JP3793765B2 - Heat generation resistance type air flow measurement module - Google Patents

Heat generation resistance type air flow measurement module Download PDF

Info

Publication number
JP3793765B2
JP3793765B2 JP2003202167A JP2003202167A JP3793765B2 JP 3793765 B2 JP3793765 B2 JP 3793765B2 JP 2003202167 A JP2003202167 A JP 2003202167A JP 2003202167 A JP2003202167 A JP 2003202167A JP 3793765 B2 JP3793765 B2 JP 3793765B2
Authority
JP
Japan
Prior art keywords
sub
flow path
channel
flow
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003202167A
Other languages
Japanese (ja)
Other versions
JP2004004110A (en
Inventor
信弥 五十嵐
千尋 小林
宏 平山
孝行 斉藤
信勝 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2003202167A priority Critical patent/JP3793765B2/en
Publication of JP2004004110A publication Critical patent/JP2004004110A/en
Application granted granted Critical
Publication of JP3793765B2 publication Critical patent/JP3793765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の吸気系を構成してその吸入空気流量を測定する空気流量測定装置に係り、特に自動車のエンジンに吸入される空気流量を測定するのに適する発熱抵抗式空気流量測定装置に関する。
【0002】
【従来の技術】
本発明に最も近い公知例として、特許公報平4−75385号記載の空気流量計がある。しかし、特許公報平4−75385号では、主流路,副流路及び回路部の取付固定法については開示されておらず、また、副流路が主流路内をブリッジ状に両端支持される構造となっているため、本発明の第一の目的である回路部と副流路部を一体のモジュール化し、主流路の大きさによらず標準化したモジュールを種々の内燃機関に適用可能な構造とはなっていない。また、副流路の構造が複雑になるため計測精度の劣化が懸念され、数部品を結合して形成する必要が生じるためコストが高くなること等から実用化に適するものには至っていない。さらに、主流路が吸気系の異なる位置に配置されることによる環境の変化への対応やモジュールと主流路の取付ばらつきへの対応について十分考慮した構造とはなっていない。
【0003】
【発明が解決しようとする課題】
本発明は、発熱抵抗式空気流量測定装置の最大の課題である内燃機関のシステムコストの低減を達成するために、回路部と副流路部を一体化したモジュールに発熱抵抗式空気流量測定装置のほとんどの機能を持たせ、そのモジュールをひとつの製品として取り扱えるようにしたものである。また、これを真に実用化可能とするために、小形,軽量化,環境変化や取付ばらつきによる計測精度悪化の低減を図り、さらに取り扱い性の向上を図ったものである。
【0004】
【課題を解決するための手段】
上記課題は、電子回路を内蔵した回路ハウジングと、曲がり部を有する副流路が構成された副流路構成部材と、前記副流路内に配置される検出素子とが一体に構成され、前記副流路構成部材を主流路を構成する壁に設けられた挿入穴から挿入し、前記副流路が前記主流路内に位置するよう前記副流路構成部材を設置する空気流量モジュールであって、前記副流路構成部材はプラスチック製であり、プラスチック製のホルダの片側に一体に組み付けられると共に、前記副流路構成部材が前記ホルダに組み付けられた時に溝が形成され、この溝に前記挿入穴とのシールを行うシール材が設けられ、前記プラスチック製のホルダは前記副流路構成部材の反対側でベース部材に固定され、かつ前記検出素子が固定されるターミナルが前記ホルダの内部を貫通し前記検出素子が前記副流路内に位置するよう前記副流路構成部材と一体化され、前記副流路内に設置される副流路構成部材は、前記ホルダと前記ベース部材を介して前記主流路を構成する壁に固定支持されると共に前記シール材によって前記主流路を構成する壁とのシールを行うようにしたことを特徴とする空気流量測定モジュールにより解決される。
【発明の実施の形態】
まず、簡単に実施例を説明する。
内燃機関のシステムコストを低減するために、発熱抵抗式空気流量測定装置のコスト低減と他の吸気系部品との一体化によるシステムの部品点数の削減を図っている。まず、回路部と副流路部を一体化したモジュールとすることによって、比較的コストの高い流量計ボディを単純管路である主流路と主流路の壁面に設けた穴と回路の固定面で構成し、大幅なコスト低減を可能とした。また、副流路を構成する部品の形状も単純化及び小型化し、回路部との一体化も容易とし、回路部と副流路部を結合する部品の一体化を図り空気流量測定装置のコスト低減を達成した。さらに、流量計ボディの形状が単純化されたため、流量計ボディを別部材で作成せず他の吸気系部品と一体に形成することを可能とし、システムの部品点数を削減した。また、主流路の設定される位置や主流路の大きさが変わっても標準化したモジュールを適用可能としている。
【0005】
小形・軽量化のためには、副流路をその機能を損なうことなく、副流路形状の単純化,曲がり流路による通路全長の維持,感温抵抗体の副流路の直角曲がり部への配置,副流路の主流方向に垂直な第2通路を主流方向より主流と垂直な方向が長い断面形状とすることなどで副流路の主流方向長さを低減し、副流路の主流方向に垂直な第2通路も短く抑えて副流路を構成する部材を小型・軽量化するとともに、主流路中の副流路構成部材の占める割合を小さくし、副流路形状も圧力損失を生じにくくすることで主流路の断面積を大きくせずにすむ構造として主流路の小型・軽量化を可能としている。また、副流路を挿入するための主流路壁面の穴は、副流路を構成する部材の幅と長さの比を大きくしないようにして径の小さい円形とすることを可能として、挿入穴の形成を容易化し、回路の小型化に対応できるようにした。
【0006】
環境変化への対応としては、主流路内の空気の流れが吸気系の位置によって変化することへの対応と、空気流量測定装置の置かれる位置による温度変化への対応を図っている。主流路中に脈動流が生じることによる計測誤差に対しては、副流路をL字形の曲がり流路とし、主流方向に平行な第1通路と垂直な第2通路の長さの比を最適化しており、逆流の発生に対しては、副流路の出口開口面を主流方向と平行な面に形成し、出口部の上流にひさし状の突起を設けている。主流路の偏流による計測誤差に対しては、副流路の入口開口面を受皿状とし、出口上流に傾斜面を設けるとともに、主流路中の副流路の出入口の配置を最適化している。主流路の乱流,旋回流に対しては、副流路の全長を十分長くし、第1通路の断面積に対して第2通路の断面積を大きくすることを可能とし、出口上流に両側に壁のある傾斜面を設けている。温度変化に対しては、吸入空気の温度を計測する感温抵抗体をベース部材から離れた位置で副流路の直角曲がり部の内側コーナの近くに固定し、発熱抵抗体は感温抵抗体よりもベース部材に近い位置に固定している。また、発熱抵抗体の固定位置による計測精度の悪化を防止するために、副流路の入口開口部の受皿状の底面と第1通路が作るコーナから発熱抵抗体の間隔を適正化している。
【0007】
モジュールの主流路への取付ばらつきに対しては、副流路を構成する部材の副流路部のベース部材と平行な断面の外形を長方形あるいは台形等副流路の入口開口面のある主流方向と垂直な面と主流方向と平行な面が設けられる形状とすること、副流路の出口開口面を主流方向と平行な面に形成し、入口開口面の出口方向を堀り込んだ受皿状としていることにより対応している。
【0008】
取り扱い性の向上に対しては、回路部と副流路部が一体のモジュールとなっていること、主流路の挿入穴はベース部材で覆いかくされる大きさとし、Oリング,パッキンガスケット等により、挿入穴部からの空気もれを防止可能としていること、Oリングを装着する溝を形成しOリング付のモジュール化を達成していること及びモジュールを主流路に着脱可能に固定していることにより対応している。
【0009】
回路部と副流路部を一体化したモジュールとし、そのモジュールに発熱抵抗式空気流量測定装置のほとんどの機能を持たせたことにより、モジュールはひとつの製品として取り扱えるものとなった。これにより、内燃機関を取りまとめる企業、例えば自動車メーカは、安価な発熱抵抗式空気流量測定装置を得ることができ、また、吸気系の自由なレイアウトが可能となる。
【0010】
モジュールは、電子回路を回路ハウジング及びカバーにより保護し、発熱抵抗体及び感温抵抗体は副流路構成部材により保護されているため、取り扱いによる事故を防止している。
【0011】
副流路をL字形の曲がり流路とすることにより、副流路の全長を十分に長く設定できるため、副流路の出口部の主流路の空気の流れの乱れによる発熱抵抗体付近の空気の流れへの影響を軽減している。また、副流路の出口上流に両側に壁のある傾斜面を設けた構造により、副流路出口部の主流路の流れを方向性の整った慣性力の強い安定した流れと、主流路の流れの乱れ自体を低減している。副流路の入口開口面を主流路の流れ方向に垂直な面に開口し、出口開口面を主流方向に平行な面に開口しているのは、入口に動圧を受け出口を静圧で引くようにして出入口間の圧力差を高め、副流路に流入する空気の流速を高めて副流路内の流れを安定化するためである。さらに、副流路の第2通路の断面形状を幅広くしているのは、副流路構成部材の主流方向の長さを短く抑えながら断面積を確保して副流路が直角に曲がることで生じる流れのはく離による第2通路の流れ面積の減少を補い、副流路に流入する空気の流速減少を防止して発熱抵抗体付近の流れを安定化するためである。このように、副流路内、特に発熱抵抗体付近の流れを安定化することにより空気流量測定装置の出力ノイズを減少し計測精度を高める効果がある。また、L字形の副流路は、主流路に脈動流が生じた時の発熱抵抗体の放熱特性の非線形性と応答遅れにより生じるマイナス誤差を、副流路の出入口間の主流路の相対長さに対して副流路の長さを長くとり造流路内の流れに慣性効果を持たせることで脈動時の出力をプラス変化させて前記マイナス誤差を相殺し、脈動による出力誤差を低減する効果がある。副流路の第1通路の長さに対して第2通路の長さを2倍としているのは、前記のL字形副流路における慣性効果の度合を前記マイナス誤差を相殺するのに最適な長さ比としたものである。さらに、副流路の出口開口面をベース部材と平行な面に設け、副流路構成部材を回路側に固定した片持ち構造としているため、主流路の壁面に回路部を固定することで副流路部も主流路に固定され、片持ちのため主流路の大きさが異なる場合でも主流路の中心と回路部取付面の間隔を一定にすることにより、主流路の中心と副流路の出入口の位置を変えずに標準化したモジュールを適用することが可能である。
【0012】
発熱抵抗体を第1通路中に、感温抵抗体を直角曲がり部に配置するのは、第1通路の長さを短く抑えることを可能とするためで、両抵抗体を近接して配置することによる熱的流れ的干渉を防止し、発熱抵抗体は流れの安定化を図りやすい第1通路に配置することで計測誤差を低減している。第1通路の長さを短くして副流路構成部材の主流と変更な長さを短くできると、その長さを、副流路構成部材の幅が空気流量計の圧力損失の増加が問題とならない程度に小さくても2倍以内とすることができるため、主流路の壁面に設ける副流路を差し込むための挿入穴を比較的小さな円形とできるため、挿入穴の形成が容易となり、主流路形成の複雑化,大型化を防止できる。また、挿入穴はベース部材に覆いかくされる大きさにできるため、回路部のさらなる小型化に対する余裕を確保でき、ベース部材の底面と主流路の外壁の回路部固定面の間を、Oリング,パッキン,ガスケットなどでシールし、挿入穴部から主流路内外の空気もれを防止でき、空気もれによる計測誤差を防止できる。また、挿入穴を円形としているのでOリングによる径シールも可能である。
【0013】
ベース部材を基準にして、ターミナルをホルダに保持してベース部材を貫通するように固定し、ベース部材の上面に電子回路,回路ハウジングを固定し、回路ハウジングの上面をカバーで覆い、ベース部材の下面のターミナルあるいはホルダに発熱抵抗体及び感温抵抗体を固定し、副流路構成部材に設けた穴にホルダ及びターミナルを挿入して、発熱抵抗体と感温抵抗体が副流路内に位置するように副流路構成部材をホルダあるいはベース部材に固定する方法は、製造が容易であり、生産コストの低減が図れる。さらに、ベース部材と回路ハウジング,ベース部材とホルダ等の一体化が可能であるため、部品の点数の削減が可能で一層のコスト低減が図れる。また、各部品の固定は、インサート成形,接着,溶着等固定のための追加部品を要せずに行える構造となっている。さらに、副流路構成部材とホルダあるいはベース部材の接合面に溝を形成することができ、その溝にOリングを装着しておけば挿入穴のシールのためのOリングを脱落の心配無しに一体化したモジュールが得られ、取り扱い性をより向上したモジュールが得られる。
【0014】
副流路構成部材の副流路部のベース部材と平行な断面の外形を長方形あるいは台形等副流路の入口開口面のある主流方向と垂直な面と主流方向と平行な面のある形状とすることにより、モジュールを主流路へ取り付けた時のモジュール回転方向に対する取付角度のばらつきによる計測誤差を低減できる。主流路の流れ方向に対してモジュールの取付角度が曲がっていると副流路の入口開口面の有効面積(主流方向に垂直な断面に投影した面積)が減少するため、副流路へ流入する空気流量が減少しマイナス側の出力誤差を引き起こすように作用する。反面、副流路構成部材の主流に平行な面は、モジュールの取付角度が曲がっていると主流路の有効面積を減少するため、副流路へ流入する空気流量を増加しプラス側の出力誤差を引き起こすように作用するため、両作用が相殺されてモジュール取付角度のばらつきによる計測誤差を低減できる。一般的な主流路の断面積及び副流路構成部材の大きさを考慮すると、副流路入口開口部の幅に対して主流方向に平行な面の主流方向長さを約2倍程度とすると上記の相殺効果が適切となる。副流路構成部材の副流路部のベース部材と平行な断面の外形と、台形あるいは台形と長方形を組み合わせた形状としているのは、上記の取付角度の影響低減効果を損なわず、また、第2通路の断面積を減少させずに副流路構成部材の上面に生じる動圧を減少し、空気流量測定装置の圧力損失を低減するためである。さらに、副流路構成部材の下流底面を円弧状にしているのは、下流のはく離渦を小さくし圧力損失を低減するためと、第2通路の断面も一辺を円弧状として拡大することも可能なためである。前記副流路の断面外形の最も長い対角線の長さと主流路の壁面に設けた円形の挿入穴の直径をほぼ同じにしているのは、挿入穴を小さく抑えるためである。
【0015】
副流路の入口開口面の出口方向を堀り下げた受皿状にしているのは、主流路の広範囲の部分から副流路に空気を取り込むようにし、主流路中に偏流が生じた時の計測誤差を低減することが第1の目的である。この偏流時の計測誤差の低減作用は、副流路出口上流の傾斜面にもある。偏流により、出口上流の流速が速くなると傾斜面の下流に生じるはく離域が広がり、副流路出口の吸い出し効果が大きくなって副流路に流入する空気流量が増加し、反対に出口上流の流速が遅くなると出口のはく離域が小さくなり副流路に流入する空気流量が減少するため、副流路の入口開口面の上流流速の変化による副流路流入流量の影響度とうまく相殺し合う位置関係に出入口を設置すると偏流による計測誤差が低減できる。この作用が最も有効となるのは、第1通路を主流路の中心から偏心した位置に設け、主流路の中心付近を含む範囲に受皿状の部分を広げ、副流路の出口を主流路の中心に対して入口の反対部分に設けた時である。また、この受皿状の入口開口部は、回路固定面や主流路壁面の挿入穴が傾いたことによる副流路構成部材の上下流方向の傾きばらつきによる計測誤差の低減効果がある。副流路の出口方向が主流路の上流方向に傾くと、出口開口面は主流路の上流側から見えるようになる方向に傾くため、出口開口面に若干の動圧が生じる、あるいは負圧が減少するため、副流路の出入口間の圧力差が小さくなり副流路へ流入する空気流量が減少し、マイナスの計測誤差を生じるように作用する。一方、受皿状の開口面は第1通路が下流になる方向に傾くため、主流路の中心付近の流れをより副流路へ導きやすくするとともに、第1通路中に生じるはく離域が大きくなり発熱抵抗体付近の流速を速めるためプラス側の計測誤差を生じるように作用する。この両作用は互いに相殺し合うため、上記の副流路構成部材の傾きばらつきによる計測誤差を低減できる。反対に出口が下流側になるように傾くと、出口部は負圧が大きくなり、入口部は副流路に空気の取り入れにくい方向に傾くとともに第1通路内のはく離域を小さくするため、出入口の作用が相殺し合って計測誤差を低減できる。
【0016】
感温抵抗体を第1通路の中心線よりベース部材から離れる位置に固定するのは、感温抵抗体を直角曲がり部の中で最も流速の速い内側コーナ近くに位置させ、吸気温度の検出精度を向上させるとともに、吸入空気温度と空気流量測定装置の周囲の温度に差が生じるような温度環境下において、ターミナルやホルダを介しての熱伝導により、例えば周囲温度が高い時、周囲からホルダ及びターミナルを伝わった熱により感温抵抗体の温度が吸気温度より高くなるような吸気温度検出誤差を減少する作用を持たせるためである。感温抵抗体が吸気温度より高く誤計測するとプラス側の流量計測誤差を生じる。一方、発熱抵抗体は、周囲温度が高い環境下ではターミナル及びボルダへの熱伝導による放熱量が減少するためマイナス側の流量計測誤差を生じるように作用する。従って、両抵抗体への影響度を等しくすれば吸気温度と周囲温度が異なる環境での計測誤差を低減できる。実際には、両抵抗体の温度の違いにより、熱伝導の影響度及び空気への熱伝達による影響度が異なるため、単純に発熱抵抗体と感温抵抗体のターミナル及びホルダの熱抵抗を等しくしても不十分であり、感温抵抗体側は熱抵抗を大きくし、発熱抵抗体側は感温抵抗体側より熱抵抗を小さくすると良い。感温抵抗体をベース部材より離れた位置に固定し、発熱抵抗体を感温抵抗体よりベース部材に近づけて固定することにより、上記の温度環境下での計測誤差を低減するための両抵抗体の適切な熱的バランスを容易に得ることができる。
【0017】
発熱抵抗体の第1通路内の配置位置は、第1通路内の主流内、すなわち流速が速く安定した流れの中に配置する必要がある。従って、上記のような温度環境を考慮した発熱抵抗体の配置に際しても、感温抵抗体との位置関係のみでなく第1通路中の位置に対しても配慮しなければならない。単純円管通路であれば主流はその中心付近となるが、受皿状の開口面を持つ直角曲がり通路での第1通路中の主流の位置を決定する要因として、受皿状入口開口面の底面と第1通路によって形成される第1のコーナにより生じるはく離流により主流を管路中心よりもベース部材方向に動かす作用と、直角曲がり部で内側コーナ(第2のコーナ)近くの流速が速くなることにより主流を管路中心よりもベース部材から離れる方向に動かす作用がある。すなわち、前記第1のコーナと第2のコーナの位置関係が第1通路内の主流の位置に影響し、両コーナを結ぶ壁面である第1通路のベース部材から最も離れた内壁と発熱抵抗体との間隔を適切にとれば、発熱抵抗体を第1通路の主流中に配置することができる。一般的な副流路の大きさでは、第1通路のベース部材から最も離れた内壁から上記第1のコーナと第2のコーナの間隔の1/2〜1倍ベース部材方向に離れた部分が第1通路の主流の範囲となる。
【0018】
第1通路の断面形状を半円と長方形を組み合わせた形とするのは、発熱抵抗体と感温抵抗体の位置関係を適切としながら、発熱抵抗体を第1通路の主流内に配置するためのひとつの手段である。すなわち、発熱抵抗体の位置は感温抵抗体との関係から最適化し、第1通路の主流の位置を発熱抵抗体付近に動かすために、前記第1のコーナと第2のコーナを持つベース部材から最も離れた第1通路内壁の位置を自由に設定できる形状としたものである。
【0019】
以上のように、本発明の副流路部の構成には、環境変化や取付ばらつき及び装着性に対する多くの機能を持たせているが、副流路構成部材は、複数の部品を組み合わせる必要が無く、ひとつのプラスチック成形品として形成可能な単純な形状を維持している。従って、モジュール自体のコストを安く抑えることを可能としている。また、主流路の形状を単純化できたこと、モジュールがひとつの製品として取り扱うことが可能な機能,構造となっていること、環境変化や取付ばらつきにも対応できること等から、他の吸気系部品に主流路を一体化することが可能となり、また、モジュールの標準化も可能なことから内燃機関のシステムコストの低減も達成できる。さらに、モジュールは、回路部を主流路外壁に取り付けるだけで主流路に固定可能としているので装着性が良く、着脱可能に固定することも容易である。着脱可能な固定とすれば、市場での故障等への対応もモジュール部のみを交換することで容易に対応できる。
【0020】
次に、本発明の実施例を図1〜図14により説明する。
【0021】
図1は本発明の一実施例の横断面図であり、図2はその上流側(左側)から見た外観図である。
【0022】
ベース部材7の上面には、電子回路8及び回路ハウジング9が固定され、外部機器と電気的に接続するためのコネクタ11は回路ハウジング9に一体化され、回路ハウジング9の上面はカバー10によって覆われている。電子回路8と電気的に接続しているターミナル13はベース部材7の下面方向に引き出され、発熱抵抗体1と感温抵抗体2がターミナル13と電気的に接続されて固定されている。副流路3は、ベース部材7と垂直な面に開口する入口開口面301と、入口開口面からベース部材と平行に延びる第1通路302と、ベース部材と垂直な方向に延びる第1通路の約2倍の長さを有する第2通路304と、ベース部材と垂直な面に開口する出口開口面305及び第1通路302と第2通路304の交点部分にあたる直角曲がり部303によって構成されるL字形の流路であり、発熱抵抗体1が第1通路302内に、感温抵抗体2が直角曲がり部303内に位置するように、副流路構成部材4がベース部材7に固定される。上記によって、発熱抵抗式空気流量測定装置の回路部と副流路部を一体化したモジュールが構成される。
【0023】
一方、主流路5を構成する流量計ボディ6の壁面には、副流路構成部材4を差し込むための挿入穴14及びベース部材7を取り付ける取付固定面15が設けられている。この流量計ボディ6に、副流路3の第1通路302が主流路5の流れ方向17と平行になるように副流路構成部材4を挿入穴14から主流路5内に差し込み、挿入穴14の周囲がシールされるように取付固定面15とベース部材7の底面の間にゴムパッキン16をはさんでベース部材7が主流路外壁にネジ18により固定されている。
【0024】
上記実施例に対して、さらに種々の環境下における計測精度の悪化を低減する構成及び副流路構成部材とベース部材の固定法を具体化した実施例の横断面図を図3に、その上流側(左側)から見た外観図を図4に示す。
【0025】
ターミナル13がホルダ19の内部を貫通するようにターミナル13をホルダ19と一体化し、ベース部材7の穴部を通してベース部材7とホルダ19が固定される。ここで、ターミナル13とホルダ19及びベース部材7の種々の固定法を挙げると、ターミナル13及びベース部材7が金属製でホルダ19がプラスチック製で、ホルダ19の成形時にターミナル13とベース部材7をインサート成形することにより3者を一体化する方法,ターミナル13とホルダ19をインサート成形しベース部材7と接着等により固定する方法、あるいは、図3では別部材として示しているが、ベース部材7とホルダ19をひとつのプラスチック成形品としてターミナル13をインサート成形する方法、及び、最も部品点数を少なくするために、回路ハウジング9とベース部材7とホルダ19をひとつのプラスチック成形品としてターミナル13をインサート成形する方法等がある。電子回路8は、ベース部材7あるいはホルダ19の上面に固定され、ターミナル13とワイヤ等の導電性部材22を介して電気的に接続される。また、回路ハウジング9もベース部材7の上面に固定され、回路ハウジング9の上面はカバー10を固定することによって覆われる。
【0026】
一方、ターミナル13の電子回路8の反対端部には、発熱抵抗体1及び感温抵抗体2が電気的に接続固定される。本実施例では、感温抵抗体2を副流路3の直角曲がり部303の内部でその内側コーナ近くに位置するように固定し、発熱抵抗体1は副流路3の第1通路302内で感温抵抗体2よりもベース部材7に近い位置になるように固定して、温度変化の激しい環境においても計測誤差を低減できる構成としている。
【0027】
副流路構成部材4には、前記第一の実施例と同様に入口開口面301,第1通路302,直角曲がり部303,第2通路304,出口開口面305から構成されるL字形の流路に加えて、副流路3内に取り込む空気を広範囲、特に主流路5の中心付近から導くことを目的とした周囲に壁を残して堀り込んだ受皿状入口 306,出口部の流れを安定化することを目的とした両側に壁のある傾斜面307とその傾斜面の先端を出口開口面305より下方に出張らせた出口庇308、及び、ホルダ19を挿入する穴401とホルダ19との接合面402が設けられている。また、副流路3の第1通路302は、発熱抵抗体1の固定位置を温度影響を優先して第1通路302の中心よりもベース部材7に近付く方向として、第1通路302の流れと垂直な断面中で流速が比較的速く流れの安定した範囲を発熱抵抗体1の固定部に持ってくるために、半円形と長方形を合わせた断面形状とし、受皿状入口306の底面と第1通路302の作るコーナと直角曲がり部303の内側コーナの間隔に対して前記両コーナをつなぐ第1通路302の内壁と発熱抵抗体1の間隔が1/2から1(同間隔)となるようにしている。さらに、第2通路304と平行な肉盗み穴403を設け、副流路構成部材4を均肉化しプラスチック成形のひけによる形状変化を防止するとともに、材料費及び重量を低減している。
【0028】
この副流路構成部材4は、ホルダ挿入穴401にホルダ19を差し込み、接合面402でホルダ19と接着固定される。ここで、ホルダ19に設けた段差と副流路構成部材の接合面402により溝部404が形成される。この溝部404はOリング20の装着溝であり、Oリング20により主流路壁面の挿入穴14がシールされる構成となっている。上記により、回路部と副流路部及び挿入穴シール用のOリングが一体化したモジュールが構成される。
【0029】
これを前記第一の実施例と同様に流量計ボディ6に固定することにより、発熱抵抗式空気流量測定装置が完成される。本実施例では挿入穴シール用のOリングがモジュールに装着されているため、ゴムパッキンは不要である。本実施例では、回路ハウジング9をベース部材7とともにネジ18にて固定し回路ハウジングの固定強度を増加したものを示しており、また、流量計ボディ6の主流路5の入口面に整流格子21を装着し、さらに計測精度を改善したものを示している。
【0030】
図5は第二の実施例で示した発熱抵抗式空気流量測定装置の回路部と副流路部を一体化したモジュールの横断面図で、図6はその下方(出口方向)から見た外観図である。
【0031】
副流路構成部材4のベース部材7と平行な断面の外形は、ホルダ19の挿入部が円形で、副流路部が第1通路の流れ方向と垂直な辺の長さに対して第1通路の流れ方向と平行な辺の長さが1〜2倍になっている長方形としている。また、ホルダ19の主流路壁面の挿入穴14に差し込まれる部分の外形も円形としており、その直径を副流路部の長方形断面の対角線の長さとほぼ等しくしているため、主流路壁面に設ける挿入穴を比較的小さな円形とすることができる。さらに、副流路の入口開口面301の第2通路304の流れ方向と垂直な開口幅は、前記副流路部の長方形断面の第1通路302と平行な辺の長さの約1/2としており、第2通路304の断面形状は、第1通路302と平行な辺より垂直な辺の方が長い長方形としている。
【0032】
図7及び図8は、図6と同様に図5の下方から見た外観図である。図7は、ホルダ19の主流路壁面の挿入穴14に差し込まれる部分のベース部材7と平行な断面の外形は図6と同じ直径の円形とし、副流路の第2通路304の形状も図6と等しくして、副流路構成部材4の副流路部のベース部材7と平行な断面の外形を台形と長方形を組み合わせた形状としたものである。図8は、さらに第2通路の下流側底面及び副流路部の断面外形の下流側底面を円弧状としたものである。
【0033】
図9はエンジンの吸入空気量をコントロールするバルブ23を有するスロットルボディ24に図5に示したモジュールを挿入して成る発熱抵抗式空気流量測定装置を示したものである。流量計測部はバルブ上流に配置しており、空気の流れは図示左側から右側へ流れる。副空気通路を持つスロットルボディ一体形発熱抵抗式空気流量計は、既に製品化されているが、副空気通路部材がスロットルボディと一体で構成されているか、又は、モジュールの回路を覆うハウジング部材がスロットルボディと一体で構成されておりスロットルボディの構造がかなり複雑化してしまう。これに対し、図9に示す本発明の実施例によればハウジング部材及び副空気通路部材がモジュールと一体化されているため、スロットルボディの構造を簡素化することが可能となる。また、スロットルバルブを持たない吸気系(例えばディーゼル車)ではモジュールを直接インテークマニホールドへ装着することも可能である。
【0034】
図10は、エンジンルーム内に配置されるエアクリーナの一部に図5に示したモジュールを取り付けた実施例を示したものである。エアクリーナは新規空気を取込むための導入ダクト25を有する上流側ケース部材26と吸気ダクト30とエアクリーナを接続するための接続ダクト28を有する下流側ケース部材27で空気中のダストを除去するためのフィルタ29をはさみ込んで固定する構造である。当然ではあるが空気の流れは図示矢印の様に流れ、接続ダクト28にはフィルタ29によりダストが除去されたクリーンな空気が流れる。ここで、接続ダクト28の一部に発熱抵抗式空気流量測定装置の副空気通路部を挿入するための挿入穴14があいており、これをネジ等を使って接続ダクト28とモジュールとを機械的に固定する。これにより、前記した主空気通路を構成するボディの代りに接続ダクト28の様なエアクリーナの一部分を使って主空気通路を構成することが可能となりボディを必要としないモジュール単体での安価な発熱抵抗式空気流量測定装置を提供することが可能となる。
【0035】
図11に示す例は基本的には図10と同様にエアクリーナの一部に図5に示すモジュールを取り付けた実施例を示したものである。図10では下流側ケース部材27の外側に設けた接続ダクト28の一部に発熱抵抗式空気流量測定装置のモジュール部を取り付けたが、図11では、下流側ケース部材27の内側にダクト31が設けられており、ダクト31の一部に挿入穴14を設けモジュールを取り付けた例を示したものである。尚、図にはダクト31の先端部分は空気の流れを整流化するためにベルマウス状にしている。本構造の様に発熱抵抗式空気流量測定装置のモジュールをエアクリーナ内部に入れることにより図10に示した接続ダクト28に相当する部分の長さを短くできるため、吸気系のコンパクト化を図ることが可能である。尚図10に示した接続ダクト28及び図11に示したダクト31は図示ではエアクリーナ下流側ケース部材27と一体で記述したが各々別体で製作し後から機械的強度を保つ様に固定してもかまわない。
【0036】
図12は別の実施例を示す発熱抵抗式空気流量測定装置の横断面であり、図 13はその上流側(左側)から見た図である。図3〜図4との相違は主空気通路を構成するボディ32の内径を大きくしたものである。ボディ内径を大きくすると単純に考えれば、副空気通路の内、流量を計測するための発熱抵抗体1が配置される第1通路302及び入口開口面301がボディ壁面近くに片寄ってしまう。この場合、仮にボディ32の上流側の形状(エアクリーナ及びダクト形状)によりボディ32内において空気の流れに偏流が生じた場合、壁面に近い場所においてはその偏流によって発熱抵抗式空気流量測定装置の計測誤差を生じてしまう。通常管内を流れる流速分布は管の中心部分が最も流速が速く、壁面に近づくにつれておそくなる様に放物線に近い分布を示す。すなわち管内の中心では平均流速より流速は速く壁面ではおそくなり、流速の平均値は中心よりズレた位置で計測することが望まれる。このため、本発明品においては副空気通路の出入口を管中心からズラして平均流速の値を副空気通路に取込む様にしている(副空気通路内を流れる流速値を決めるのは出入口の圧力差であり出入口共に管中心よりズラす必要が有る)。しかし、偏流の大部分はこの最も流速の速い位置が中心位置からズレてしまい、中心に対し一方が速い流速の値を示し、他方はおそい流速の値を示してしまう。このため速い流速分布の位置に副空気通路の入口開口面301が有ると、平均流速よりプラス側の計測誤差が生じ、逆におそい位置に有るとマイナス側の計測誤差を生じる。
【0037】
この様にボディ32の内径を大きくした場合においても偏流による計測誤差をおさえるためにボディ32にベース部材7を取り付ける取付面33を図示の様にボディ32外径より掘下げて、かつ、ボディ32内壁がモジュール取付部において異径となる様な形状とし、ボディ32内径の中心に対し出入口までの各々の距離がほぼ同じ様になる様な構造としたものである。尚この場合、ボディ32内壁がモジュール取付部において内壁が凸となる様になるため、その部分の上下流は空気の流れを極力乱さない様に図示34,35の様にゆるやかに傾斜させることが望まれる。
【0038】
最後に、図14を使い電子燃料噴射方式の内燃機関に本発明品を適用した一実施例を示す。
【0039】
エアクリーナ100から吸入された吸入空気101は、発熱抵抗式空気流量測定装置102のボディ,吸気ダクト103,スロットルボディ104及び燃料が供給されるインジェクタ105を備えたマニホールド106を経て、エンジンシリンダ107に吸入される。一方エンジンシリンダで発生したガス108は排気マニホールド109を経て排出される。
【0040】
発熱抵抗式空気流量計の回路モジュール110から出力される空気流量信号,スロットル角度センサ111から出力されるスロットルバルブ開度信号,排気マニホールド109に設けられた酸素濃度計112から出力される酸素濃度信号及びエンジン回転速度計113から出力される回転速度信号を入力するコントロールユニット114はこれらの信号を演算して最適な燃料噴射量とアイドルエアコントロールバルブ開度を求め、その値を前記インジェクタ105及びアイドルエアコントロールバルブ115を制御する。
【0041】
発熱抵抗式空気流量測定装置としてのほとんどの機能をモジュールに持たせることにより、モジュールを1つの製品として扱え、例えば、エアクリーナの一部や、吸気ダクトの一部等にモジュールを取り付けることにより、発熱抵抗式空気流量測定装置としての機能を十分に果すことができさらに、1種類のモジュールを各エンジンに流用できるためマッチング等が容易となり、内燃機関のシステムコストの低減を達成することが可能となる。
【0042】
また、従来の主空気通路を構成するボディを要する発熱抵抗式空気流量測定においてもコストの内、大きなウェイトを占めていたボディを単純な筒状にすることができる。また、上記した様に1種類のモジュールに発熱抵抗式空気流量測定装置としての機能を持たせることにより、ボディのメイン径のみにより搭載エンジンの排気量に応じた発熱抵抗式空気流量測定装置の標準化及びシリーズ化ができ、これらの効果により従来の副空気通路一体のボディを有する発熱抵抗式空気流量測定装置と比べ約10〜20%程度コスト低減可能となる。
【0043】
さらに、市場において、発熱抵抗式空気流量測定装置に何らかの異常が生じた場合においてもモジュール単品だけの交換で済むため市場における発熱抵抗式空気流量測定装置の取扱い性の向上を図ることが可能となる。
【発明の効果】
本発明は、発熱抵抗式空気流量測定装置の最大の課題である内燃機関のシステムコストの低減を達成するために、回路部と副流路部を一体化したモジュールに発熱抵抗式空気流量測定装置のほとんどの機能を持たせ、そのモジュールをひとつの製品として取り扱えるようにしたものである。本発明により従来技術に比べて小形,軽量化,環境変化や取付ばらつきによる計測精度悪化の低減を図り、さらに取り扱い性の向上することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す発熱抵抗式空気流量測定装置の横断面図。
【図2】図1を空気の流れの上流側から見た図。
【図3】計測精度向上を目的とした一実施例を示す発熱抵抗式空気流量測定装置の横断面。
【図4】図3を空気の流れの上流側から見た図。
【図5】図3のモジュール単品図。
【図6】図5を副空気通路の出口方向から見た図。
【図7】図6に対し副空気通路の上流側形状を変えた一実施例。
【図8】図7に対し副空気通路の上流側形状を変えた一実施例。
【図9】本発明の一実施例を示すスロットルボディ一体形発熱抵抗式空気流量測定装置の横断面図。
【図10】本発明の一実施例を示す発熱抵抗式空気流量測定装置一体形エアクリーナの横断面図。
【図11】本発明の一実施例を示す発熱抵抗式空気流量測定装置内蔵形エアクリーナの横断面図。
【図12】本発明の一実施例を示すボディ内径を広げた場合の発熱抵抗式空気流量測定装置の横断面図。
【図13】図12を空気の流れの上流側から見た図。
【図14】本発明品を用いた内燃機関の制御システム図。
【符号の説明】
1…発熱抵抗体、2…感温抵抗体、3…副流路、4…副流路構成部材、5…主流路、6…流量計ボディ、7…ベース部材、8…電子回路、9…回路ハウジング、10…カバー、11…コネクタ、13…ターミナル、14…挿入穴、15…取付固定面、16…ゴムパッキン、17…流れ方向、18…ネジ、19…ホルダ、20…Oリング、21…整流格子、22…導電性部材、23…バルブ、24, 104…スロットルボディ、25…導入ダクト、26…上流側ケース部材、27…下流側ケース部材、28…接続ダクト、29…フィルタ、30…吸気ダクト、31…ダクト、32…ボディ、33…取付面、100…エアクリーナ、101…吸入空気、102…発熱抵抗式空気流量測定装置、103…吸気ダクト、105…インジェクタ、106…マニホールド、107…エンジンシリンダ、108…ガス、109…排気マニホールド、110…回路モジュール、111…スロットル角度センサ、112…酸素濃度計、113…回転速度計、114…コントロールユニット、115…アイドルエアコントロールバルブ、301…入口開口面、302…第1通路、303…直角曲がり部、304…第2通路、305…出口開口面、306…受皿状入口、307…傾斜面、308…出口庇、401…ホルダ挿入穴、402…接合面、403…肉盗み穴、404…溝部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air flow measurement device that constitutes an intake system of an internal combustion engine and measures the intake air flow rate thereof, and more particularly to a heating resistance type air flow measurement device that is suitable for measuring the air flow rate taken into an automobile engine. About.
[0002]
[Prior art]
A known example closest to the present invention is an air flow meter described in Japanese Patent Publication No. 4-75385. However, Japanese Patent Laid-Open No. 4-75385 does not disclose a method for mounting and fixing the main flow path, the sub flow path, and the circuit unit, and the sub flow path is supported at both ends in a bridge shape in the main flow path. Therefore, the first object of the present invention is to make the circuit part and the sub-flow channel part into an integrated module, and a standardized module can be applied to various internal combustion engines regardless of the size of the main flow channel. It is not. In addition, since the structure of the sub-flow channel is complicated, there is a concern about deterioration of measurement accuracy, and it is necessary to combine several parts to form, so that the cost is increased, and thus it is not suitable for practical use. Furthermore, it does not have a structure that fully considers the response to environmental changes due to the main flow path being arranged at different positions in the intake system and the response to mounting variations between the module and the main flow path.
[0003]
[Problems to be solved by the invention]
In order to achieve a reduction in the system cost of an internal combustion engine, which is the greatest problem of a heating resistance type air flow rate measuring device, the present invention provides a heating resistance type air flow rate measuring device in a module in which a circuit unit and a sub-flow channel unit are integrated. It has the most of the functions and can handle the module as one product. In addition, in order to make it truly practical, it has been reduced in size and weight, reduced in measurement accuracy due to environmental changes and mounting variations, and further improved in handleability.
[0004]
[Means for Solving the Problems]
In the above-described problem, a circuit housing in which an electronic circuit is incorporated, a sub-channel constituent member in which a sub-channel having a bent portion is configured, and a detection element arranged in the sub-channel are configured integrally, An air flow rate module that inserts a sub-channel constituent member from an insertion hole provided in a wall constituting the main channel, and installs the sub-channel constituent member so that the sub-channel is located in the main channel. The sub-flow path component is made of plastic and is integrally assembled on one side of the plastic holder, and a groove is formed when the sub-flow path component is assembled to the holder, and the insertion into the groove A sealing material for sealing with a hole is provided, the plastic holder is fixed to the base member on the opposite side of the sub-flow channel component member, and a terminal to which the detection element is fixed is inside the holder The sub-flow path component member that penetrates and is integrated with the sub-flow path configuration member so that the detection element is positioned in the sub-flow path, and is installed in the sub-flow path through the holder and the base member. This is solved by an air flow rate measuring module which is fixedly supported on the wall constituting the main flow path and sealed with the wall constituting the main flow path by the sealing material.
DETAILED DESCRIPTION OF THE INVENTION
First, an example will be briefly described.
In order to reduce the system cost of the internal combustion engine, the cost of the heating resistance type air flow rate measuring device is reduced and the number of parts of the system is reduced by integrating with other intake system parts. First, by making a module in which the circuit part and the sub-flow part are integrated, a relatively high-cost flow meter body is formed with a main flow path that is a simple pipe line, a hole provided in the wall surface of the main flow path, and a fixed surface of the circuit. Constructed to enable significant cost reduction. In addition, the shape of the parts that make up the secondary flow path is simplified and miniaturized, making it easy to integrate with the circuit part, and integrating the parts that connect the circuit part and the secondary flow path part to reduce the cost of the air flow measurement device. Reduction achieved. In addition, since the shape of the flow meter body has been simplified, it is possible to form the flow meter body integrally with other intake system components without creating a separate member, thereby reducing the number of system components. Also, a standardized module can be applied even if the position where the main channel is set or the size of the main channel changes.
[0005]
In order to reduce the size and weight, the auxiliary flow path is simplified without sacrificing its function, the overall length of the auxiliary flow path is maintained by the curved flow path, and the right-angle bend of the auxiliary flow path of the temperature sensing resistor is provided. The length of the subflow path in the main flow direction is reduced by, for example, arranging the second passage perpendicular to the main flow direction of the subflow path into a cross-sectional shape that is longer in the direction perpendicular to the main flow direction than the main flow direction. The second passage that is perpendicular to the direction is kept short to reduce the size and weight of the members that make up the sub-channel, and the proportion of the sub-channel components in the main channel is reduced. By making it difficult to occur, the main flow path can be reduced in size and weight as a structure that does not increase the cross-sectional area of the main flow path. In addition, the hole in the wall surface of the main channel for inserting the sub channel can be made into a circular shape with a small diameter without increasing the ratio of the width and length of the members constituting the sub channel. Can be made easier to cope with downsizing of the circuit.
[0006]
As countermeasures for environmental changes, measures are taken to cope with changes in the air flow in the main flow path depending on the position of the intake system and to changes in temperature depending on the position where the air flow measuring device is placed. For measurement errors caused by pulsating flow in the main flow path, the sub-flow path is an L-shaped curved flow path, and the ratio of the length of the first and second passages parallel to the main flow direction is optimal. For the occurrence of backflow, the outlet opening surface of the sub-flow path is formed in a plane parallel to the main flow direction, and an eave-like projection is provided upstream of the outlet portion. To prevent measurement errors due to main flow drift, the inlet opening surface of the sub-flow channel is shaped like a saucer, an inclined surface is provided upstream of the outlet, and the arrangement of the outlets of the sub-flow channels in the main flow channel is optimized. For turbulent flow and swirling flow in the main flow path, the total length of the sub flow path is made sufficiently long so that the cross-sectional area of the second passage can be made larger than the cross-sectional area of the first passage. An inclined surface with walls is provided. For temperature changes, a temperature-sensitive resistor that measures the temperature of the intake air is fixed near the inner corner of the right-angle bend of the secondary flow path at a position away from the base member, and the heating resistor is the temperature-sensitive resistor. It is fixed at a position closer to the base member. Further, in order to prevent the measurement accuracy from deteriorating due to the fixed position of the heating resistor, the interval between the heating resistors is optimized from the saucer-shaped bottom surface of the inlet opening of the sub-flow channel and the corner formed by the first passage.
[0007]
For variations in the mounting of the module to the main flow path, the main flow direction with the inlet opening surface of the sub-flow path such as a rectangular or trapezoidal cross-section is parallel to the base member of the sub-flow path portion of the member constituting the sub-flow path A shape that provides a plane that is perpendicular to the main flow direction and a plane that is parallel to the main flow direction, and that the outlet opening surface of the secondary flow path is formed in a plane parallel to the main flow direction, and the outlet direction of the inlet opening surface is dug It corresponds by doing.
[0008]
For improved handling, the circuit part and the sub-flow channel part are integrated modules, the insertion hole of the main flow channel is sized to be covered by the base member, and it is inserted by an O-ring, packing gasket, etc. By making it possible to prevent air leakage from the hole, forming a groove for mounting the O-ring to achieve modularization with the O-ring, and fixing the module to the main flow path in a removable manner It corresponds.
[0009]
The module can be handled as a single product by combining the circuit unit and the sub-flow channel unit into a module that has most of the functions of a heating resistance type air flow measuring device. As a result, a company that organizes the internal combustion engine, for example, an automobile manufacturer, can obtain an inexpensive heating resistance type air flow measuring device, and can freely layout the intake system.
[0010]
The module protects the electronic circuit by the circuit housing and the cover, and the heating resistor and the temperature sensitive resistor are protected by the sub-flow path constituting member, thereby preventing an accident due to handling.
[0011]
By making the sub-flow path an L-shaped curved flow path, the total length of the sub-flow path can be set sufficiently long, so that the air in the vicinity of the heating resistor due to the disturbance of the air flow in the main flow path at the outlet of the sub-flow path The impact on the flow is reduced. In addition, the structure in which inclined surfaces with walls on both sides are provided upstream of the outlet of the sub-flow path, and the flow of the main flow path at the sub-flow path outlet section has a stable and stable flow with strong inertial force. The turbulence itself is reduced. The inlet opening surface of the secondary channel is opened in a plane perpendicular to the flow direction of the main channel, and the outlet opening surface is opened in a plane parallel to the main flow direction. This is because the pressure difference between the inlet and outlet is increased by pulling, the flow velocity of the air flowing into the auxiliary flow path is increased, and the flow in the auxiliary flow path is stabilized. Furthermore, the reason why the cross-sectional shape of the second passage of the sub-flow path is wide is that the sub-flow path is bent at a right angle by ensuring the cross-sectional area while keeping the length of the sub-flow path component member in the main flow direction short. This is to compensate for the decrease in the flow area of the second passage due to the separation of the generated flow, to prevent a decrease in the flow velocity of the air flowing into the sub-flow path, and to stabilize the flow near the heating resistor. Thus, by stabilizing the flow in the sub-flow channel, particularly in the vicinity of the heating resistor, there is an effect of reducing the output noise of the air flow rate measuring device and improving the measurement accuracy. In addition, the L-shaped sub-channel has a negative error caused by the nonlinearity of the heat dissipation characteristics of the heating resistor when the pulsating flow is generated in the main channel and the response delay, and the relative length of the main channel between the inlet and outlet of the sub-channel. By increasing the length of the secondary flow path and giving the inertial effect to the flow in the manufacturing flow path, the output during pulsation is changed positively to offset the negative error, and the output error due to pulsation is reduced. effective. The length of the second passage is doubled with respect to the length of the first passage of the sub-flow passage, which is optimal for canceling out the minus error in the degree of inertia effect in the L-shaped sub-flow passage. It is a length ratio. Furthermore, since the outlet opening surface of the sub-flow channel is provided on a surface parallel to the base member and the sub-flow channel component member is fixed to the circuit side, the sub-flow channel is fixed to the wall surface of the main flow channel by fixing the circuit portion. Even if the size of the main flow path is different because it is fixed to the main flow path and is cantilevered, the center of the main flow path and the sub flow path It is possible to apply a standardized module without changing the position of the doorway.
[0012]
The reason why the heating resistor is arranged in the first passage and the temperature sensitive resistor is arranged at the right-angled bent portion is to make it possible to keep the length of the first passage short, so that both resistors are arranged close to each other. Therefore, the heat generation resistor is arranged in the first passage which can easily stabilize the flow, thereby reducing measurement errors. If the length of the first passage is shortened to shorten the main flow and the changed length of the auxiliary flow path component, the length of the auxiliary flow path component may increase the pressure loss of the air flow meter. Since the insertion hole for inserting the sub flow path provided on the wall surface of the main flow path can be made into a relatively small circle, the formation of the insertion hole is facilitated. Complicated and large road formation can be prevented. Further, since the insertion hole can be sized to be covered by the base member, a margin for further miniaturization of the circuit portion can be secured, and an O-ring, between the bottom surface of the base member and the circuit portion fixing surface of the outer wall of the main channel, Sealing with packing, gasket, etc., can prevent air leakage inside and outside the main flow path from the insertion hole, and measurement errors due to air leakage can be prevented. Further, since the insertion hole is circular, a diameter seal by an O-ring is possible.
[0013]
Using the base member as a reference, the terminal is held by the holder and fixed so as to penetrate the base member, the electronic circuit and the circuit housing are fixed to the upper surface of the base member, the upper surface of the circuit housing is covered with a cover, Fix the heating resistor and temperature sensitive resistor to the terminal or holder on the lower surface, and insert the holder and terminal into the hole provided in the sub flow path component so that the heat generating resistor and temperature sensitive resistor are in the sub flow path. The method of fixing the sub-flow path constituting member to the holder or the base member so as to be positioned is easy to manufacture and can reduce the production cost. Further, since the base member and the circuit housing, and the base member and the holder can be integrated, the number of parts can be reduced and the cost can be further reduced. In addition, each part can be fixed without requiring additional parts for fixing such as insert molding, adhesion, and welding. Furthermore, a groove can be formed in the joint surface between the sub-flow path component member and the holder or the base member, and if an O-ring is attached to the groove, the O-ring for sealing the insertion hole can be removed without worrying about dropping off. An integrated module can be obtained, and a module with improved handling can be obtained.
[0014]
The external shape of the cross section parallel to the base member of the sub flow channel portion of the sub flow channel component is rectangular or trapezoidal, such as a shape perpendicular to the main flow direction with the inlet opening surface of the sub flow channel and a shape parallel to the main flow direction. By doing so, it is possible to reduce measurement errors due to variations in the mounting angle with respect to the module rotation direction when the module is mounted on the main flow path. If the mounting angle of the module is bent with respect to the flow direction of the main flow path, the effective area of the inlet opening surface of the sub flow path (the area projected on the cross section perpendicular to the main flow direction) decreases, and therefore flows into the sub flow path. It acts to reduce the air flow rate and cause a negative output error. On the other hand, the surface parallel to the main flow of the sub-flow path component member decreases the effective area of the main flow path when the module mounting angle is bent, so the flow rate of air flowing into the sub-flow path is increased and the output error on the plus side is increased. Therefore, both effects are offset and measurement errors due to variations in the module mounting angle can be reduced. Considering the cross-sectional area of the general main channel and the size of the sub-channel constituent member, the length in the main flow direction of the surface parallel to the main flow direction is about twice the width of the sub-channel inlet opening. The above offset effect is appropriate. The shape of the cross-sectional shape parallel to the base member of the sub-channel portion of the sub-channel constituent member and the shape of the trapezoid or the combination of the trapezoid and the rectangle does not impair the effect of reducing the influence of the mounting angle. This is because the dynamic pressure generated on the upper surface of the auxiliary flow path component is reduced without reducing the cross-sectional area of the two passages, and the pressure loss of the air flow rate measuring device is reduced. Furthermore, the reason why the downstream bottom surface of the sub-flow path component is formed in an arc shape is to reduce the pressure vortex in the downstream and reduce the pressure loss, and the cross section of the second passage can also be enlarged with an arc shape on one side. This is because of this. The reason why the length of the longest diagonal line of the cross-sectional profile of the sub-channel and the diameter of the circular insertion hole provided in the wall surface of the main channel are substantially the same is to keep the insertion hole small.
[0015]
The outlet shape of the inlet opening surface of the sub-channel is made into a saucer shape so that air is taken into the sub-channel from a wide area of the main channel, and when a drift occurs in the main channel The first object is to reduce measurement errors. The effect of reducing the measurement error at the time of drift is also on the inclined surface upstream of the sub-channel outlet. If the flow velocity upstream of the outlet increases due to the drift, the separation area that occurs downstream of the inclined surface widens, the suction effect of the secondary channel outlet increases, and the flow rate of air flowing into the secondary channel increases. As the flow rate becomes slower, the separation area at the outlet becomes smaller and the flow rate of air flowing into the secondary flow path decreases. If an entrance is installed in the relationship, measurement errors due to drift can be reduced. This action is most effective when the first passage is provided at a position decentered from the center of the main flow path, the saucer-shaped portion is expanded to a range including the vicinity of the center of the main flow path, and the outlet of the sub flow path is connected to the main flow path. This is when it is provided at the opposite part of the entrance to the center. In addition, the saucer-shaped inlet opening has an effect of reducing measurement errors due to variations in inclination in the upstream and downstream directions of the sub-channel constituent member due to the inclination of the insertion hole of the circuit fixing surface and the main channel wall surface. When the outlet direction of the sub-channel is inclined in the upstream direction of the main channel, the outlet opening surface is tilted in a direction that can be seen from the upstream side of the main channel, so that some dynamic pressure is generated on the outlet port surface or negative pressure is generated. Since the pressure decreases, the pressure difference between the inlet and outlet of the secondary flow path becomes small, the flow rate of air flowing into the secondary flow path decreases, and a negative measurement error occurs. On the other hand, the saucer-shaped opening surface is inclined in the direction in which the first passage is downstream, so that the flow in the vicinity of the center of the main flow path can be more easily guided to the sub flow path, and the separation zone generated in the first passage becomes larger and heat is generated. In order to increase the flow velocity in the vicinity of the resistor, it acts to generate a measurement error on the plus side. Since both these actions cancel each other, the measurement error due to the variation in the inclination of the sub-flow passage constituting member can be reduced. On the other hand, if the outlet is tilted so as to be on the downstream side, the outlet part has a negative pressure, and the inlet part tilts in a direction in which it is difficult to take air into the sub-flow path, and the separation area in the first passage is reduced. The measurement errors can be reduced by canceling out the effects of each other.
[0016]
The temperature sensing resistor is fixed at a position away from the base member from the center line of the first passage. The temperature sensing resistor is positioned near the inner corner where the flow velocity is the fastest among the right angle bends, and the detection accuracy of the intake air temperature In a temperature environment where there is a difference between the intake air temperature and the ambient temperature of the air flow measuring device, heat transfer through the terminal or holder, for example, when the ambient temperature is high, This is to provide an effect of reducing the intake air temperature detection error such that the temperature of the temperature sensitive resistor becomes higher than the intake air temperature due to the heat transmitted through the terminal. If the temperature-sensitive resistor is erroneously measured higher than the intake air temperature, a positive flow measurement error occurs. On the other hand, the heating resistor acts to generate a flow measurement error on the minus side because the heat radiation amount due to heat conduction to the terminal and the boulder decreases in an environment where the ambient temperature is high. Therefore, if the influences on both resistors are made equal, measurement errors in an environment where the intake air temperature and the ambient temperature are different can be reduced. Actually, the effect of heat conduction and the effect of heat transfer to the air differ depending on the temperature difference between the two resistors. However, it is not sufficient, and it is preferable to increase the thermal resistance on the temperature-sensitive resistor side and to decrease the thermal resistance on the heat-generating resistor side than on the temperature-sensitive resistor side. Both resistors to reduce the measurement error under the above temperature environment by fixing the temperature sensitive resistor at a position away from the base member and fixing the heating resistor closer to the base member than the temperature sensitive resistor An appropriate thermal balance of the body can be easily obtained.
[0017]
The position of the heating resistor in the first passage needs to be arranged in the main flow in the first passage, that is, in a stable flow with a high flow velocity. Therefore, when arranging the heating resistors in consideration of the temperature environment as described above, not only the positional relationship with the temperature sensitive resistor but also the position in the first passage must be considered. In the case of a simple circular pipe passage, the main flow is near the center, but as a factor for determining the position of the main flow in the first passage in the right-angled bending passage having a saucer-like opening surface, the bottom surface of the saucer-like inlet opening surface The separation flow generated by the first corner formed by the first passage causes the main flow to move in the direction of the base member rather than the pipe center, and the flow velocity near the inner corner (second corner) becomes faster at the right-angled bend. Therefore, there is an action of moving the main flow in a direction away from the base member rather than the center of the pipe line. That is, the positional relationship between the first corner and the second corner affects the position of the mainstream in the first passage, and the inner wall and the heating resistor farthest from the base member of the first passage, which is the wall surface connecting both corners. The heating resistor can be disposed in the main flow of the first passage. In a general size of the secondary flow path, a portion separated from the inner wall farthest from the base member of the first passage in the direction of the base member by 1/2 to 1 times the interval between the first corner and the second corner. It becomes the mainstream range of the first passage.
[0018]
The reason why the sectional shape of the first passage is a combination of a semicircle and a rectangle is to arrange the heating resistor in the main flow of the first passage while making the positional relationship between the heating resistor and the temperature sensitive resistor appropriate. Is one of the means. That is, the position of the heating resistor is optimized from the relationship with the temperature sensitive resistor, and the base member having the first corner and the second corner in order to move the mainstream position of the first passage to the vicinity of the heating resistor. It is made into the shape which can set the position of the 1st channel | path inner wall furthest away from the position freely.
[0019]
As described above, the configuration of the sub-flow channel portion of the present invention has many functions with respect to environmental changes, mounting variations, and wearability. However, the sub-flow channel component member needs to be combined with a plurality of parts. There is no simple shape that can be formed as a single plastic molded product. Therefore, the cost of the module itself can be reduced. In addition, because the shape of the main flow path has been simplified, the module has a function and structure that can be handled as one product, and it can cope with environmental changes and mounting variations, other intake system components In addition, the main flow path can be integrated, and the module can be standardized, so that the system cost of the internal combustion engine can be reduced. Furthermore, since the module can be fixed to the main flow path simply by attaching the circuit portion to the outer wall of the main flow path, the module is easy to mount and can be fixed detachably. If detachable fixing is adopted, it is possible to easily cope with failure in the market by replacing only the module part.
[0020]
Next, an embodiment of the present invention will be described with reference to FIGS.
[0021]
FIG. 1 is a cross-sectional view of an embodiment of the present invention, and FIG. 2 is an external view as viewed from the upstream side (left side).
[0022]
An electronic circuit 8 and a circuit housing 9 are fixed to the upper surface of the base member 7, and a connector 11 for electrically connecting to an external device is integrated with the circuit housing 9. The upper surface of the circuit housing 9 is covered with a cover 10. It has been broken. The terminal 13 that is electrically connected to the electronic circuit 8 is pulled out toward the lower surface of the base member 7, and the heating resistor 1 and the temperature sensitive resistor 2 are electrically connected to the terminal 13 and fixed. The auxiliary flow path 3 includes an inlet opening surface 301 that opens in a plane perpendicular to the base member 7, a first passage 302 that extends parallel to the base member from the inlet opening surface, and a first passage that extends in a direction perpendicular to the base member. L constituted by a second passage 304 having a length of about twice, an outlet opening surface 305 that opens in a plane perpendicular to the base member, and a right-angled bent portion 303 corresponding to the intersection of the first passage 302 and the second passage 304. The sub-flow path constituting member 4 is fixed to the base member 7 so that the heating resistor 1 is located in the first passage 302 and the temperature-sensitive resistor 2 is located in the right-angle bent portion 303. . As described above, a module in which the circuit unit and the sub-flow channel unit of the heating resistance type air flow rate measuring device are integrated is configured.
[0023]
On the other hand, the wall surface of the flow meter body 6 constituting the main flow path 5 is provided with an insertion hole 14 for inserting the sub flow path constituting member 4 and a mounting fixing surface 15 for attaching the base member 7. The sub flow path component member 4 is inserted into the main flow path 5 from the insertion hole 14 so that the first passage 302 of the sub flow path 3 is parallel to the flow direction 17 of the main flow path 5 into the flow meter body 6. The base member 7 is fixed to the outer wall of the main flow path by screws 18 with a rubber packing 16 sandwiched between the mounting fixing surface 15 and the bottom surface of the base member 7 so that the periphery of 14 is sealed.
[0024]
FIG. 3 is a cross-sectional view of the embodiment in which the configuration for reducing the deterioration of measurement accuracy under various environments and the fixing method of the sub-flow channel component member and the base member are embodied in FIG. FIG. 4 shows an external view seen from the side (left side).
[0025]
The terminal 13 is integrated with the holder 19 so that the terminal 13 penetrates the inside of the holder 19, and the base member 7 and the holder 19 are fixed through the hole of the base member 7. Here, when various fixing methods of the terminal 13, the holder 19 and the base member 7 are given, the terminal 13 and the base member 7 are made of metal and the holder 19 is made of plastic. A method of integrating the three members by insert molding, a method of insert molding the terminal 13 and the holder 19 and fixing them to the base member 7 by adhesion or the like, or FIG. A method of insert-molding the terminal 13 with the holder 19 as one plastic molded product, and insert molding the terminal 13 with the circuit housing 9, the base member 7 and the holder 19 as one plastic molded product in order to minimize the number of parts. There are ways to do this. The electronic circuit 8 is fixed to the upper surface of the base member 7 or the holder 19 and is electrically connected to the terminal 13 via a conductive member 22 such as a wire. The circuit housing 9 is also fixed to the upper surface of the base member 7, and the upper surface of the circuit housing 9 is covered by fixing the cover 10.
[0026]
On the other hand, the heating resistor 1 and the temperature sensitive resistor 2 are electrically connected and fixed to the opposite end of the electronic circuit 8 of the terminal 13. In this embodiment, the temperature-sensitive resistor 2 is fixed so as to be positioned near the inner corner of the right-angled bending portion 303 of the sub-flow channel 3, and the heating resistor 1 is located in the first passage 302 of the sub-flow channel 3. Thus, the temperature error is fixed so that it is closer to the base member 7 than the temperature sensitive resistor 2, so that the measurement error can be reduced even in an environment where the temperature changes rapidly.
[0027]
Similarly to the first embodiment, the auxiliary flow path component 4 has an L-shaped flow formed by an inlet opening surface 301, a first passage 302, a right angle bend 303, a second passage 304, and an outlet opening surface 305. In addition to the path, the flow of the saucer-shaped inlet 306 and the outlet part that have been dug out leaving a wall in the periphery for the purpose of guiding the air taken into the sub-flow path 3 from a wide range, particularly from the vicinity of the center of the main flow path 5 An inclined surface 307 having walls on both sides for the purpose of stabilization, an outlet rod 308 in which the tip of the inclined surface is made to travel below the outlet opening surface 305, and a hole 401 for inserting the holder 19 and the holder 19 The joint surface 402 is provided. Further, the first passage 302 of the sub-passage 3 has a flow position of the first passage 302 so that the fixing position of the heating resistor 1 is set closer to the base member 7 than the center of the first passage 302 with priority given to the temperature effect. In order to bring the stable range of the heating resistor 1 to the fixing portion of the heating resistor 1 in a vertical section, the flow velocity is relatively fast, and the sectional shape is a combination of a semicircular shape and a rectangular shape. The distance between the inner wall of the first passage 302 that connects the corners formed by the passage 302 and the inner corner of the right-angled bent portion 303 and the heating resistor 1 is set to 1/2 to 1 (the same interval). ing. Further, a meat stealing hole 403 parallel to the second passage 304 is provided to make the auxiliary flow path component member 4 uniform, thereby preventing a shape change due to sink marks of plastic molding, and reducing material costs and weight.
[0028]
The sub-flow path constituting member 4 is inserted and fixed to the holder 19 at the joint surface 402 by inserting the holder 19 into the holder insertion hole 401. Here, the groove portion 404 is formed by the step provided on the holder 19 and the joining surface 402 of the sub-flow channel constituting member. The groove 404 is a mounting groove for the O-ring 20, and the insertion hole 14 on the wall surface of the main flow path is sealed by the O-ring 20. As described above, a module in which the circuit portion, the sub flow channel portion, and the O-ring for sealing the insertion hole are integrated is configured.
[0029]
By fixing this to the flow meter body 6 as in the first embodiment, a heating resistance type air flow rate measuring device is completed. In this embodiment, since the O-ring for sealing the insertion hole is mounted on the module, no rubber packing is required. In this embodiment, the circuit housing 9 is fixed together with the base member 7 with screws 18 to increase the fixing strength of the circuit housing, and the rectifying grid 21 is formed on the inlet face of the main flow path 5 of the flow meter body 6. It shows the one that is equipped with and further improved measurement accuracy.
[0030]
FIG. 5 is a cross-sectional view of a module in which the circuit portion and the sub-flow passage portion of the heating resistance type air flow measuring device shown in the second embodiment are integrated, and FIG. 6 is an external view seen from below (outlet direction). FIG.
[0031]
The external shape of the cross section of the auxiliary flow path component 4 parallel to the base member 7 is such that the insertion portion of the holder 19 is circular and the auxiliary flow path portion is first with respect to the length of the side perpendicular to the flow direction of the first passage. It is a rectangle in which the length of the side parallel to the flow direction of the passage is 1 to 2 times. Further, the outer shape of the portion of the holder 19 that is inserted into the insertion hole 14 of the main channel wall surface is also circular, and the diameter thereof is substantially equal to the length of the diagonal line of the rectangular cross section of the sub-channel unit. The insertion hole can be a relatively small circle. Furthermore, the opening width perpendicular to the flow direction of the second passage 304 of the inlet opening surface 301 of the sub-flow channel is about ½ of the length of the side parallel to the first passage 302 of the rectangular cross section of the sub-flow channel portion. The cross-sectional shape of the second passage 304 is a rectangle whose side is perpendicular to the side parallel to the first passage 302.
[0032]
7 and 8 are external views as seen from the bottom of FIG. 5, as in FIG. 6. 7 shows that the outer shape of the section parallel to the base member 7 at the portion inserted into the insertion hole 14 on the wall surface of the main channel of the holder 19 is a circle having the same diameter as that of FIG. 6, and the shape of the second channel 304 of the sub channel is also shown. 6, the external shape of the cross section parallel to the base member 7 of the sub flow path portion of the sub flow path constituting member 4 is a combination of a trapezoid and a rectangle. In FIG. 8, the downstream bottom surface of the second passage and the downstream bottom surface of the cross-sectional shape of the sub-flow channel portion are arcuate.
[0033]
FIG. 9 shows a heating resistance type air flow rate measuring device in which the module shown in FIG. 5 is inserted into a throttle body 24 having a valve 23 for controlling the intake air amount of the engine. The flow rate measuring unit is arranged upstream of the valve, and the air flows from the left side to the right side in the figure. Although the throttle body integrated heat resistance type air flow meter having the auxiliary air passage has already been commercialized, the auxiliary air passage member is formed integrally with the throttle body, or the housing member that covers the module circuit is provided. Since it is integrated with the throttle body, the structure of the throttle body is considerably complicated. On the other hand, according to the embodiment of the present invention shown in FIG. 9, since the housing member and the sub air passage member are integrated with the module, the structure of the throttle body can be simplified. In addition, in an intake system (for example, a diesel vehicle) that does not have a throttle valve, the module can be directly mounted on the intake manifold.
[0034]
FIG. 10 shows an embodiment in which the module shown in FIG. 5 is attached to a part of the air cleaner arranged in the engine room. The air cleaner is for removing dust in the air by an upstream case member 26 having an introduction duct 25 for taking in new air, and a downstream case member 27 having a connection duct 28 for connecting the intake duct 30 and the air cleaner. The filter 29 is sandwiched and fixed. As a matter of course, the air flows as shown by the arrows in the figure, and clean air from which dust has been removed by the filter 29 flows through the connection duct 28. Here, there is an insertion hole 14 for inserting a sub air passage portion of the heating resistance type air flow measuring device in a part of the connection duct 28, and this is used to connect the connection duct 28 and the module to each other by using screws or the like. Fixed. As a result, it is possible to configure the main air passage by using a part of an air cleaner such as the connection duct 28 instead of the body constituting the main air passage described above, and an inexpensive heating resistance with a single module that does not require a body. It becomes possible to provide a type air flow rate measuring device.
[0035]
The example shown in FIG. 11 basically shows an embodiment in which the module shown in FIG. 5 is attached to a part of the air cleaner as in FIG. In FIG. 10, the module portion of the heating resistance type air flow measuring device is attached to a part of the connection duct 28 provided outside the downstream case member 27, but in FIG. 11, the duct 31 is provided inside the downstream case member 27. An example is shown in which an insertion hole 14 is provided in a part of a duct 31 and a module is attached. In the figure, the tip portion of the duct 31 has a bell mouth shape to rectify the air flow. Since the length of the portion corresponding to the connection duct 28 shown in FIG. 10 can be shortened by inserting the module of the heating resistance type air flow rate measuring device into the air cleaner as in this structure, the intake system can be made compact. Is possible. The connecting duct 28 shown in FIG. 10 and the duct 31 shown in FIG. 11 are described integrally with the case member 27 on the downstream side of the air cleaner in the drawing, but are manufactured separately and fixed so as to maintain mechanical strength afterwards. It doesn't matter.
[0036]
FIG. 12 is a cross-sectional view of a heating resistance type air flow measuring device showing another embodiment, and FIG. 13 is a view as seen from the upstream side (left side). The difference from FIGS. 3 to 4 is that the inner diameter of the body 32 constituting the main air passage is increased. If the inner diameter of the body is increased, the first passage 302 and the inlet opening surface 301 in which the heating resistor 1 for measuring the flow rate is disposed in the sub air passage are shifted closer to the body wall surface. In this case, if a drift occurs in the air flow in the body 32 due to the upstream shape (air cleaner and duct shape) of the body 32, the measurement by the heating resistance type air flow measuring device is caused by the drift in a place near the wall surface. An error will occur. Normally, the flow velocity distribution flowing in the pipe shows a distribution close to a parabola so that the center portion of the pipe has the highest flow velocity and becomes slower as it approaches the wall surface. That is, it is desired that the flow velocity is faster than the average flow velocity at the center in the pipe and slows down on the wall surface, and the average value of the flow velocity is measured at a position shifted from the center. For this reason, in the product of the present invention, the inlet / outlet of the auxiliary air passage is shifted from the center of the pipe so that the average flow velocity value is taken into the auxiliary air passage (the flow velocity value flowing in the auxiliary air passage is determined by the inlet / outlet). This is a pressure difference, and it is necessary to shift the inlet and outlet from the center of the pipe). However, in most of the drift, the position where the flow velocity is the fastest is shifted from the center position, and one shows a fast flow velocity value and the other shows a slow flow velocity value. For this reason, if the inlet opening surface 301 of the sub air passage is at a position with a fast flow velocity distribution, a measurement error on the plus side of the average flow velocity occurs, and conversely on the slow position, a measurement error on the minus side occurs.
[0037]
In this way, even when the inner diameter of the body 32 is increased, the mounting surface 33 for attaching the base member 7 to the body 32 is dug down from the outer diameter of the body 32 as shown in FIG. The module mounting portion has a different diameter, and the distance between the center of the inner diameter of the body 32 and the entrance / exit is substantially the same. In this case, since the inner wall of the body 32 becomes convex at the module mounting portion, the upstream and downstream portions of the body 32 may be gently inclined as shown in FIGS. 34 and 35 so as not to disturb the air flow as much as possible. desired.
[0038]
Finally, FIG. 14 shows an embodiment in which the product of the present invention is applied to an electronic fuel injection type internal combustion engine.
[0039]
The intake air 101 sucked from the air cleaner 100 is sucked into the engine cylinder 107 via the manifold 106 having the body of the heating resistance type air flow measuring device 102, the intake duct 103, the throttle body 104, and the injector 105 to which fuel is supplied. Is done. On the other hand, the gas 108 generated in the engine cylinder is discharged through an exhaust manifold 109.
[0040]
An air flow rate signal output from the circuit module 110 of the heating resistance type air flow meter, a throttle valve opening signal output from the throttle angle sensor 111, and an oxygen concentration signal output from the oxygen concentration meter 112 provided in the exhaust manifold 109 And a control unit 114 for inputting a rotational speed signal output from the engine rotational speed meter 113 calculates these signals to obtain an optimal fuel injection amount and an idle air control valve opening, and these values are used as the injector 105 and the idle speed control valve. The air control valve 115 is controlled.
[0041]
By giving the module almost all functions as a heating resistance type air flow measuring device , the module can be handled as one product. For example, by attaching the module to a part of an air cleaner or a part of an intake duct, The function as a resistance-type air flow rate measuring device can be sufficiently fulfilled, and furthermore, since one type of module can be used for each engine, matching and the like are facilitated, and the system cost of the internal combustion engine can be reduced. .
[0042]
In addition, in the heating resistance type air flow measurement that requires a body constituting the conventional main air passage, the body that occupies a large weight in the cost can be made into a simple cylindrical shape. In addition, by providing a function as a heating resistance type air flow measurement device in one type of module as described above, the standardization of the heating resistance type air flow measurement device corresponding to the displacement of the mounted engine is achieved only by the main diameter of the body. As a result of these effects, the cost can be reduced by about 10 to 20% compared to a conventional heating resistance type air flow rate measuring device having a body integrated with a sub air passage.
[0043]
Furthermore, even if any abnormality occurs in the heating resistance type air flow measuring device in the market, it is possible to improve the handling of the heating resistance type air flow measuring device in the market because only a single module needs to be replaced. .
【The invention's effect】
In order to achieve a reduction in the system cost of an internal combustion engine, which is the greatest problem of a heating resistance type air flow rate measuring device, the present invention provides a heating resistance type air flow rate measuring device in a module in which a circuit unit and a sub-flow channel unit are integrated. It has the most of the functions and can handle the module as one product. According to the present invention, compared to the prior art, it is possible to reduce the size, weight, deterioration of measurement accuracy due to environmental changes and mounting variations, and to further improve the handleability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a heating resistance type air flow measuring device showing an embodiment of the present invention.
FIG. 2 is a diagram of FIG. 1 viewed from the upstream side of the air flow.
FIG. 3 is a cross-sectional view of a heating resistance type air flow measuring device showing one embodiment for the purpose of improving measurement accuracy.
4 is a view of FIG. 3 as viewed from the upstream side of the air flow. FIG.
FIG. 5 is a diagram of a single module in FIG. 3;
6 is a view of FIG. 5 as viewed from the outlet direction of the auxiliary air passage.
7 shows an embodiment in which the upstream side shape of the sub air passage is changed from FIG.
8 shows an embodiment in which the shape of the upstream side of the auxiliary air passage is changed with respect to FIG.
FIG. 9 is a cross-sectional view of a throttle body integrated heating resistance type air flow rate measuring device showing one embodiment of the present invention.
FIG. 10 is a cross-sectional view of an air cleaner integrated with a heating resistance type air flow measuring device showing an embodiment of the present invention.
FIG. 11 is a cross-sectional view of an air cleaner with a built-in heating resistance type air flow rate measuring device according to an embodiment of the present invention.
FIG. 12 is a cross-sectional view of a heating resistance type air flow rate measuring apparatus when the inner diameter of the body is enlarged according to an embodiment of the present invention.
FIG. 13 is a view of FIG. 12 as viewed from the upstream side of the air flow.
FIG. 14 is a control system diagram of an internal combustion engine using the product of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heat generating resistor, 2 ... Temperature sensitive resistor, 3 ... Subchannel, 4 ... Subchannel component, 5 ... Main channel, 6 ... Flowmeter body, 7 ... Base member, 8 ... Electronic circuit, 9 ... Circuit housing, 10 ... Cover, 11 ... Connector, 13 ... Terminal, 14 ... Insertion hole, 15 ... Mounting fixing surface, 16 ... Rubber packing, 17 ... Flow direction, 18 ... Screw, 19 ... Holder, 20 ... O-ring, 21 Rectifying grid, 22 conductive member, 23 valve, 24, 104 throttle body, 25 introducing duct, 26 upstream case member, 27 downstream case member, 28 connecting duct, 29 filter, 30 DESCRIPTION OF SYMBOLS ... Intake duct, 31 ... Duct, 32 ... Body, 33 ... Mounting surface, 100 ... Air cleaner, 101 ... Intake air, 102 ... Heat generation resistance type air flow measuring device, 103 ... Intake duct, 105 ... Injector, 106 ... Manifold, 107 ... Engine cylinder, 108 ... Gas, 109 ... Exhaust manifold, 110 ... Circuit module, 111 ... Throttle angle sensor, 112 ... Oxygen meter, 113 ... Tachometer, 114 ... Control unit, 115 ... Idle air control Valve 301, inlet opening surface 302, first passage 303, right angle bend 304, second passage 305, outlet opening surface 306, saucer-shaped inlet 307, inclined surface 308, outlet ridge 401, Holder insertion hole, 402 ... joining surface, 403 ... meat stealing hole, 404 ... groove part.

Claims (8)

電子回路を内蔵した回路ハウジングと、曲がり部を有する副流路が構成された副流路構成部材と、前記副流路内に配置される検出素子とが一体に構成され、前記副流路構成部材を主流路を構成する壁に設けられた挿入穴から挿入し、前記副流路が前記主流路内に位置するよう前記副流路構成部材を設置する空気流量モジュールであって、
前記副流路構成部材はプラスチック製であり、プラスチック製のホルダの片側に一体に組み付けられると共に、前記副流路構成部材が前記ホルダに組み付けられた時に溝が形成され、この溝に前記挿入穴とのシールを行うシール材が設けられ、
前記プラスチック製のホルダは前記副流路構成部材の反対側でベース部材に固定され、かつ前記検出素子が固定されるターミナルが前記ホルダの内部を貫通し前記検出素子が前記副流路内に位置するよう前記副流路構成部材と一体化され、
前記副流路内に設置される副流路構成部材は、前記ホルダと前記ベース部材を介して前記主流路を構成する壁に固定支持されると共に前記シール材によって前記主流路を構成する壁とのシールを行うようにしたことを特徴とする空気流量測定モジュール。
A circuit housing containing an electronic circuit, a sub-channel constituent member in which a sub-channel having a bent portion is configured, and a detection element disposed in the sub-channel are configured integrally, and the sub-channel configuration An air flow rate module in which a member is inserted from an insertion hole provided in a wall constituting the main flow path, and the sub flow path constituting member is installed so that the sub flow path is located in the main flow path,
The sub-channel constituting member is made of plastic, and is integrally assembled on one side of the plastic holder, and a groove is formed when the sub-channel constituting member is assembled to the holder, and the insertion hole is formed in the groove. A sealing material is provided to seal with
The plastic holder is fixed to the base member on the opposite side of the sub flow path component, and a terminal to which the detection element is fixed penetrates the inside of the holder, and the detection element is positioned in the sub flow path So as to be integrated with the auxiliary flow path component,
A sub flow path component member installed in the sub flow path is fixedly supported on a wall configuring the main flow path via the holder and the base member, and a wall configuring the main flow path by the seal material An air flow rate measurement module characterized in that sealing is performed.
請求項1において、
外部機器と電気的に接続するためのコネクタとを備え、
前記回路ハウジングと前記コネクタとが一体化されたことを特徴とする発熱抵抗式空気流量測定モジュール。
In claim 1,
A connector for electrical connection with an external device;
A heating resistance type air flow rate measurement module, wherein the circuit housing and the connector are integrated.
請求項2において、
前記回路ハウジングの上面を覆うカバーを備えたことを特徴とする発熱抵抗式空気流量測定モジュール。
In claim 2,
A heating resistance type air flow measurement module comprising a cover for covering an upper surface of the circuit housing.
請求項1から3のいずれかにおいて、
前記ベース部材と前記ターミナルは金属であることを特徴とする発熱抵抗式空気流量測定モジュール。
In any one of Claim 1 to 3,
Heating resistor type air flow rate measuring module, wherein the base member and the terminal is a metal.
請求項4において、
前記ベース部材と前記ターミナルとが前記ホルダにインサート成形され一体化したことを特徴とする発熱抵抗式空気流量測定モジュール。
In claim 4,
A heating resistance type air flow rate measuring module, wherein the base member and the terminal are integrated with the holder by insert molding.
請求項4において、
前記ターミナルが前記ホルダにインサート成形され、
更に、前記ホルダが接着剤により前記ベース部材に接着されたことを特徴とする発熱抵抗式空気流量測定モジュール。
In claim 4,
The terminal is insert molded into the holder;
Further, the heating resistance type air flow measurement module, wherein the holder is bonded to the base member with an adhesive.
請求項1から6のいずれか記載の発熱抵抗式空気流量測定モジュールをインテークマニホールドに備えたディーゼル車。  A diesel vehicle comprising the intake manifold with the heating resistance type air flow measurement module according to any one of claims 1 to 6. 請求項1から6のいずれか記載の発熱抵抗式空気流量測定モジュールを備えたエアクリーナ。  An air cleaner comprising the heating resistance type air flow measurement module according to any one of claims 1 to 6.
JP2003202167A 2003-07-28 2003-07-28 Heat generation resistance type air flow measurement module Expired - Lifetime JP3793765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202167A JP3793765B2 (en) 2003-07-28 2003-07-28 Heat generation resistance type air flow measurement module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202167A JP3793765B2 (en) 2003-07-28 2003-07-28 Heat generation resistance type air flow measurement module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001200288A Division JP3716193B2 (en) 2001-07-02 2001-07-02 Heat resistance type air flow measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006019962A Division JP3867106B2 (en) 2006-01-30 2006-01-30 Air flow measurement module

Publications (2)

Publication Number Publication Date
JP2004004110A JP2004004110A (en) 2004-01-08
JP3793765B2 true JP3793765B2 (en) 2006-07-05

Family

ID=30438505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202167A Expired - Lifetime JP3793765B2 (en) 2003-07-28 2003-07-28 Heat generation resistance type air flow measurement module

Country Status (1)

Country Link
JP (1) JP3793765B2 (en)

Also Published As

Publication number Publication date
JP2004004110A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
KR100402728B1 (en) Heating resistance flow measurement device and internal combustion engine control system using the same
JP6965358B2 (en) Thermal flow meter
US5789673A (en) Thermal type air flow measuring instrument for internal combustion engine
US6189379B1 (en) Thermal type air flow measuring instrument for internal combustion engine
JP4752472B2 (en) Air flow measurement device
JP6069504B2 (en) Temperature / humidity sensor
JP3260552B2 (en) Heating resistance type air flow measurement device
JP3782650B2 (en) Air flow measurement device
JP3716193B2 (en) Heat resistance type air flow measuring device
CN113597538A (en) Physical quantity detecting device
JP3793765B2 (en) Heat generation resistance type air flow measurement module
JP4006463B2 (en) Flow rate measuring module and internal combustion engine control method
JP4512616B2 (en) Air flow measurement module
JP3867106B2 (en) Air flow measurement module
JP3561219B2 (en) Heating resistance type flow measurement device
JP6674917B2 (en) Thermal flow meter
JP3593011B2 (en) Heating resistance type flow measurement device
JP3593042B2 (en) Heating resistance type flow measurement device
JP2000002573A (en) Gas flow rate measuring apparatus
JPH10281836A (en) Heating resistor type air flow rate measuring equipment
JPH0943020A (en) Heating resistance-type flow-rate measuring apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350