい第1通路に配置することで計
測誤差を低減している。第1通路の長さを短くして副流
路構成部材の主流と変更な長さを短くできると、その長
さを、副流路構成部材の幅が空気流量計の圧力損失の増
加が問題とならない程度に小さくても2倍以内とするこ
とができるため、主流路の壁面に設ける副流路を差し込
むための挿入穴を比較的小さな円形とできるため、挿入
穴の形成が容易となり、主流路形成の複雑化,大型化を
防止できる。また、挿入穴はベース部材に覆いかくされ
る大きさにできるため、回路部のさらなる小型化に対す
る余裕を確保でき、ベース部材の底面と主流路の外壁の
回路部固定面の間を、Oリング,パッキン,ガスケット
などでシールし、挿入穴部から主流路内外の空気もれを
防止でき、空気もれによる計測誤差を防止できる。ま
た、挿入穴を円形としているのでOリングによる径シー
ルも可能である。
The reason why the heating resistor is disposed in the first passage and the temperature-sensitive resistor is disposed in the right-angle bend portion is to enable the length of the first passage to be kept short, so that both resistors are close to each other. In this case, thermal flow interference due to disposition is prevented, and the measurement error is reduced by disposing the heating resistor in the first passage, which facilitates stabilization of the flow. If the length of the first passage can be shortened to shorten the main flow and the changed length of the sub flow path component, the length of the sub flow path component may be reduced by increasing the pressure loss of the air flow meter. Even if it is small enough not to become smaller, it can be within twice, so that the insertion hole for inserting the sub flow path provided on the wall of the main flow path can be made relatively small circular, so that the insertion hole can be easily formed, It is possible to prevent the road from becoming complicated and large. Further, since the insertion hole can be sized so as to be covered by the base member, a margin for further miniaturization of the circuit portion can be secured, and the O-ring and the O-ring are provided between the bottom surface of the base member and the circuit portion fixing surface of the outer wall of the main flow path. Sealing with a packing, gasket, or the like can prevent air leakage inside and outside the main flow path from the insertion hole, and can prevent measurement errors due to air leakage. Further, since the insertion hole is formed in a circular shape, a diameter seal using an O-ring is also possible.

【0013】ベース部材を基準にして、ターミナルをホ
ルダに保持してベース部材を貫通するように固定し、ベ
ース部材の上面に電子回路,回路ハウジングを固定し、
回路ハウジングの上面をカバーで覆い、ベース部材の下
面のターミナルあるいはホルダに発熱抵抗体及び感温抵
抗体を固定し、副流路構成部材に設けた穴にホルダ及び
ターミナルを挿入して、発熱抵抗体と感温抵抗体が副流
路内に位置するように副流路構成部材をホルダあるいは
ベース部材に固定する方法は、製造が容易であり、生産
コストの低減が図れる。さらに、ベース部材と回路ハウ
ジング,ベース部材とホルダ等の一体化が可能であるた
め、部品の点数の削減が可能で一層のコスト低減が図れ
る。また、各部品の固定は、インサート成形,接着,溶
着等固定のための追加部品を要せずに行える構造となっ
ている。さらに、副流路構成部材とホルダあるいはベー
ス部材の接合面に溝を形成することができ、その溝にO
リングを装着しておけば挿入穴のシールのためのOリン
グを脱落の心配無しに一体化したモジュールが得られ、
取り扱い性をより向上したモジュールが得られる。
With the base member as a reference, the terminal is held in a holder and fixed so as to penetrate the base member, and an electronic circuit and a circuit housing are fixed on the upper surface of the base member.
Cover the upper surface of the circuit housing with the cover, fix the heating resistor and the temperature-sensitive resistor on the terminal or holder on the lower surface of the base member, and insert the holder and terminal into the holes provided in the sub-flow path component, The method of fixing the sub-flow path constituting member to the holder or the base member so that the body and the temperature-sensitive resistor are located in the sub-flow path is easy to manufacture and can reduce the production cost. Further, since the base member and the circuit housing, and the base member and the holder can be integrated, the number of parts can be reduced and the cost can be further reduced. In addition, the components can be fixed without any additional components for fixing such as insert molding, bonding, welding and the like. Further, a groove can be formed on the joint surface between the sub-flow path component member and the holder or the base member, and the groove is formed in the groove.
By installing the ring, a module can be obtained that integrates the O-ring for sealing the insertion hole without fear of falling off.
A module with improved handling properties can be obtained.

【0014】副流路構成部材の副流路部のベース部材と
平行な断面の外形を長方形あるいは台形等副流路の入口
開口面のある主流方向と垂直な面と主流方向と平行な面
のある形状とすることにより、モジュールを主流路へ取
り付けた時のモジュール回転方向に対する取付角度のば
らつきによる計測誤差を低減できる。主流路の流れ方向
に対してモジュールの取付角度が曲がっていると副流路
の入口開口面の有効面積(主流方向に垂直な断面に投影
した面積)が減少するため、副流路へ流入する空気流量
が減少しマイナス側の出力誤差を引き起こすように作用
する。反面、副流路構成部材の主流に平行な面は、モジ
ュールの取付角度が曲っていると主流路の有効面積を減
少するため、副流路へ流入する空気流量を増加しプラス
側の出力誤差を引き起こすように作用するため、両作用
が相殺されてモジュール取付角度のばらつきによる計測
誤差を低減できる。一般的な主流路の断面積及び副流路
構成部材の大きさを考慮すると、副流路入口開口部の幅
に対して主流方向に平行な面の主流方向長さを約2倍程
度とすると上記の相殺効果が適切となる。副流路構成部
材の副流路部のベース部材と平行な断面の外形と、台形
あるいは台形と長方形を組み合わせた形状としているの
は、上記の取付角度の影響低減効果を損なわず、また、
第2通路の断面積を減少させずに副流路構成部材の上面
に生じる動圧を減少し、空気流量測定装置の圧力損失を
低減するためである。さらに、副流路構成部材の下流底
面を円弧状にしているのは、下流のはく離渦を小さくし
圧力損失を低減するためと、第2通路の断面も一辺を円
弧状として拡大することも可能なためである。前記副流
路の断面外形の最も長い対角線の長さと主流路の壁面に
設けた円形の挿入穴の直径をほぼ同じにしているのは、
挿入穴を小さく抑えるためである。
The outer shape of the cross section parallel to the base member of the sub flow path portion of the sub flow path component member is defined as a rectangular or trapezoidal shape having a surface perpendicular to the main flow direction having an inlet opening surface of the sub flow path and a surface parallel to the main flow direction. By adopting a certain shape, it is possible to reduce a measurement error due to a variation in the mounting angle with respect to the module rotation direction when the module is mounted on the main flow path. If the mounting angle of the module is bent with respect to the flow direction of the main flow path, the effective area of the inlet opening surface of the sub flow path (the area projected on a cross section perpendicular to the main flow direction) decreases, so that it flows into the sub flow path. It acts to reduce the air flow and cause a negative output error. On the other hand, if the mounting angle of the module is bent, the area of the sub flow path component that is parallel to the main flow will decrease the effective area of the main flow path. Therefore, the two effects cancel each other out, and a measurement error due to a variation in module mounting angle can be reduced. Considering the general cross-sectional area of the main flow path and the size of the sub-flow path constituent members, the length in the main flow direction of a plane parallel to the main flow direction with respect to the width of the sub-flow path inlet opening is about twice as large. The above-mentioned offset effect becomes appropriate. The outer shape of the cross-section parallel to the base member of the sub-flow path portion of the sub-flow path component member and the shape in which the trapezoid or the trapezoid and the rectangle are combined do not impair the effect of reducing the effect of the mounting angle, and
This is because the dynamic pressure generated on the upper surface of the sub-flow path component is reduced without reducing the cross-sectional area of the second passage, and the pressure loss of the air flow measuring device is reduced. Further, the downstream bottom surface of the sub-flow path component is formed in an arc shape in order to reduce the downstream separation vortex and reduce pressure loss, and it is also possible to enlarge the cross section of the second passage so that one side is formed in an arc shape. That's why. The length of the longest diagonal of the cross-sectional shape of the sub-flow path and the diameter of the circular insertion hole provided in the wall of the main flow path are substantially the same,
This is for keeping the insertion hole small.

【0015】副流路の入口開口面の出口方向を堀り下げ
た受皿状にしているのは、主流路の広範囲の部分から副
流路に空気を取り込むようにし、主流路中に偏流が生じ
た時の計測誤差を低減することが第1の目的である。こ
の偏流時の計測誤差の低減作用は、副流路出口上流の傾
斜面にもある。偏流により、出口上流の流速が速くなる
と傾斜面の下流に生じるはく離域が広がり、副流路出口
の吸い出し効果が大きくなって副流路に流入する空気流
量が増加し、反対に出口上流の流速が遅くなると出口の
はく離域が小さくなり副流路に流入する空気流量が減少
するため、副流路の入口開口面の上流流速の変化による
副流路流入流量の影響度とうまく相殺し合う位置関係に
出入口を設置すると偏流による計測誤差が低減できる。
この作用が最も有効となるのは、第1通路を主流路の中
心から偏心した位置に設け、主流路の中心付近を含む範
囲に受皿状の部分を広げ、副流路の出口を主流路の中心
に対して入口の反対部分に設けた時である。また、この
受皿状の入口開口部は、回路固定面や主流路壁面の挿入
穴が傾いたことによる副流路構成部材の上下流方向の傾
きばらつきによる計測誤差の低減効果がある。副流路の
出口方向が主流路の上流方向に傾くと、出口開口面は主
流路の上流側から見えるようになる方向に傾くため、出
口開口面に若干の動圧が生じる、あるいは負圧が減少す
るため、副流路の出入口間の圧力差が小さくなり副流路
へ流入する空気流量が減少し、マイナスの計測誤差を生
じるように作用する。一方、受皿状の開口面は第1通路
が下流になる方向に傾くため、主流路の中心付近の流れ
をより副流路へ導きやすくするとともに、第1通路中に
生じるはく離域が大きくなり発熱抵抗体付近の流速を速
めるためプラス側の計測誤差を生じるように作用する。
この両作用は互いに相殺し合うため、上記の副流路構成
部材の傾きばらつきによる計測誤差を低減できる。反対
に出口が下流側になるように傾くと、出口部は負圧が大
きくなり、入口部は副流路に空気の取り入れにくい方向
に傾くとともに第1通路内のはく離域を小さくするた
め、出入口の作用が相殺し合って計測誤差を低減でき
る。
The shape of the saucer in which the exit direction of the inlet opening face of the sub flow path is dug down is to take air into the sub flow path from a wide area of the main flow path, and a drift occurs in the main flow path. The first object is to reduce the measurement error at the time of occurrence. The effect of reducing the measurement error at the time of the drift is also present on the inclined surface upstream of the sub flow path outlet. If the flow velocity at the outlet upstream increases due to the drift, the separation area generated downstream of the inclined surface expands, the suction effect at the sub flow path outlet increases, and the air flow rate flowing into the sub flow path increases. When the flow rate becomes slower, the separation area at the outlet becomes smaller and the air flow rate flowing into the sub flow path decreases, so that the position that cancels out the effect of the flow rate of the sub flow path flow rate due to the change of the upstream flow velocity at the inlet opening surface of the sub flow path If an entrance is provided in the relationship, measurement errors due to drift can be reduced.
This operation is most effective because the first passage is provided at a position eccentric from the center of the main flow passage, the pan-shaped portion is expanded to include the vicinity of the center of the main flow passage, and the outlet of the sub flow passage is connected to the main flow passage. This is when it is provided at the opposite part of the entrance with respect to the center. In addition, the tray-shaped inlet opening has an effect of reducing measurement errors due to variations in inclination in the upstream and downstream directions due to the inclined insertion holes in the circuit fixing surface and the main channel wall surface. When the exit direction of the sub flow path is inclined in the upstream direction of the main flow path, the exit opening surface is inclined in a direction that can be seen from the upstream side of the main flow path, so that a slight dynamic pressure is generated in the exit opening surface, or a negative pressure is generated. Due to the decrease, the pressure difference between the inlet and outlet of the sub flow path is reduced, and the flow rate of air flowing into the sub flow path is reduced, thereby acting to cause a negative measurement error. On the other hand, the pan-shaped opening surface is inclined in the direction in which the first passage is located downstream, so that the flow near the center of the main flow passage is more easily guided to the sub flow passage, and the separation area generated in the first passage is increased, thereby generating heat. In order to increase the flow velocity near the resistor, it acts so as to cause a measurement error on the plus side.
Since these two actions cancel each other, a measurement error due to the variation in inclination of the sub-flow path constituting member can be reduced. On the other hand, if the outlet is inclined so that the outlet is located on the downstream side, the negative pressure is increased at the outlet, and the inlet is inclined in a direction in which air is hardly taken into the sub-flow passage, and the separation area in the first passage is reduced. Are offset by each other, and the measurement error can be reduced.

【0016】感温抵抗体を第1通路の中心線よりベース
部材から離れる位置に固定するのは、感温抵抗体を直角
曲がり部の中で最も流速の速い内側コーナ近くに位置さ
せ、吸気温度の検出精度を向上させるとともに、吸入空
気温度と空気流量測定装置の周囲の温度に差が生じるよ
うな温度環境下において、ターミナルやホルダを介して
の熱伝導により、例えば周囲温度が高い時、周囲からホ
ルダ及びターミナルを伝わった熱により感温抵抗体の温
度が吸気温度より高くなるような吸気温度検出誤差を減
少する作用を持たせるためである。感温抵抗体が吸気温
度より高く誤計測するとプラス側の流量計測誤差を生じ
る。一方、発熱抵抗体は、周囲温度が高い環境下ではタ
ーミナル及びボルダへの熱伝導による放熱量が減少する
ためマイナス側の流量計測誤差を生じるように作用す
る。従って、両抵抗体への影響度を等しくすれば吸気温
度と周囲温度が異なる環境での計測誤差を低減できる。
実際には、両抵抗体の温度の違いにより、熱伝導の影響
度及び空気への熱伝達による影響度が異なるため、単純
に発熱抵抗体と感温抵抗体のターミナル及びホルダの熱
抵抗を等しくしても不十分であり、感温抵抗体側は熱抵
抗を大きくし、発熱抵抗体側は感温抵抗体側より熱抵抗
を小さくすると良い。感温抵抗体をベース部材より離れ
た位置に固定し、発熱抵抗体を感温抵抗体よりベース部
材に近づけて固定することにより、上記の温度環境下で
の計測誤差を低減するための両抵抗体の適切な熱的バラ
ンスを容易に得ることができる。
The temperature-sensitive resistor is fixed at a position farther from the base member than the center line of the first passage. The temperature-sensitive resistor is located near the inner corner where the flow velocity is the fastest in the right-angle bend, and the intake air temperature is fixed. In a temperature environment where there is a difference between the intake air temperature and the ambient temperature of the air flow measurement device, heat conduction through terminals and holders can improve the detection accuracy of ambient air. This has the effect of reducing the intake air temperature detection error such that the temperature of the temperature sensitive resistor becomes higher than the intake air temperature due to the heat transmitted from the holder to the terminal. If the temperature-sensitive resistor erroneously measures higher than the intake air temperature, a positive-side flow rate measurement error occurs. On the other hand, the heating resistor acts to cause a negative flow rate measurement error because the amount of heat radiation due to heat conduction to the terminal and the boulder decreases in an environment with a high ambient temperature. Therefore, if the degree of influence on both resistors is made equal, a measurement error in an environment where the intake air temperature and the ambient temperature are different can be reduced.
Actually, the influence of heat conduction and the influence of heat transfer to the air are different due to the difference in temperature between the two resistors, so simply the heat resistance of the terminal and holder of the heating resistor and the temperature sensitive resistor are simply made equal. However, it is not sufficient, so that the thermal resistance of the heat-sensitive resistor side should be increased and the thermal resistance of the heat-generating resistor side should be smaller than that of the temperature-sensitive resistor. By fixing the temperature-sensitive resistor at a position distant from the base member and fixing the heating resistor closer to the base member than the temperature-sensitive resistor, the two resistors for reducing the measurement error in the above temperature environment are used. A proper thermal balance of the body can be easily obtained.

【0017】発熱抵抗体の第1通路内の配置位置は、第
1通路内の主流内、すなわち流速が速く安定した流れの
中に配置する必要がある。従って、上記のような温度環
境を考慮した発熱抵抗体の配置に際しても、感温抵抗体
との位置関係のみでなく第1通路中の位置に対しても配
慮しなければならない。単純円管通路であれば主流はそ
の中心付近となるが、受皿状の開口面を持つ直角曲がり
通路での第1通路中の主流の位置を決定する要因とし
て、受皿状入口開口面の底面と第1通路によって形成さ
れる第1のコーナにより生じるはく離流により主流を管
路中心よりもベース部材方向に動かす作用と、直角曲が
り部で内側コーナ(第2のコーナ)近くの流速が速くな
ることにより主流を管路中心よりもベース部材から離れ
る方向に動かす作用がある。すなわち、前記第1のコー
ナと第2のコーナの位置関係が第1通路内の主流の位置
に影響し、両コーナを結ぶ壁面である第1通路のベース
部材から最も離れた内壁と発熱抵抗体との間隔を適切に
とれば、発熱抵抗体を第1通路の主流中に配置すること
ができる。一般的な副流路の大きさでは、第1通路のベ
ース部材から最も離れた内壁から上記第1のコーナと第
2のコーナの間隔の1/2〜1倍ベース部材方向に離れ
た部分が第1通路の主流の範囲となる。
It is necessary to arrange the heating resistor in the first passage in the main flow in the first passage, that is, in a stable flow having a high flow velocity. Therefore, when arranging the heating resistor in consideration of the temperature environment as described above, it is necessary to consider not only the positional relationship with the temperature-sensitive resistor but also the position in the first passage. In the case of a simple circular pipe passage, the main flow is near the center thereof, but factors determining the position of the main flow in the first passage in the right-angled curved passage having a saucer-shaped opening surface are as follows. The action of moving the main flow toward the base member rather than the center of the pipeline by the separation flow generated by the first corner formed by the first passage, and the flow velocity near the inner corner (second corner) at the right-angled bend is increased. This has the effect of moving the mainstream in a direction away from the base member rather than the center of the pipeline. That is, the positional relationship between the first corner and the second corner affects the position of the main flow in the first passage, and the inner wall farthest from the base member of the first passage, which is the wall connecting the two corners, and the heating resistor By appropriately setting the distance between the first and second passages, the heating resistor can be arranged in the main stream of the first passage. In a general size of the sub-flow path, a portion separated from the inner wall of the first passage farthest from the base member in the direction of the base member by 1/2 to 1 times the interval between the first corner and the second corner. This is the range of the main flow of the first passage.

【0018】第1通路の断面形状を半円と長方形を組み
合わせた形とするのは、発熱抵抗体と感温抵抗体の位置
関係を適切としながら、発熱抵抗体を第1通路の主流内
に配置するためのひとつの手段である。すなわち、発熱
抵抗体の位置は感温抵抗体との関係から最適化し、第1
通路の主流の位置を発熱抵抗体付近に動かすために、前
記第1のコーナと第2のコーナを持つベース部材から最
も離れた第1通路内壁の位置を自由に設定できる形状と
したものである。
The reason why the cross section of the first passage is formed by combining a semicircle and a rectangle is that the heating resistor is placed in the main flow of the first passage while the positional relationship between the heating resistor and the temperature sensitive resistor is appropriate. This is one way to place it. That is, the position of the heating resistor is optimized based on the relationship with the temperature-sensitive resistor,
In order to move the position of the main flow of the passage to the vicinity of the heating resistor, the shape of the first passage inner wall farthest from the base member having the first corner and the second corner is freely set. .

【0019】以上のように、本発明の副流路部の構成に
は、環境変化や取付ばらつき及び装着性に対する多くの
機能を持たせているが、副流路構成部材は、複数の部品
を組み合わせる必要が無く、ひとつのプラスチック成形
品として形成可能な単純な形状を維持している。従っ
て、モジュール自体のコストを安く抑えることを可能と
している。また、主流路の形状を単純化できたこと、モ
ジュールがひとつの製品として取り扱うことが可能な機
能,構造となっていること、環境変化や取付ばらつきに
も対応できること等から、他の吸気系部品に主流路を一
体化することが可能となり、また、モジュールの標準化
も可能なことから内燃機関のシステムコストの低減も達
成できる。さらに、モジュールは、回路部を主流路外壁
に取り付けるだけで主流路に固定可能としているので装
着性が良く、着脱可能に固定することも容易である。着
脱可能な固定とすれば、市場での故障等への対応もモジ
ュール部のみを交換することで容易に対応できる。
As described above, the configuration of the sub-flow path portion of the present invention has many functions against environmental changes, mounting variations, and mounting properties. There is no need to combine them, and they maintain a simple shape that can be formed as one plastic molded product. Therefore, the cost of the module itself can be reduced. In addition, other intake system components can be simplified because the shape of the main flow path can be simplified, the module has a function and structure that can be handled as one product, and it can respond to environmental changes and mounting variations. In addition, since the main flow path can be integrated, and the module can be standardized, the system cost of the internal combustion engine can be reduced. Further, since the module can be fixed to the main flow path only by attaching the circuit portion to the outer wall of the main flow path, the module has good mounting properties and can be easily fixed detachably. If detachable fixing is used, it is possible to easily cope with a failure in the market by replacing only the module part.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施例を図1〜図
14により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0021】図1は本発明の一実施例の横断面図であ
り、図2はその上流側(左側)から見た外観図である。
FIG. 1 is a cross-sectional view of one embodiment of the present invention, and FIG. 2 is an external view as viewed from the upstream side (left side).

【0022】ベース部材7の上面には、電子回路8及び
回路ハウジング9が固定され、外部機器と電気的に接続
するためのコネクタ11は回路ハウジング9に一体化さ
れ、回路ハウジング9の上面はカバー10によって覆わ
れている。電子回路8と電気的に接続しているターミナ
ル13はベース部材7の下面方向に引き出され、発熱抵
抗体1と感温抵抗体2がターミナル13と電気的に接続
されて固定されている。副流路3は、ベース部材7と垂
直な面に開口する入口開口面301と、入口開口面から
ベース部材と平行に延びる第1通路302と、ベース部
材と垂直な方向に延びる第1通路の約2倍の長さを有す
る第2通路304と、ベース部材と垂直な面に開口する
出口開口面305及び第1通路302と第2通路304
の交点部分にあたる直角曲がり部303によって構成さ
れるL字形の流路であり、発熱抵抗体1が第1通路30
2内に、感温抵抗体2が直角曲がり部303内に位置す
るように、副流路構成部材4がベース部材7に固定され
る。上記によって、発熱抵抗式空気流量測定装置の回路
部と副流路部を一体化したモジュールが構成される。
An electronic circuit 8 and a circuit housing 9 are fixed on the upper surface of the base member 7, and a connector 11 for electrically connecting to an external device is integrated with the circuit housing 9, and the upper surface of the circuit housing 9 is covered with a cover. Covered by 10. The terminal 13 that is electrically connected to the electronic circuit 8 is drawn out toward the lower surface of the base member 7, and the heating resistor 1 and the temperature-sensitive resistor 2 are electrically connected to the terminal 13 and fixed. The sub flow path 3 includes an inlet opening surface 301 that opens in a plane perpendicular to the base member 7, a first passage 302 extending parallel to the base member from the inlet opening surface, and a first passage 302 extending in a direction perpendicular to the base member. A second passage 304 having about twice the length, an outlet opening surface 305 opening in a plane perpendicular to the base member, and a first passage 302 and a second passage 304
Is an L-shaped flow path constituted by a right-angled bent portion 303 corresponding to the intersection of the heat generating resistor 1 and the first passage 30.
2, the sub-flow path constituent member 4 is fixed to the base member 7 so that the temperature-sensitive resistor 2 is located in the right-angled bent portion 303. Thus, a module in which the circuit section and the sub-flow path section of the heating resistance type air flow measuring device are integrated is configured.

【0023】一方、主流路5を構成する流量計ボディ6
の壁面には、副流路構成部材4を差し込むための挿入穴
14及びベース部材7を取り付ける取付固定面15が設
けられている。この流量計ボディ6に、副流路3の第1
通路302が主流路5の流れ方向17と平行になるよう
に副流路構成部材4を挿入穴14から主流路5内に差し
込み、挿入穴14の周囲がシールされるように取付固定
面15とベース部材7の底面の間にゴムパッキン16を
はさんでベース部材7が主流路外壁にネジ18により固
定されている。
On the other hand, a flow meter body 6 constituting the main flow path 5
An insertion hole 14 for inserting the sub-flow path constituting member 4 and an attachment fixing surface 15 for attaching the base member 7 are provided on the wall surface. The flowmeter body 6 is provided with the first
The sub flow path component member 4 is inserted into the main flow path 5 through the insertion hole 14 so that the passage 302 is parallel to the flow direction 17 of the main flow path 5, and the mounting fixing surface 15 is so formed that the periphery of the insertion hole 14 is sealed. The base member 7 is fixed to the outer wall of the main flow channel by screws 18 with a rubber packing 16 interposed between the bottom surfaces of the base member 7.

【0024】上記実施例に対して、さらに種々の環境下
における計測精度の悪化を低減する構成及び副流路構成
部材とベース部材の固定法を具体化した実施例の横断面
図を図3に、その上流側(左側)から見た外観図を図4
に示す。
FIG. 3 is a cross-sectional view of an embodiment in which a configuration for reducing the deterioration of measurement accuracy under various environments and a method of fixing the sub-flow path constituent member and the base member are further reduced. FIG. 4 is an external view of the apparatus viewed from the upstream side (left side).
Shown in

【0025】ターミナル13がホルダ19の内部を貫通
するようにターミナル13をホルダ19と一体化し、ベ
ース部材7の穴部を通してベース部材7とホルダ19が
固定される。ここで、ターミナル13とホルダ19及び
ベース部材7の種々の固定法を挙げると、ターミナル1
3及びベース部材7が金属製でホルダ19がプラスチッ
ク製で、ホルダ19の成形時にターミナル13とベース
部材7をインサート成形することにより3者を一体化す
る方法、ターミナル13とホルダ19をインサート成形
しベース部材7と接着等により固定する方法、あるい
は、図3では別部材として示しているが、ベース部材7
とホルダ19をひとつのプラスチック成形品としてター
ミナル13をインサート成形する方法、及び、最も部品
点数を少なくするために、回路ハウジング9とベース部
材7とホルダ19をひとつのプラスチック成形品として
ターミナル13をインサート成形する方法等がある。電
子回路8は、ベース部材7あるいはホルダ19の上面に
固定され、ターミナル13とワイヤ等の導電性部材22
を介して電気的に接続される。また、回路ハウジング9
もベース部材7の上面に固定され、回路ハウジング9の
上面はカバー10を固定することによって覆われる。
The terminal 13 is integrated with the holder 19 so that the terminal 13 passes through the inside of the holder 19, and the base member 7 and the holder 19 are fixed through the hole of the base member 7. Here, various fixing methods of the terminal 13, the holder 19 and the base member 7 will be described.
3 and the base member 7 are made of metal, and the holder 19 is made of plastic. When the holder 19 is formed, the terminal 13 and the base member 7 are insert-molded to integrate the three members, and the terminal 13 and the holder 19 are formed by insert molding. A method of fixing to the base member 7 by bonding or the like, or shown as a separate member in FIG.
The terminal 13 is inserted by molding the terminal 13 into one plastic molded product by using the circuit housing 9, the base member 7 and the holder 19 as one plastic molded product in order to minimize the number of parts. There is a molding method. The electronic circuit 8 is fixed to the upper surface of the base member 7 or the holder 19, and has the terminal 13 and a conductive member 22 such as a wire.
Are electrically connected via In addition, the circuit housing 9
Is fixed to the upper surface of the base member 7, and the upper surface of the circuit housing 9 is covered by fixing the cover 10.

【0026】一方、ターミナル13の電子回路8の反対
端部には、発熱抵抗体1及び感温抵抗体2が電気的に接
続固定される。本実施例では、感温抵抗体2を副流路3
の直角曲がり部303の内部でその内側コーナ近くに位
置するように固定し、発熱抵抗体1は副流路3の第1通
路302内で感温抵抗体2よりもベース部材7に近い位
置になるように固定して、温度変化の激しい環境におい
ても計測誤差を低減できる構成としている。
On the other hand, the heating resistor 1 and the temperature-sensitive resistor 2 are electrically connected and fixed to the terminal 13 at the opposite end of the electronic circuit 8. In this embodiment, the temperature-sensitive resistor 2 is
The heating resistor 1 is fixed at a position closer to the base member 7 than the temperature-sensitive resistor 2 in the first passage 302 of the sub-flow path 3 within the right-angled bent portion 303 of the sub-flow passage 3. The configuration is such that the measurement error can be reduced even in an environment where the temperature changes drastically.

【0027】副流路構成部材4には、前記第一の実施例
と同様に入口開口面301,第1通路302,直角曲が
り部303,第2通路304,出口開口面305から構
成されるL字形の流路に加えて、副流路3内に取り込む
空気を広範囲、特に主流路5の中心付近から導くことを
目的とした周囲に壁を残して堀り込んだ受皿状入口30
6,出口部の流れを安定化することを目的とした両側に
壁のある傾斜面307とその傾斜面の先端を出口開口面3
05より下方に出張らせた出口庇308、及び、ホルダ
19を挿入する穴401とホルダ19との接合面402
が設けられている。また、副流路3の第1通路302
は、発熱抵抗体1の固定位置を温度影響を優先して第1
通路302の中心よりもベース部材7に近付く方向とし
て、第1通路302の流れと垂直な断面中で流速が比較
的速く流れの安定した範囲を発熱抵抗体1の固定部に持
ってくるために、半円形と長方形を合わせた断面形状と
し、受皿状入口306の底面と第1通路302の作るコ
ーナと直角曲がり部303の内側コーナの間隔に対して
前記両コーナをつなぐ第1通路302の内壁と発熱抵抗
体1の間隔が1/2から1(同間隔)となるようにして
いる。さらに、第2通路304と平行な肉盗み穴403
を設け、副流路構成部材4を均肉化しプラスチック成形
のひけによる形状変化を防止するとともに、材料費及び
重量を低減している。
As in the first embodiment, the sub-flow path constituting member 4 includes an inlet opening 301, a first passage 302, a right angle bend 303, a second passage 304, and an outlet opening 305. In addition to the U-shaped flow path, a saucer-shaped inlet 30 dug out leaving a wall around the purpose of guiding air taken into the sub-flow path 3 over a wide range, particularly near the center of the main flow path 5.
6. An inclined surface 307 having walls on both sides for the purpose of stabilizing the flow at the outlet portion, and the tip of the inclined surface is connected to the outlet opening surface 3
Exit eaves 308 that traveled downward from 05, and a joint surface 402 between the holder 401 and the hole 401 into which the holder 19 is inserted.
Is provided. Further, the first passage 302 of the sub flow path 3
Sets the fixed position of the heating resistor 1 to the first position with priority given to temperature effects.
As a direction approaching the base member 7 from the center of the passage 302, in order to bring the range in which the flow velocity is relatively fast and the flow is stable in a cross section perpendicular to the flow of the first passage 302 to the fixing portion of the heating resistor 1. And an inner wall of the first passage 302 connecting the bottom with the bottom of the saucer-shaped inlet 306, the corner formed by the first passage 302, and the inside corner of the right-angled bent portion 303. The distance between the heating resistor 1 and the heating resistor 1 is set to 1/2 to 1 (the same interval). Further, a meat stealing hole 403 parallel to the second passage 304 is provided.
The thickness of the sub-flow path constituting member 4 is made uniform to prevent a change in shape due to sink in plastic molding, and the material cost and weight are reduced.

【0028】この副流路構成部材4は、ホルダ挿入穴4
01にホルダ19を差し込み、接合面402でホルダ1
9と接着固定される。ここで、ホルダ19に設けた段差
と副流路構成部材の接合面402により溝部404が形
成される。この溝部404はOリング20の装着溝であ
り、Oリング20により主流路壁面の挿入穴14がシー
ルされる構成となっている。上記により、回路部と副流
路部及び挿入穴シール用のOリングが一体化したモジュ
ールが構成される。
The sub-flow path constituting member 4 has a holder insertion hole 4
01 and the holder 1 at the joint surface 402.
9 and fixed. Here, a groove 404 is formed by the step provided on the holder 19 and the joint surface 402 of the sub-flow path component. The groove 404 is a mounting groove for the O-ring 20, and has a configuration in which the O-ring 20 seals the insertion hole 14 on the wall of the main flow path. As described above, a module is formed in which the circuit section, the sub-flow path section, and the O-ring for insertion hole sealing are integrated.

【0029】これを前記第一の実施例と同様に流量計ボ
ディ6に固定することにより、発熱抵抗式空気流量測定
装置が完成される。本実施例では挿入穴シール用のOリ
ングがモジュールに装着されているため、ゴムパッキン
は不要である。本実施例では、回路ハウジング9をベー
ス部材7とともにネジ18にて固定し回路ハウジングの
固定強度を増加したものを示しており、また、流量計ボ
ディ6の主流路5の入口面に整流格子21を装着し、さ
らに計測精度を改善したものを示している。
By fixing this to the flow meter body 6 in the same manner as in the first embodiment, a heating resistance type air flow measuring device is completed. In this embodiment, since the O-ring for sealing the insertion hole is mounted on the module, no rubber packing is required. In the present embodiment, the circuit housing 9 is fixed together with the base member 7 with screws 18 to increase the fixing strength of the circuit housing, and a rectifying grid 21 is provided on the inlet face of the main flow path 5 of the flowmeter body 6. Is shown, and the measurement accuracy is further improved.

【0030】図5は第二の実施例で示した発熱抵抗式空
気流量測定装置の回路部と副流路部を一体化したモジュ
ールの横断面図で、図6はその下方(出口方向)から見
た外観図である。
FIG. 5 is a transverse sectional view of a module in which the circuit section and the sub-flow path section of the heating resistance type air flow measuring apparatus shown in the second embodiment are integrated, and FIG. FIG.

【0031】副流路構成部材4のベース部材7と平行な
断面の外形は、ホルダ19の挿入部が円形で、副流路部
が第1通路の流れ方向と垂直な辺の長さに対して第1通
路の流れ方向と平行な辺の長さが1〜2倍になっている
長方形としている。また、ホルダ19の主流路壁面の挿
入穴14に差し込まれる部分の外形も円形としており、
その直径を副流路部の長方形断面の対角線の長さとほぼ
等しくしているため、主流路壁面に設ける挿入穴を比較
的小さな円形とすることができる。さらに、副流路の入
口開口面301の第2通路304の流れ方向と垂直な開
口幅は、前記副流路部の長方形断面の第1通路302と
平行な辺の長さの約1/2としており、第2通路304
の断面形状は、第1通路302と平行な辺より垂直な辺
の方が長い長方形としている。
The external shape of the cross-section parallel to the base member 7 of the sub-flow path constituting member 4 is such that the insertion portion of the holder 19 is circular and the sub-flow path portion has a length perpendicular to the flow direction of the first passage. In this case, the length of the side parallel to the flow direction of the first passage is made to be a rectangle of 1-2 times. Also, the outer shape of the part of the holder 19 to be inserted into the insertion hole 14 on the main flow path wall surface is circular,
Since the diameter is made substantially equal to the length of the diagonal line of the rectangular cross section of the sub-flow channel portion, the insertion hole provided in the main flow channel wall surface can be made a relatively small circle. Further, the opening width of the inlet opening surface 301 of the sub-flow passage perpendicular to the flow direction of the second passage 304 is about の of the length of the side parallel to the first passage 302 of the rectangular cross section of the sub-flow passage portion. And the second passage 304
Has a rectangular shape having a longer vertical side than a side parallel to the first passage 302.

【0032】図7及び図8は、図6と同様に図5の下方
から見た外観図である。図7は、ホルダ19の主流路壁
面の挿入穴14に差し込まれる部分のベース部材7と平
行な断面の外形は図6と同じ直径の円形とし、副流路の
第2通路304の形状も図6と等しくして、副流路構成
部材4の副流路部のベース部材7と平行な断面の外形を
台形と長方形を組み合わせた形状としたものである。図
8は、さらに第2通路の下流側底面及び副流路部の断面
外形の下流側底面を円弧状としたものである。
7 and 8 are external views as viewed from below in FIG. 5, similarly to FIG. FIG. 7 is a cross-sectional view of a portion of the holder 19 inserted into the insertion hole 14 on the wall of the main flow path parallel to the base member 7 having a circular shape having the same diameter as that of FIG. 6, the outer shape of the cross section parallel to the base member 7 of the sub flow path portion of the sub flow path component 4 is formed by combining a trapezoid and a rectangle. FIG. 8 is a view in which the downstream bottom surface of the second passage and the downstream bottom surface of the cross-sectional shape of the sub-flow passage portion are arc-shaped.

【0033】図9はエンジンの吸入空気量をコントロー
ルするバルブ23を有するスロットルボディ24に図5
に示したモジュールを挿入して成る発熱抵抗式空気流量
測定装置を示したものである。流量計測部はバルブ上流
に配置しており、空気の流れは図示左側から右側へ流れ
る。副空気通路を持つスロットルボディ一体形発熱抵抗
式空気流量計は、既に製品化されているが、副空気通路
部材がスロットルボディと一体で構成されているか、又
は、モジュールの回路を覆うハウジング部材がスロット
ルボディと一体で構成されておりスロットルボディの構
造がかなり複雑化してしまう。これに対し、図9に示す
本発明の実施例によればハウジング部材及び副空気通路
部材がモジュールと一体化されているため、スロットル
ボディの構造を簡素化することが可能となる。また、ス
ロットルバルブを持たない吸気系(例えばディーゼル
車)ではモジュールを直接インテークマニホールドへ装
着することも可能である。
FIG. 9 shows a throttle body 24 having a valve 23 for controlling the intake air amount of the engine.
1 shows a heating resistance type air flow measuring device comprising the module shown in FIG. The flow measuring unit is arranged upstream of the valve, and the flow of air flows from left to right in the figure. A throttle body integrated heating resistance air flow meter with a sub air passage is already commercialized, but the sub air passage member is formed integrally with the throttle body, or a housing member that covers the module circuit is provided. It is formed integrally with the throttle body, which considerably complicates the structure of the throttle body. On the other hand, according to the embodiment of the present invention shown in FIG. 9, since the housing member and the sub air passage member are integrated with the module, the structure of the throttle body can be simplified. Further, in an intake system without a throttle valve (for example, a diesel vehicle), the module can be directly mounted on the intake manifold.

【0034】図10は、エンジンルーム内に配置される
エアクリーナの一部に図5に示したモジュールを取り付
けた実施例を示したものである。エアクリーナは新規空
気を取込むための導入ダクト25を有する上流側ケース
部材26と吸気ダクト30とエアクリーナを接続するた
めのダクト28を有する下流側ケース部材27で空気中
のダストを除去するためのフィルタ部材29をはさみ込
んで固定する構造である。当然ではあるが空気の流れは
図示矢印の様に流れ、ダクト28にはフィルタ29によ
りダストが除去されたクリーンな空気が流れる。ここ
で、ダクト28の一部に発熱抵抗式空気流量測定装置の
副空気通路部を挿入するための挿入穴14があいてお
り、これをネジ等を使ってダクト28とモジュールとを
機械的に固定する。これにより、前記した主空気通路を
構成するボディの代りにダクト28の様なエアクリーナ
の一部分を使って主空気通路を構成することが可能とな
りボディを必要としないモジュール単体での安価な発熱
抵抗式空気流量測定装置を提供することが可能となる。
FIG. 10 shows an embodiment in which the module shown in FIG. 5 is attached to a part of an air cleaner disposed in an engine room. The air cleaner is a filter for removing dust in the air by an upstream case member 26 having an introduction duct 25 for taking in new air and a downstream case member 27 having a duct 28 for connecting the intake duct 30 and the air cleaner. This is a structure in which the member 29 is inserted and fixed. As a matter of course, the flow of air flows as shown by the arrows in the figure, and clean air from which dust has been removed by the filter 29 flows through the duct 28. Here, a part of the duct 28 has an insertion hole 14 for inserting the sub air passage of the heating resistance type air flow measuring device, and this is mechanically connected to the duct 28 and the module by using a screw or the like. Fix it. This makes it possible to form the main air passage by using a part of an air cleaner such as the duct 28 instead of the body forming the main air passage described above. An air flow measuring device can be provided.

【0035】図11に示す例は基本的には図10と同様
にエアクリーナの一部に図5に示すモジュールを取付け
た実施例を示したものである。図10では下流側ケース
部材27の外側に設けたダクト28の一部に発熱抵抗式
空気流量測定装置のモジュール部を取り付けたが、図1
1では、下流側ケース部材27の内側にダクト31が設
けられており、ダクト31の一部に挿入穴14を設けモ
ジュールを取付けた例を示したものである。尚、図には
ダクト31の先端部分は空気の流れを整流化するために
ベルマウス状にしている。本構造の様に発熱抵抗式空気
流量測定装置のモジュールをエアクリーナ内部に入れる
ことにより図10に示したダクト28に相当する部分の
長さを短くできるため、吸気系のコンパクト化を図るこ
とが可能である。尚図10に示したダクト28及び図1
1に示したダクト31は図示ではエアクリーナ下流側ケ
ース部材27と一体で記述したが各々別体で製作し後か
ら機械的強度を保つ様に固定してもかまわない。
The example shown in FIG. 11 basically shows an embodiment in which the module shown in FIG. 5 is attached to a part of the air cleaner similarly to FIG. In FIG. 10, the module part of the heating resistance type air flow measuring device is attached to a part of the duct 28 provided outside the downstream case member 27.
FIG. 1 shows an example in which a duct 31 is provided inside the downstream case member 27, and an insertion hole 14 is provided in a part of the duct 31 to mount a module. In the figure, the tip portion of the duct 31 is formed in a bell mouth shape in order to rectify the flow of air. By inserting the module of the heating resistance type air flow measuring device inside the air cleaner as in this structure, the length of the portion corresponding to the duct 28 shown in FIG. 10 can be shortened, so that the intake system can be made more compact. It is. Note that the duct 28 shown in FIG.
Although the duct 31 shown in FIG. 1 is described as being integrated with the case member 27 on the downstream side of the air cleaner, it may be manufactured separately and fixed so as to maintain the mechanical strength afterwards.

【0036】図12は別の実施例を示す発熱抵抗式空気
流量測定装置の横断面であり、図13はその上流側(左
側)から見た図である。図3〜図4との相違は主空気通
路を構成するボディ32の内径を大きくしたものであ
る。ボディ内径を大きくすると単純に考えれば、副空気
通路の内、流量を計測するための発熱抵抗体1が配置さ
れる第1通路302及び入口開口面302がボディ壁面
近くに片寄ってしまう。この場合、仮にボディ32の上
流側の形状(エアクリーナ及びダクト形状)によりボデ
ィ32内において空気の流れに偏流が生じた場合、壁面
に近い場所においてはその偏流によって発熱抵抗式空気
流量測定装置の計測誤差を生じてしまう。通常管内を流
れる流速分布は管の中心部分が最も流速が速く、壁面に
近づくにつれておそくなる様に放物線に近い分布を示
す。すなわち管内の中心では平均流速より流速は速く壁
面ではおそくなり、流速の平均値は中心よりズレた位置
で計測することが望まれる。このため、本発明品におい
ては副空気通路の出入口を管中心からズラして平均流速
の値を副空気通路に取込む様にしている(副空気通路内
を流れる流速値を決めるのは出入口の圧力差であり出入
口共に管中心よりズラす必要が有る)。しかし、偏流の
大部分はこの最も流速の速い位置が中心位置からズレて
しまい、中心に対し一方が速い流速の値を示し、他方は
おそい流速の値を示してしまう。このため速い流速分布
の位置に副空気通路の入口開口面301が有ると、平均
流速よりプラス側の計測誤差が生じ、逆におそい位置に
有るとマイナス側の計測誤差を生じる。
FIG. 12 is a cross-sectional view of a heating resistance type air flow measuring apparatus showing another embodiment, and FIG. 13 is a view seen from the upstream side (left side). The difference from FIGS. 3 and 4 is that the inner diameter of the body 32 constituting the main air passage is increased. If it is simply considered that the inside diameter of the body is increased, the first passage 302 in which the heating resistor 1 for measuring the flow rate is arranged and the inlet opening surface 302 of the auxiliary air passage are biased near the body wall surface. In this case, if the air flow in the body 32 has a drift due to the upstream shape (air cleaner and duct shape) of the body 32, the drift is generated near the wall surface by the heating resistance type air flow measurement device due to the drift. An error will occur. Normally, the flow velocity distribution flowing in the pipe shows a distribution close to a parabola such that the flow velocity is the highest in the central part of the pipe and becomes slower as approaching the wall. That is, the flow velocity is faster than the average flow velocity at the center in the pipe and slows down on the wall surface, and it is desired to measure the average value of the flow velocity at a position shifted from the center. For this reason, in the product of the present invention, the value of the average flow velocity is taken into the sub air passage by shifting the entrance and exit of the sub air passage from the center of the pipe. This is a pressure difference, and it is necessary for both the entrance and exit to shift from the center of the pipe). However, for most of the drift, the position where the flow velocity is the fastest is shifted from the center position, and one of them shows a value of a fast flow velocity with respect to the center, and the other shows a value of a slow flow velocity. For this reason, if the inlet opening surface 301 of the sub air passage is located at the position of the fast flow velocity distribution, a measurement error on the plus side is generated from the average flow velocity.

【0037】この様にボディ32の内径を大きくした場
合においても偏流による計測誤差をおさえるためにボデ
ィ32にベース部材7を取付ける取付面33を図示の様
にボディ32外径より掘下げて、かつ、ボディ32内壁
がモジュール取付部において異径となる様な形状とし、
ボディ32内径の中心に対し出入口までの各々の距離が
ほぼ同じ様になる様な構造としたものである。尚この場
合、ボディ32内壁がモジュール取付部において内壁が
凸となる様になるため、その部分の上下流は空気の流れ
を極力乱さない様に図示34,35の様にゆるやかに傾
斜させることが望まれる。
As described above, even when the inner diameter of the body 32 is increased, the mounting surface 33 for mounting the base member 7 on the body 32 is dug down from the outer diameter of the body 32 as shown in the figure in order to suppress the measurement error due to the drift. The inner wall of the body 32 is shaped so as to have a different diameter at the module mounting portion,
The distance between the center of the inner diameter of the body 32 and the entrance is substantially the same. In this case, since the inner wall of the body 32 becomes convex at the module mounting portion, the upper and lower portions of the portion may be gently inclined as shown in FIGS. 34 and 35 so as to minimize the disturbance of the air flow. desired.

【0038】最後に、図14を使い電子燃料噴射方式の
内燃機関に本発明品を適用した一実施例を示す。
Finally, FIG. 14 shows an embodiment in which the product of the present invention is applied to an internal combustion engine of the electronic fuel injection system.

【0039】エアクリーナ100から吸入された吸入空
気101は、発熱抵抗式空気流量測定装置のボディ10
2,吸気ダクト103,スロットルボディ104及び燃
料が供給されるインジェクタ105を備えたマニホール
ド106を経て、エンジンシリンダ107に吸入され
る。一方エンジンシリンダで発生したガス108は排気
マニホールド109を経て排出される。
The intake air 101 sucked from the air cleaner 100 is supplied to the body 10 of the heating resistance type air flow measuring device.
2. The air is sucked into an engine cylinder 107 via a manifold 106 having an intake duct 103, a throttle body 104, and an injector 105 to which fuel is supplied. On the other hand, gas 108 generated in the engine cylinder is discharged through an exhaust manifold 109.

【0040】発熱抵抗式空気流量計の回路モジュール1
10から出力される空気流量信号,スロットル角度セン
サ111から出力されるスロットルバルブ開度信号,排
気マニホールド109に設けられた酸素濃度計112か
ら出力される酸素濃度信号及びエンジン回転速度計11
3から出力される回転速度信号を入力するコントロール
ユニット114はこれらの信号を演算して最適な燃料噴
射量とアイドルエアコントロールバルブ開度を求め、そ
の値を前記インジェクタ105及びアイドルエアコント
ロールバルブ115を制御する。
Circuit module 1 of heating resistance type air flow meter
10, a throttle valve opening signal output from a throttle angle sensor 111, an oxygen concentration signal output from an oximeter 112 provided in an exhaust manifold 109, and an engine speed meter 11.
The control unit 114, which receives the rotational speed signal output from the control unit 3, calculates the optimum fuel injection amount and the idle air control valve opening by calculating these signals, and determines the values by the injector 105 and the idle air control valve 115. Control.

【0041】[0041]

【発明の効果】発熱抵抗式空気流量測定装置としてのほ
とんどの機能をモジュールに持たせることにより、モジ
ュールを1つの製品として扱え、例えば、エアクリーナ
の一部や、吸気ダクトの一部等にモジュールを取付ける
ことにより、発熱抵抗式空気流量測定装置としての機能
を十分に果すことができさらに、1種類のモジュールを
各エンジンに流用できるためマッチング等が容易とな
り、内燃機関のシステムコストの低減を達成することが
可能となる。
The module can be treated as a single product by providing the module with most of the functions as a heating resistance type air flow measuring device. For example, the module can be attached to a part of an air cleaner or a part of an intake duct. By installing the module, the function as a heating resistance type air flow measuring device can be sufficiently performed. Further, since one type of module can be used for each engine, matching and the like become easy, and the system cost of the internal combustion engine is reduced. It becomes possible.

【0042】また、従来の主空気通路を構成するボディ
を要する発熱抵抗式空気流量測定においてもコストの
内、大きなウェイトを占めていたボディを単純な筒状に
することができる。また、上記した様に1種類のモジュ
ールに発熱抵抗式空気流量測定装置としての機能を持た
せることにより、ボディのメイン径のみにより搭載エン
ジンの排気量に応じた発熱抵抗式空気流量測定装置の標
準化及びシリーズ化ができ、これらの効果により従来の
副空気通路一体のボディを有する発熱抵抗式空気流量測
定装置と比べ約10〜20%程度コスト低減可能とな
る。
Also, in a conventional heating resistance type air flow measurement requiring a body constituting a main air passage, the body occupying a large weight can be formed into a simple cylindrical shape among the costs. In addition, as described above, by providing one type of module with a function as a heating resistance type air flow measurement device, standardization of the heating resistance type air flow measurement device according to the displacement of the mounted engine only by the main diameter of the body. With these effects, the cost can be reduced by about 10 to 20% as compared with a conventional heating resistance type air flow measuring device having a body having an integral sub air passage.

【0043】さらに、市場において、発熱抵抗式空気流
量測定装置に何らかの異常が生じた場合においてもモジ
ュール単品だけの交換で済むため市場における発熱抵抗
式空気流量測定装置の取扱い性の向上を図ることが可能
となる。
Further, in the market, even if any abnormality occurs in the heating resistance type air flow measuring device, only the module itself needs to be replaced, so that the handling of the heating resistance type air flow measuring device in the market can be improved. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す発熱抵抗式空気流量測
定装置の横断面図。
FIG. 1 is a cross-sectional view of a heating resistance type air flow measuring device according to an embodiment of the present invention.

【図2】図1を空気の流れの上流側から見た図。FIG. 2 is a diagram of FIG. 1 viewed from an upstream side of an air flow.

【図3】計測精度向上を目的とした一実施例を示す発熱
抵抗式空気流量測定装置の横断面。
FIG. 3 is a cross-sectional view of a heating resistance type air flow measuring device showing an embodiment for improving measurement accuracy.

【図4】図3を空気の流れの上流側から見た図。FIG. 4 is a view of FIG. 3 viewed from an upstream side of an air flow.

【図5】図3のモジュール単品図。FIG. 5 is a diagram of a single module of FIG. 3;

【図6】図5を副空気通路の出口方向から見た図。FIG. 6 is a view of FIG. 5 as viewed from an outlet direction of a sub air passage.

【図7】図6に対し副空気通路の上流側形状を変えた一
実施例。
7 is an embodiment in which the shape of the upstream side of the sub air passage is changed from FIG.

【図8】図7に対し副空気通路の上流側形状を変えた一
実施例。
8 is an embodiment in which the shape of the upstream side of the sub air passage is changed from FIG.

【図9】本発明の一実施例を示すスロットルボディ一体
形発熱抵抗式空気流量測定装置の横断面図。
FIG. 9 is a cross-sectional view of a throttle body-integrated heating resistance type air flow measuring device showing an embodiment of the present invention.

【図10】本発明の一実施例を示す発熱抵抗式空気流量
測定装置一体形エアクリーナの横断面図。
FIG. 10 is a cross-sectional view of an air cleaner integrated with a heating resistance type air flow measuring device showing an embodiment of the present invention.

【図11】本発明の一実施例を示す発熱抵抗式空気流量
測定装置内蔵形エアクリーナの横断面図。
FIG. 11 is a cross-sectional view of an air cleaner with a built-in heating resistance type air flow measuring device showing an embodiment of the present invention.

【図12】本発明の一実施例を示す、ボディ内径を広げ
た場合の発熱抵抗式空気流量測定装置の横断面図。
FIG. 12 is a cross-sectional view of a heating resistance type air flow measuring device when an inner diameter of a body is increased, showing one embodiment of the present invention.

【図13】図12を空気の流れの上流側から見た図。FIG. 13 is a view of FIG. 12 as viewed from the upstream side of the flow of air.

【図14】本発明品を用いた内燃機関の制御システム
図。
FIG. 14 is a control system diagram of an internal combustion engine using the product of the present invention.

【符号の説明】[Explanation of symbols]

1…発熱抵抗体、2…感温抵抗体、3…副流路、4…副
流路構成部材、5…主流路、6…流量計ボディ、7…ベ
ース部材、8…電子回路、9…回路ハウジング、10…
カバー、11…コネクタ、13…ターミナル、14…挿
入穴、15…取付固定面、16…ゴムパッキン、17…
流れ方向、18…ネジ、19…ホルダ、20…Oリン
グ、21…整流格子、22…導電性部材、23…バル
ブ、24,104…スロットルボディ、25…導入ダク
ト、26…上流側ケース部材、27…下流側ケース部
材、28…接続ダクト、29…フィルタ、30…吸気ダ
クト、31…ダクト、32…ボディ、33…取り付け
面、100…エアクリーナ、101…吸入空気、102…
発熱抵抗式空気流量測定装置、103…吸気ダクト、10
5…インジェクタ、106…マニホールド、107…エ
ンジンシリンダ、108…ガス、109…排気マニホー
ルド、110…回路モジュール、111…スロットル角
度センサ、112…酸素濃度計、113…回転速度計、
114…コントロールユニット、115…アイドルエア
コントロールバルブ、301…入口開口面、302…第
1通路、303…直角曲がり部、304…第2通路、3
05…出口開口面、306…受皿状入口、307…傾斜
面、308…出口庇、401…ホルダ挿入穴、402…
接合面、403…肉盗み穴、404…溝部。
DESCRIPTION OF SYMBOLS 1 ... Heating resistor, 2 ... Temperature sensitive resistor, 3 ... Sub flow path, 4 ... Sub flow path constituent member, 5 ... Main flow path, 6 ... Flow meter body, 7 ... Base member, 8 ... Electronic circuit, 9 ... Circuit housing, 10 ...
Cover, 11 connector, 13 terminal, 14 insertion hole, 15 mounting surface, 16 rubber packing, 17
Flow direction, 18: screw, 19: holder, 20: O-ring, 21: rectifying grid, 22: conductive member, 23: valve, 24, 104: throttle body, 25: introduction duct, 26: upstream case member, 27 ... Downstream case member, 28 ... Connection duct, 29 ... Filter, 30 ... Intake duct, 31 ... Duct, 32 ... Body, 33 ... Mounting surface, 100 ... Air cleaner, 101 ... Intake air, 102 ...
Heating resistance type air flow measuring device, 103 ... intake duct, 10
5: injector, 106: manifold, 107: engine cylinder, 108: gas, 109: exhaust manifold, 110: circuit module, 111: throttle angle sensor, 112: oxygen concentration meter, 113: tachometer,
114: control unit, 115: idle air control valve, 301: inlet opening surface, 302: first passage, 303: right-angled bent portion, 304: second passage, 3
05: outlet opening surface, 306: saucer-shaped inlet, 307: inclined surface, 308: outlet eave, 401: holder insertion hole, 402:
Joining surface, 403: hole for digging meat, 404: groove.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01F 1/68 101B (72)発明者 小林 千尋 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 (72)発明者 平山 宏 茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモティブエンジニアリング 株式会社内 (72)発明者 斉藤 孝行 茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモティブエンジニアリング 株式会社内 (72)発明者 荒井 信勝 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01F 1/68 101B (72) Inventor Chihiro Kobayashi 2520 Takada, Katsuta-shi, Ibaraki Prefecture Hitachi, Ltd. Automotive Equipment Within the business division (72) Inventor Hiroshi Hirayama 2477 Kashima Yatsu, Kata-shi, Ibaraki Pref.Hitachi Automotive Engineering Co., Ltd. Engineering Co., Ltd. (72) Inventor Nobukatsu Arai 502, Kandachi-cho, Tsuchiura-city, Ibaraki Pref.

Claims (36)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の吸気通路を構成する主流路と、
内部に発熱抵抗体と感温抵抗体とを有する副流路と、前
記発熱抵抗体及び前記感温抵抗体と電気的に接続された
電子回路とを備えた発熱抵抗式空気流量測定装置におい
て、前記副流路を構成する部材は前記電子回路のベース
に固定されているとともに、前記ベースと平行な面に前
記副流路の出口部が形成されていることを特徴とする発
熱抵抗式空気流量測定装置。
1. A main flow path constituting an intake passage of an internal combustion engine,
In a heating resistance type air flow measuring device including a sub flow path having a heating resistor and a temperature-sensitive resistor therein, and an electronic circuit electrically connected to the heating resistor and the temperature-sensitive resistor, The member constituting the sub-flow path is fixed to a base of the electronic circuit, and an outlet portion of the sub-flow path is formed on a surface parallel to the base. measuring device.
【請求項2】内燃機関の吸気通路を構成する主流路と、
内部に発熱抵抗体と感温抵抗体を備えた副流路と、前記
発熱抵抗体及び感温抵抗体と電気的に接続した電子回路
を有する発熱抵抗式空気流量測定装置において、 板状のベース部材の片面に前記電子回路及び電子回路を
内装保護する回路ハウジングを固定し、前記ベース部材
の電子回路固定面の反対側に前記発熱抵抗体及び感温抵
抗体を固定し、前記ベース部材と垂直な面に開口する入
口開口面から前記ベース部材と平行に形成される流路で
ある第1通路と、前記ベース部材と平行な面に開口する
出口開口面へ続く前記ベース部材と垂直に形成される流
路である第2通路からなるL字形の副流路を、前記発熱
抵抗体と感温抵抗体が前記副流路中に位置するように固
定して、回路部と副流路部を一体のモジュール化し、前
記主流路の壁面に設けた穴から前記副流路部を主流路中
に挿入し、前記ベース部材あるいは前記回路ハウジング
を主流路外壁面に固定してなることを特徴とする発熱抵
抗式空気流量測定装置。
2. A main flow path constituting an intake passage of an internal combustion engine;
In a heating resistance type air flow measuring device having a sub flow path having a heating resistor and a temperature sensing resistor therein, and an electronic circuit electrically connected to the heating resistor and the temperature sensing resistor, a plate-like base is provided. The electronic circuit and a circuit housing that internally protects the electronic circuit are fixed to one side of the member, and the heating resistor and the temperature-sensitive resistor are fixed to the opposite side of the electronic circuit fixing surface of the base member, and are perpendicular to the base member. A first passage that is a flow path formed in parallel with the base member from an inlet opening surface that opens on a flat surface, and is formed perpendicular to the base member that continues to an outlet opening surface that opens on a surface parallel to the base member. An L-shaped sub-flow path composed of a second passage, which is a flow path, is fixed so that the heating resistor and the temperature-sensitive resistor are located in the sub-flow path, and a circuit section and a sub-flow path section are formed. Integrated module, provided on the wall of the main flow path A heating resistance type air flow measuring device, wherein the sub flow path portion is inserted into a main flow path through a hole, and the base member or the circuit housing is fixed to an outer wall surface of the main flow path.
【請求項3】請求項2において、前記副流路の前記第1
通路の長さに対して、前記第2通路を約2倍の長さとし
ていることを特徴とする発熱抵抗式空気流量測定装置。
3. The method according to claim 2, wherein the first flow path of the sub flow path is provided.
The heating resistance type air flow measuring device, wherein the length of the second passage is approximately twice as long as the length of the passage.
【請求項4】請求項2または3において、前記副流路を
構成する部材の副流路部の前記ベース部材と平行な断面
の外形は、前記主流路の流れ方向に垂直な幅に対して、
主流路の流れ方向に平行な長さが1〜2倍の範囲である
ことを特徴とする発熱抵抗式空気流量測定装置。
4. The sub-channel according to claim 2, wherein the sub-channel portion of the sub-channel has a cross-sectional shape parallel to the base member with respect to a width perpendicular to a flow direction of the main channel. ,
A heating resistance type air flow measuring device, wherein a length parallel to a flow direction of a main flow path is in a range of 1 to 2 times.
【請求項5】請求項2ないし4のいずれかにおいて、前
記発熱抵抗体は前記副流路の第1通路中に位置し、前記
感温抵抗体は前記第1通路と第2通路の交点である直角
曲がり部に位置していることを特徴とする発熱抵抗式空
気流量測定装置。
5. The sub-flow passage according to claim 2, wherein the heating resistor is located in a first passage of the sub-flow passage, and the temperature-sensitive resistor is located at an intersection of the first passage and the second passage. A heating resistance type air flow measuring device, which is located at a certain right angle bend.
【請求項6】請求項2ないし5のいずれかにおいて、前
記副流路の第2通路の前記ベース部材と平行な断面形状
は、前記主流路の流れ方向と平行な長さより、主流路の
流れ方向に垂直な長さの方が長い形状としていることを
特徴とする発熱抵抗式空気流量測定装置。
6. The flow path of the main flow path according to claim 2, wherein a sectional shape of the second flow path of the sub flow path parallel to the base member has a length parallel to a flow direction of the main flow path. A heating resistance type air flow measuring device, characterized in that the length perpendicular to the direction is longer.
【請求項7】請求項2ないし6のいずれかにおいて、前
記主流路の壁面に設けた副流路部を挿入するための穴
は、前記ベース部材により覆いかくされることを特徴と
する発熱抵抗式空気流量測定装置。
7. The heating resistance type according to claim 2, wherein a hole provided in a wall surface of said main flow passage for inserting a sub flow passage portion is covered by said base member. Air flow measurement device.
【請求項8】請求項2ないし7のいずれかにおいて、前
記回路部と副流路部を一体化したモジュールは、前記主
流路に着脱可能に取り付けられることを特徴とする発熱
抵抗式空気流量測定装置。
8. A heating resistance type air flow measuring device according to claim 2, wherein the module in which the circuit section and the sub-flow path section are integrated is detachably attached to the main flow path. apparatus.
【請求項9】請求項2ないし8のいずれかにおいて、前
記発熱抵抗体及び感温抵抗体と、前記電子回路を電気的
に接続するターミナルは、絶縁材からなるホルダに保持
されて前記ベース部材を貫通するように固定され、前記
発熱抵抗体及び感温抵抗体は前記ターミナルあるいは前
記ホルダに固定され、前記副流路を構成する部材に設け
られた挿入穴に前記ホルダ及び前記ターミナルを差し込
んで、前記発熱抵抗体及び感温抵抗体が副流路内に位置
するように前記副流路を構成する部材を前記ベース部材
あるいは前記ホルダに固定してなることを特徴とする発
熱抵抗式空気流量測定装置。
9. The base member according to claim 2, wherein the terminal for electrically connecting the heating resistor and the temperature-sensitive resistor to the electronic circuit is held by a holder made of an insulating material. The heating resistor and the temperature-sensitive resistor are fixed to the terminal or the holder, and the holder and the terminal are inserted into insertion holes provided in a member constituting the sub flow path. Wherein a member constituting the sub flow passage is fixed to the base member or the holder so that the heating resistor and the temperature sensitive resistor are located in the sub flow passage, and a heating resistance air flow rate is provided. measuring device.
【請求項10】請求項9において、前記ホルダは前記ベ
ース部材と一体のプラスチック成形品であることを特徴
とする発熱抵抗式空気流量測定装置。
10. The heating resistance type air flow measuring device according to claim 9, wherein said holder is a plastic molded product integrated with said base member.
【請求項11】請求項2ないし10のいずれかにおい
て、前記ベース部材は箱状に形成されており、前記回路
ハウジングを兼ねていることを特徴とする発熱抵抗式空
気流量測定装置。
11. A heating resistance type air flow measuring device according to claim 2, wherein said base member is formed in a box shape and also serves as said circuit housing.
【請求項12】請求項2ないし11のいずれかにおい
て、前記副流路を構成する部材はプラスチック成形品で
あり、前記ホルダあるいは前記ベース部材に接着あるい
は溶着により固定されていることを特徴とする発熱抵抗
式空気流量測定装置。
12. A member according to claim 2, wherein the member forming the sub-flow path is a plastic molded product, and is fixed to the holder or the base member by adhesion or welding. Heating resistance type air flow measurement device.
【請求項13】請求項2ないし12のいずれかにおい
て、前記ホルダあるいは前記ベース部材と、前記副流路
を構成する部材の接合部に、両者を組み合わせることに
よって形成される溝を設け、その溝部にOリングを装着
していることを特徴とする発熱抵抗式空気流量測定装
置。
13. A groove according to claim 2, wherein a groove formed by combining the holder or the base member and a member constituting the sub-flow path is provided at a joint portion between the holder and the base member and the member constituting the sub-flow path. A heating resistance type air flow measuring device, characterized in that an O-ring is mounted on the device.
【請求項14】請求項2ないし13のいずれかにおい
て、前記主流路の壁面に設けた挿入穴は円形であり、前
記ホルダ、前記副流路構成部材あるいは前記ベース部材
の前記挿入穴に差し込まれる部分の円形外壁と前記挿入
穴の内壁間をOリングによりシールしていることを特徴
とする発熱抵抗式空気流量測定装置。
14. An insertion hole provided in a wall surface of the main flow path according to any one of claims 2 to 13, and is inserted into the insertion hole of the holder, the sub flow path constituent member or the base member. A heating resistance type air flow measuring device, wherein a portion between a circular outer wall and an inner wall of the insertion hole is sealed by an O-ring.
【請求項15】請求項2ないし13のいずれかにおい
て、前記ベース部材あるいは前記ホルダと、前記主流路
の外壁面の間をOリング,パッキンあるいはガスケット
等によりシールしていることを特徴とする発熱抵抗式空
気流量測定装置。
15. The heat generation apparatus according to claim 2, wherein a space between said base member or said holder and an outer wall surface of said main flow path is sealed with an O-ring, packing or gasket. Resistance type air flow measurement device.
【請求項16】請求項2ないし15のいずれかにおい
て、前記副流路構成部材の副流路部の前記ベース部材と
平行な断面の外形は、略長方形であることを特徴とする
発熱抵抗式空気流量測定装置。
16. The heating resistance type according to claim 2, wherein an outer shape of a cross section of said sub flow path component member parallel to said base member is substantially rectangular. Air flow measurement device.
【請求項17】請求項16において、前記副流路部の前
記ベース部材と平行な断面の外形は、前記副流路の入口
開口面のある辺が短辺となる台形、あるいは台形と長方
形を組み合わせた形状としていることを特徴とする発熱
抵抗式空気流量測定装置。
17. The external shape of a cross section of the sub flow passage portion parallel to the base member may be a trapezoid in which a side having an inlet opening surface of the sub flow passage is a short side, or a trapezoid and a rectangle. A heating resistance type air flow measuring device having a combined shape.
【請求項18】請求項16または17において、前記副
流路部の断面外形の前記主流路の下流側となる底面を円
弧状にしていることを特徴とする発熱抵抗式空気流量測
定装置。
18. A heating resistance type air flow measuring device according to claim 16, wherein a bottom surface of the cross-sectional shape of said sub-flow passage portion on the downstream side of said main flow passage is formed in an arc shape.
【請求項19】請求項16ないし18のいずれかにおい
て、前記主流路の壁面に設ける挿入穴は、前記副流路部
の断面外形の最も長い対角線の長さとほぼ同じ内径の円
形であることを特徴とする発熱抵抗式空気流量測定装
置。
19. The method according to claim 16, wherein the insertion hole provided in the wall surface of the main flow path has a circular shape having an inner diameter substantially equal to a length of a longest diagonal of a cross-sectional shape of the sub flow path. Characteristic heating resistance type air flow measurement device.
【請求項20】請求項16ないし19のいずれかにおい
て、前記副流路の入口開口幅に対して前記副流路部の断
面外形の前記入口開口面から前記主流路の下流側底面と
の長さを約2倍としていることを特徴とする発熱抵抗式
空気流量測定装置。
20. The apparatus according to claim 16, wherein a distance from the inlet opening of the cross-sectional shape of the sub-flow passage portion to the downstream bottom surface of the main flow passage is equal to an inlet opening width of the sub-flow passage. A heating resistance type air flow measuring device characterized in that the length is approximately doubled.
【請求項21】請求項2ないし20のいずれかにおい
て、前記副流路の入口開口面が、前記副流路の出口方向
に向けて延びる周囲に壁を残して堀り込んだ受皿状に形
成されていることを特徴とする発熱抵抗式空気流量測定
装置。
21. The sub-flow passage according to claim 2, wherein the inlet opening surface of the sub-flow passage is formed in a saucer shape dug out leaving a wall around the extension extending toward the outlet direction of the sub-flow passage. A heating resistance type air flow measuring device characterized in that:
【請求項22】請求項21において、前記副流路の第1
通路は前記主流路の中心線よりベース部材に近い位置に
設定され、前記副流路の入口開口面の受皿状の堀り込み
部分は前記主流路の中心線を含む範囲に形成されている
ことを特徴とする発熱抵抗式空気流量測定装置。
22. The method according to claim 21, wherein the first flow path of the sub flow path is provided.
The passage is set at a position closer to the base member than the center line of the main flow passage, and a saucer-shaped dug portion of the inlet opening surface of the sub flow passage is formed in a range including the center line of the main flow passage. A heating resistance type air flow measuring device characterized by the following.
【請求項23】前記請求項2ないし22のいずれかにお
いて、前記副流路の出口の前記主流路の上流部に、両側
に壁のある傾斜面を前記副流路構成部材に一体に形成し
ていることを特徴とする発熱抵抗式空気流量測定装置。
23. An apparatus according to claim 2, wherein an inclined surface having walls on both sides is formed integrally with said sub-flow path member at an upstream portion of said main flow path at an outlet of said sub-flow path. A heating resistance type air flow measuring device, characterized in that:
【請求項24】請求項2ないし23のいずれかにおい
て、前記副流路の出口の前記主流路の上流部に、ひさし
状の突起を前記副流路構成部材に一体に形成しているこ
とを特徴とする発熱抵抗式空気流量測定装置。
24. An apparatus according to claim 2, wherein an eaves-shaped projection is formed integrally with said sub-flow path constituting member at an outlet of said sub-flow path at an upstream portion of said main flow path. Characteristic heating resistance type air flow measurement device.
【請求項25】請求項2ないし24のいずれかにおい
て、前記感温抵抗体は、前記副流路の第1通路の中心軸
よりも前記ベース部材から離れた位置に固定されている
ことを特徴とする発熱抵抗式空気流量測定装置。
25. The temperature-sensitive resistor according to claim 2, wherein the temperature-sensitive resistor is fixed at a position farther from the base member than a center axis of the first passage of the sub-flow passage. Heat generation resistance type air flow measurement device.
【請求項26】請求項2ないし25のいずれかにおい
て、前記発熱抵抗体は、前記感温抵抗体よりも前記ベー
ス部材に近い位置に固定されていることを特徴とする発
熱抵抗式空気流量測定装置。
26. A heating resistance type air flow measuring device according to claim 2, wherein said heating resistor is fixed at a position closer to said base member than said temperature sensitive resistor. apparatus.
【請求項27】請求項21ないし26のいずれかにおい
て、前記発熱抵抗体と、前記副流路の第1通路の前記ベ
ース部材より最も離れた壁面の間隔が、前記受皿状開口
部の底面と前記第1通路により形成されるコーナと、前
記副流路の直角曲がり部の内側コーナの距離の1/2〜
1の範囲としていることを特徴とする発熱抵抗式空気流
量測定装置。
27. An apparatus according to claim 21, wherein a distance between said heat generating resistor and a wall surface of said first passage of said auxiliary passage farthest from said base member is equal to a distance between a bottom surface of said pan-shaped opening. 1/2 of the distance between the corner formed by the first passage and the inner corner of the right-angled bend of the sub flow path
1. A heating resistance type air flow measuring device, wherein the range is 1.
【請求項28】請求項27において、前記副流路の第1
通路のその流れ方向に垂直な断面の形状が、前記ベース
部材に近い部分が半円形で前記ベース部材から離れた部
分が長方形となっている半円と長方形を組み合わせた形
状となっていることを特徴とする発熱抵抗式空気流量測
定装置。
28. The method according to claim 27, wherein the first of the sub-flow paths is
The shape of the cross section of the passage perpendicular to the flow direction is a shape combining a semicircle and a rectangle in which a portion close to the base member is semicircular and a portion away from the base member is rectangular. Characteristic heating resistance type air flow measurement device.
【請求項29】請求項1ないし28のいずれかにおい
て、前記主流路をエアクリーナのハウジングと一体に形
成していることを特徴とする発熱抵抗式空気流量測定装
置。
29. A heating resistance type air flow measuring device according to claim 1, wherein said main flow passage is formed integrally with a housing of the air cleaner.
【請求項30】請求項1ないし28のいずれかにおい
て、主流路をスロットルボディと一体に形成しているこ
とを特徴とする発熱抵抗式空気流量測定装置。
30. A heating resistance type air flow measuring apparatus according to claim 1, wherein the main flow path is formed integrally with the throttle body.
【請求項31】請求項1ないし28のいずれかにおい
て、主流路をエンジンのインテークマニホールド構成物
に一体に形成していることを特徴とする発熱抵抗式空気
流量測定装置。
31. A heating resistance type air flow measuring device according to claim 1, wherein the main flow path is formed integrally with an intake manifold component of the engine.
【請求項32】請求項1ないし31のいずれかにおい
て、主流路の大きさが変化しても、副流路の出入口の主
流路内配置位置が主流路の中心に対して一定となるよう
に、主流路の中心とベース部材あるいはハウジングの固
定面の長さを主流路の大きさによらず一定としているこ
とを特徴とする発熱抵抗式空気流量測定装置。
32. In any one of claims 1 to 31, even if the size of the main flow path changes, the position of the inlet / outlet of the sub flow path in the main flow path is constant with respect to the center of the main flow path. A heating resistance type air flow measuring device, wherein the length of the center of the main flow path and the fixed surface of the base member or the housing are constant regardless of the size of the main flow path.
【請求項33】内燃機関の吸気通路を構成する主流路
と、内部に発熱抵抗体と感温抵抗体とを有する副流路と
を備えた発熱抵抗式空気流量測定装置において、 前記副流路は前記主流路の軸方向流路と半径方向流路と
から構成され、 前記軸方向流路の断面形状は半円と長方形を組み合せた
形状であることを特徴とする発熱抵抗式空気流量測定装
置。
33. A heating resistance type air flow measuring device comprising: a main flow passage constituting an intake passage of an internal combustion engine; and a sub flow passage having a heating resistor and a temperature-sensitive resistor therein. Is composed of an axial flow path and a radial flow path of the main flow path, and a cross-sectional shape of the axial flow path is a shape obtained by combining a semicircle and a rectangle. .
【請求項34】請求項33において、前記副流路を構成
する部材は前記発熱抵抗体が電気的に接続された電子回
路のベースに固定されていることを特徴とする発熱抵抗
式空気流量測定装置。
34. A heating resistance type air flow measuring apparatus according to claim 33, wherein a member constituting said sub flow path is fixed to a base of an electronic circuit to which said heating resistor is electrically connected. apparatus.
【請求項35】請求項34において、前記副流路の出口
部は前記ベースと平行な面に形成されていることを特徴
とする発熱抵抗体空気流量測定装置。
35. The heating resistor air flow measuring device according to claim 34, wherein the outlet of the sub-flow path is formed on a plane parallel to the base.
【請求項36】請求項1ないし35のいずれか記載の発
熱抵抗式空気流量装置を用いて内燃機関の制御を行うこ
とを特徴とする内燃機関の制御システム。
36. A control system for an internal combustion engine, wherein the control of the internal combustion engine is performed using the heating resistance type air flow device according to any one of claims 1 to 35.
JP2000254272A 2000-08-21 2000-08-21 Air flow measurement device Expired - Lifetime JP3782650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000254272A JP3782650B2 (en) 2000-08-21 2000-08-21 Air flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000254272A JP3782650B2 (en) 2000-08-21 2000-08-21 Air flow measurement device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11624094A Division JP3260552B2 (en) 1993-09-14 1994-05-30 Heating resistance type air flow measurement device

Publications (2)

Publication Number Publication Date
JP2001099688A true JP2001099688A (en) 2001-04-13
JP3782650B2 JP3782650B2 (en) 2006-06-07

Family

ID=18743249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000254272A Expired - Lifetime JP3782650B2 (en) 2000-08-21 2000-08-21 Air flow measurement device

Country Status (1)

Country Link
JP (1) JP3782650B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6805002B2 (en) 2002-05-13 2004-10-19 Mitsubishi Denki Kabushiki Kaisha Air flow rate measuring apparatus
EP1530029A1 (en) 2003-11-07 2005-05-11 Toyota Boshoku Kabushiki Kaisha Flow duct with flowmeter
EP2850308B1 (en) 2012-05-14 2016-06-15 Continental Automotive GmbH Oxygen sensor and internal combustion engine comprising such a sensor
CN115290156A (en) * 2022-07-15 2022-11-04 温州荣际新能源有限公司 Air flow sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6805002B2 (en) 2002-05-13 2004-10-19 Mitsubishi Denki Kabushiki Kaisha Air flow rate measuring apparatus
EP1530029A1 (en) 2003-11-07 2005-05-11 Toyota Boshoku Kabushiki Kaisha Flow duct with flowmeter
EP2850308B1 (en) 2012-05-14 2016-06-15 Continental Automotive GmbH Oxygen sensor and internal combustion engine comprising such a sensor
US9791405B2 (en) 2012-05-14 2017-10-17 Continental Automotive Gmbh Oxygen sensor and internal combustion engine comprising said sensor
CN115290156A (en) * 2022-07-15 2022-11-04 温州荣际新能源有限公司 Air flow sensor

Also Published As

Publication number Publication date
JP3782650B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JP3193837B2 (en) Heating resistance type flow measurement device
US7530267B2 (en) Flow rate measuring apparatus
JPH085430A (en) Thermal type flow meter
JP3260552B2 (en) Heating resistance type air flow measurement device
JP6069504B2 (en) Temperature / humidity sensor
US6612167B2 (en) Air flow meter having turbulence reduction member
JP2001099688A (en) Heating resistance type apparatus for measuring air flow rate
JP3716193B2 (en) Heat resistance type air flow measuring device
JPH08297040A (en) Air flow rate measuring apparatus
JP4006463B2 (en) Flow rate measuring module and internal combustion engine control method
JP3793765B2 (en) Heat generation resistance type air flow measurement module
JP4512616B2 (en) Air flow measurement module
JP3561219B2 (en) Heating resistance type flow measurement device
JP3867106B2 (en) Air flow measurement module
JP2000310552A (en) Air flowmeter
JP3593011B2 (en) Heating resistance type flow measurement device
JPH08297039A (en) Heating element type air flow measuring apparatus
JP3593042B2 (en) Heating resistance type flow measurement device
JP2000002573A (en) Gas flow rate measuring apparatus
JP3189636B2 (en) Heating resistance type flow measurement device
JPH10281836A (en) Heating resistor type air flow rate measuring equipment
JP3612503B2 (en) Air flow measurement device
JP2001033288A (en) Air flow rate measuring device
JP2003042823A (en) Air flow rate-measuring instrument and air cleaner for composing the same
JP2000009513A (en) Flow rate-measuring device and air cleaner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060310

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350