JPS5827016A - Device for controlling engine - Google Patents

Device for controlling engine

Info

Publication number
JPS5827016A
JPS5827016A JP56126971A JP12697181A JPS5827016A JP S5827016 A JPS5827016 A JP S5827016A JP 56126971 A JP56126971 A JP 56126971A JP 12697181 A JP12697181 A JP 12697181A JP S5827016 A JPS5827016 A JP S5827016A
Authority
JP
Japan
Prior art keywords
signal
air flow
analog signal
frequency
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56126971A
Other languages
Japanese (ja)
Other versions
JPS6257201B2 (en
Inventor
Shunichi Wada
俊一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56126971A priority Critical patent/JPS5827016A/en
Publication of JPS5827016A publication Critical patent/JPS5827016A/en
Publication of JPS6257201B2 publication Critical patent/JPS6257201B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform highly accurate control characterized by a high speed response, by simultaneously inputting a frequency output signal which is proportional to a vortex frequency and an analog signal corresponding to a mean flow speed, and performing the like. CONSTITUTION:When the analog signal V5 corresponding to an airflow rate is differentiated, an acceleration signal in the case of rapid increase in intake airflow rate and the like is obtained. When the averaged time with respect to an output V4 corresponding to the vortex frequency is changed in response to the acceleration signal, the averaged time can be shortened only at the time of accleration and the response delay can be made small. Meanwhile, in the case the change in the analog signal is small in the normal operation, the averaged time for long period of time can be secured. In the case the airflow rate is rapidly decreased, the engine can be likewise controlled highly accurately and highly responsively.

Description

【発明の詳細な説明】 本発明は、自動車空気流量計測装置、特に渦流量計の過
渡特性の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in the transient characteristics of automotive air flow measurement devices, particularly vortex flowmeters.

渦流量計では力μマン渦式のものと、スワール式のもの
が、自動車用空気流量計として実用化されており、とも
に吸入空気量又は流速に略比例した周波数信号を出力す
る。
Among the vortex flowmeters, the μ-Man vortex type and the swirl type are in practical use as air flowmeters for automobiles, and both output frequency signals that are approximately proportional to the intake air amount or flow velocity.

この周波数信号は広い流量範囲で精度が高く。This frequency signal is highly accurate over a wide flow range.

流速の過渡変化に対する追随性も非常に速いと云う特長
を持つ反面、周波数出力である為に渦の1周期以上の高
速応答は不可能であり特に低流量時からの流速変化、大
流量時からの急減速等での出力の応答性が悪い欠点があ
る。さらに、周波数信号の周期を計測して、より高速な
空気流量計測を行なおうとしても、渦のゆらぎにより生
ずる周期のゆらぎが存在する為、移動平均の様な平均化
を行なわないと安定な出力が望めず、さらに一層応答性
を損なうと云う欠点があった。この欠点は。
Although it has the feature of being very fast in following transient changes in flow velocity, since it is a frequency output, it is impossible to respond at a high speed of more than one cycle of the vortex, especially when the flow velocity changes from low flow rates or from high flow rates. The disadvantage is that the output response is poor during sudden deceleration. Furthermore, even if you measure the period of the frequency signal and try to measure the air flow rate at a higher speed, there will be fluctuations in the period caused by fluctuations in the vortex, so it will not be stable unless averaging such as a moving average is performed. There were disadvantages in that the output could not be expected and the response was further impaired. This drawback is.

吸入空気量をもとに自動車の燃料や排気ガスを制御を行
なう方式にとって祉致命的である。
This is critical to the welfare of systems that control automobile fuel and exhaust gas based on the amount of intake air.

第1図に空気流量に比例した周波数出力を平均化した場
合の遅れの様子を示す0図中示したアナログ空気流量の
指示値に比べて、ディジタμ化された周波数情報は次の
パルスが入力されるまでは古い情報を出力し続ける。こ
の遅れ時間は最小の時でもパルスの1周期分は必ず存在
し、n個の平均化を行なえばn個分必要である。
Figure 1 shows the delay when averaging the frequency output proportional to the air flow rate.Compared to the analog air flow rate indication value shown in Figure 1, the frequency information converted into digital μ indicates that the next pulse will be input. It will continue to output old information until it is done. This delay time always exists for one period of the pulse even when it is the minimum, and if n times are averaged, n times are required.

この平均化された周波数信号を用いて自動車の燃料量を
制御すれば加速時にはり一ンに、減速時にはリッチとな
り好ましくない、逆に常に最小の平均化時間で周波数出
力を処理すれば、定常状態での周波数のゆらぎが大きく
なp問題である。
If this averaged frequency signal is used to control the amount of fuel in a car, it will be uniform during acceleration, but rich during deceleration, which is undesirable.On the other hand, if the frequency output is always processed using the minimum averaging time, it will be in a steady state. This is a p problem in which the frequency fluctuation at is large.

この発明は上記欠点を除去する為のもので、渦による周
波数信号と同時に、流速に対応した電気信号を出力する
様にして周波数信号のもつ欠点を解消しようとするもの
である。第2図は本発明の一実施例の基本構成図である
This invention is intended to eliminate the above-mentioned drawbacks, and aims to eliminate the drawbacks of the frequency signal by outputting an electrical signal corresponding to the flow velocity at the same time as the frequency signal caused by the vortex. FIG. 2 is a basic configuration diagram of an embodiment of the present invention.

第2図において(1)は吸入空気通路、Q)は渦発生体
、 (功、 (+)は渦発生体(乃の後流に設けられた
1対の熱線である。熱線0)は抵抗器(sl 、 fa
t 、 fyl及び演算増巾器(11)により、又熱線
(4)は抵抗器(81、+91 、1101及び演算増
巾器rJりによりそれぞれ一定温度に制御されている。
In Figure 2, (1) is the intake air passage, Q) is the vortex generator, (+) is a pair of hot wires installed in the wake of the vortex generator (no. Hot wire 0) is the resistance. vessel (sl, fa
The heating wire (4) is controlled to a constant temperature by resistors (81, +91, 1101 and the operational amplifier rJ) by t, fyl and the operational amplifier (11).

この熱線(3) 、 +41の制御電圧をそれぞれ(V
、 ) (Vm )とする、この制御電圧(V、)(V
、獄コンデy−Ha 、 +141 、122.抵抗0
29 、 (11,(1?) 、 081 、 H、@
1)演算増巾器−よりなる差信号増巾回路により、差の
増巾信号(V、)となる、信号(Vs獄波形整形回路(
2)により周波数出力(V、)つまり出力(1)となる
、又、信号(Vl ) (Vm ’は、加算抵抗(24
16!fQ fiにより加算され、電圧出力(V、 )
つまり出力■となる。
The control voltages of these hot wires (3) and +41 are respectively (V
, ) (Vm ), this control voltage (V, ) (V
, Gokukondey-Ha, +141, 122. Resistance 0
29, (11, (1?), 081, H, @
1) A difference signal amplification circuit consisting of an operational amplifier generates a signal (Vs) which becomes a difference amplification signal (V, ).
2) becomes the frequency output (V,), that is, the output (1), and the signal (Vl) (Vm' is the addition resistor (24
16! Added by fQ fi, voltage output (V, )
In other words, the output is ■.

第2図各部の電圧波形図を第3図に示す、第2図の構成
で渦発生体Q)の後流には左・右に対称で規則的々カル
マン渦列が発生する。熱線(3) 、 +41は平均流
速によシ冷却されると同時に、カルマン渦列により規則
的にかつ交互に高い周波数で冷却される。この為、熱線
(3) 、 +41を一定温度に保つ為の制御電圧(V
l) (Vm )は、平均流速に対応した成分マ、。
FIG. 3 shows voltage waveform diagrams at various parts in FIG. 2. With the configuration shown in FIG. 2, Karman vortex streets are generated regularly and symmetrically to the left and right in the wake of the vortex generator Q). The hot wires (3), +41 are cooled by the average flow velocity and at the same time are cooled regularly and alternately at high frequency by the Karman vortex street. For this reason, the control voltage (V
l) (Vm) is the component m corresponding to the average flow velocity.

■、及び力μマン渦による流速変化に対応成分Δv、。■, and the component Δv, which corresponds to the flow velocity change due to the force μ Mann vortex.

Δv1とから成る。Δv1.

とのΔv1とΔv黛は極性が反対であり、(Δv1−Δ
V、)べ、より信号v1が得られ5周波数出力v4が得
られる。この周波数と吸入空気量、との比率は略一定で
ある。
The polarity of Δv1 and Δvyuzumi is opposite, and (Δv1−Δ
A signal v1 is obtained from V, ) and a 5-frequency output v4 is obtained. The ratio between this frequency and the amount of intake air is approximately constant.

な9平均流速−0の函数となる。信号(vl)及び信号
(V、)を加算する事により逆極性のΔv8とΔV、と
はキャンセyされv、=v、+ VB= kVx= k
V* トナ!l 、流速りの函数である信’t (Vi
)が得られる。この信号(V、)はアナログ電圧信号で
ある為に応答性が良く、常に流速Oに対応した情報を出
力している。
It is a function of 9 average flow velocity - 0. By adding the signal (vl) and the signal (V, ), Δv8 and ΔV of opposite polarity are canceled and v, = v, + VB = kVx = k
V* Tona! l, which is a function of the flow velocity (Vi
) is obtained. Since this signal (V,) is an analog voltage signal, it has good responsiveness and always outputs information corresponding to the flow rate O.

この信号v1及びvIを有効に並用する事によp高精度
で高速応答の自動車用空気流量計が実現出来る。
By effectively using the signals v1 and vI in parallel, a highly accurate and fast-response automobile air flow meter can be realized.

第2図において、Hはエンジンの運転状態を表わす各種
パラメータ情報でたとえばエンジンの回転数情報、負圧
、吸入空気温度、大気圧、水温等である。必要に応じて
これらの情報を入力すれば良い、いは空気流量信号処理
回路である。
In FIG. 2, H is various parameter information representing the operating state of the engine, such as engine rotational speed information, negative pressure, intake air temperature, atmospheric pressure, and water temperature. If necessary, this information can be input into the air flow rate signal processing circuit.

上記の様に構成された空気流量計において、吸入空気量
が急激に増加した場合を考える。  (V、)のアナロ
グ信号は吸入空気量に対応している為%(■、)を微分
すると吸入空気量の増加に対応した加速信号が得られる
。この加速信号に応じて(v4)の周波数信号の平均化
の時間を変化させる様にすれば、加速時にだけ平均化の
時間を短かく応答遅わを小さく出来る。定常運転でV、
のアナログ信号の変化が小さい場合には長時間の平均化
時間を確保出来る。急激に減少した場合も同様である。
Consider a case where the amount of intake air increases rapidly in the air flow meter configured as described above. Since the analog signal (V,) corresponds to the intake air amount, by differentiating % (■,), an acceleration signal corresponding to the increase in the intake air amount can be obtained. By changing the averaging time of the frequency signal (v4) according to this acceleration signal, the averaging time can be shortened and the response delay can be reduced only during acceleration. V in steady operation,
When the change in the analog signal is small, a long averaging time can be secured. The same applies when there is a sudden decrease.

この場合には必要なエンジン運転パラメータとしては吸
入空気温度の情報だけで十分である。
In this case, information on the intake air temperature is sufficient as the necessary engine operating parameter.

なお上記実施例では(Vl)の微分信号により(V、)
の周波数信号の平均化の時間(又は移動平均の個数)を
変化させる場合について説明したが、平均化の時間は必
要なだけの長時間の固定にしておいて、 (Vl)の微
分信号の大きさに対応して増量係数を決定して乗算する
様にしても同様の効果が期待出来る事は云うまでも無い
In the above embodiment, (V, ) is determined by the differential signal of (Vl).
We have explained the case where the averaging time (or the number of moving averages) of the frequency signal of (Vl) is changed. It goes without saying that a similar effect can be expected even if an increase coefficient is determined and multiplied accordingly.

又1機関の運転状態によっては、吸気脈動の為に特に低
速回転の全開運転時に(v4)の周波数出力のみが乱れ
て、吸入空気量との比例関係が成りたたなくなる場合が
ある。この場合にでもアナログ出力(V、)の値は(v
4)信号程は乱れない為に、ff、)信号のかわりに(
vs)の信号により得られた空気量の信号を出力する事
も出来る。
Also, depending on the operating state of one engine, only the frequency output (v4) may be disturbed due to intake pulsation, especially during full throttle operation at low speed rotation, and the proportional relationship with the intake air amount may no longer hold. Even in this case, the value of the analog output (V, ) is (v
4) Since it is not as disturbed as the signal, (ff, ) signal is used instead of (ff,) signal.
It is also possible to output the air amount signal obtained by the signal vs).

なお上記実施例では力〃マン両列を1対の熱線で検出す
る場合について述べたが、スフ−2式の両列の場合でも
、又1本以上の熱線でも同様の効果が期特出来る事は云
うまでもな−又渦の検出手段を熱線として述べたが、サ
ーミスタその他の感熱素子であっても同様の効果が期特
出来る事は云うまでもない。
In the above embodiment, a case was described in which both rows of Power Man were detected using a pair of hot wires, but the same effect can be expected in the case of both rows of Sufu-2 type or with one or more hot wires. Needless to say, although the vortex detection means has been described as a heat wire, it goes without saying that the same effect can be achieved using a thermistor or other heat-sensitive element.

又、1対の熱線のうち片側の熱線が切れた場合等で渦周
波数の信号がもはや使用不可の様な場合にも平均流速の
信号をそのバックアップ信号として用いる事が出来る。
Furthermore, even if the vortex frequency signal is no longer usable due to a break in one of the pair of hot wires, the average flow velocity signal can be used as a backup signal.

以上説明したとうり本発明によれば、渦周波数に比例し
た周波数出力信号、平均流速に対応したアナログ信号を
同時に入力として、機関の運転パラメータの入力等も参
考にして最適な吸入空気流量出力を処理すると云う簡単
な構成で、周波数出力信号の持つ欠点を解消出来る効果
がある。
As explained above, according to the present invention, the frequency output signal proportional to the vortex frequency and the analog signal corresponding to the average flow velocity are simultaneously input, and the optimal intake air flow rate output is determined by referring to the input of engine operating parameters, etc. A simple configuration of processing has the effect of eliminating the drawbacks of frequency output signals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は周波数出力信号を平均化した場合の欠点を示す
グラフ、第2図は本発明の一実施例の基本構成図、第3
図は第2図番部の電圧信号波形図である。 図中(1)は吸入空気通路、 (2)は渦発生体、(3
) 、 +41は熱線である。  (V、)は吸入空気
量に略比例した周波数出力信号、 (V、)は吸入空気
量に対応したアナログ出力信号、Hはエンジンの運転バ
フメータ入力、(22は空気流量信号処理回路である。 代理人 葛野信−
Figure 1 is a graph showing the drawbacks when frequency output signals are averaged, Figure 2 is a basic configuration diagram of an embodiment of the present invention, and Figure 3 is a graph showing the drawbacks when frequency output signals are averaged.
The figure is a voltage signal waveform diagram of the second figure part. In the figure, (1) is the intake air passage, (2) is the vortex generator, and (3) is the vortex generator.
), +41 is a hot wire. (V,) is a frequency output signal approximately proportional to the amount of intake air, (V,) is an analog output signal corresponding to the amount of intake air, H is an engine operation buff meter input, and (22 is an air flow rate signal processing circuit). Agent Makoto Kuzuno

Claims (3)

【特許請求の範囲】[Claims] (1)内燃機関の吸入空気通路に設けられ、該空気流量
を流体的な渦の変化としてとらえ、該流体的な渦の変化
を少なくとも1個の感熱素子により周波数信号としてと
らえる手段と、上記感熱素子の電気信号の中から平均流
速に対応したアナログ信号を出力する手段とを有する空
気流量計を備え。 上記周波数信号と、上記アナログ信号を入力として、所
望の空気流量信号を出力する空気流量信号処理回路を備
えた事を特徴とする機関の制御装置。
(1) A means provided in an intake air passage of an internal combustion engine, which captures the air flow rate as a change in a fluid vortex, and captures the change in the fluid vortex as a frequency signal using at least one heat-sensitive element; It is equipped with an air flow meter having means for outputting an analog signal corresponding to the average flow velocity from among the electric signals of the element. An engine control device comprising an air flow signal processing circuit that receives the frequency signal and the analog signal as input and outputs a desired air flow signal.
(2)周波数信号の周期の平均値により空気流量を計測
し、上記平均値を計算する為の周期のサン1〜個数又は
平均化の時間を上記アナログ信号の値により制御する様
にした事を特徴とする特許請求の範囲第1項記載の機関
の制御装置。
(2) The air flow rate is measured by the average value of the period of the frequency signal, and the number of cycles or the averaging time for calculating the average value is controlled by the value of the analog signal. An engine control device according to claim 1.
(3)周波数信号の周期の平均値により空気流量を計測
し、該平均値の値を上記アナログ信号の変化値に対応し
て補正する様にした事を特徴とする特許請求の範囲第1
項記載の機関の制御装置。
(3) The air flow rate is measured based on the average value of the period of the frequency signal, and the value of the average value is corrected in accordance with the change value of the analog signal.
Control equipment for the engine described in Section 1.
JP56126971A 1981-08-11 1981-08-11 Device for controlling engine Granted JPS5827016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56126971A JPS5827016A (en) 1981-08-11 1981-08-11 Device for controlling engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56126971A JPS5827016A (en) 1981-08-11 1981-08-11 Device for controlling engine

Publications (2)

Publication Number Publication Date
JPS5827016A true JPS5827016A (en) 1983-02-17
JPS6257201B2 JPS6257201B2 (en) 1987-11-30

Family

ID=14948420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56126971A Granted JPS5827016A (en) 1981-08-11 1981-08-11 Device for controlling engine

Country Status (1)

Country Link
JP (1) JPS5827016A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226239A (en) * 1983-06-06 1984-12-19 Nippon Denso Co Ltd Electronic fuel injection controlling apparatus for internal-combustion engine
JPS62174757U (en) * 1986-04-22 1987-11-06
JP2012093155A (en) * 2010-10-26 2012-05-17 Denso Corp Flow measurement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924363A (en) * 1982-07-31 1984-02-08 Nec Home Electronics Ltd Common connecting system of bus for plural microcomputers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924363A (en) * 1982-07-31 1984-02-08 Nec Home Electronics Ltd Common connecting system of bus for plural microcomputers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226239A (en) * 1983-06-06 1984-12-19 Nippon Denso Co Ltd Electronic fuel injection controlling apparatus for internal-combustion engine
JPH0467579B2 (en) * 1983-06-06 1992-10-28 Nippon Denso Co
JPS62174757U (en) * 1986-04-22 1987-11-06
JP2012093155A (en) * 2010-10-26 2012-05-17 Denso Corp Flow measurement device
US8909486B2 (en) 2010-10-26 2014-12-09 Denso Corporation Flow measuring device

Also Published As

Publication number Publication date
JPS6257201B2 (en) 1987-11-30

Similar Documents

Publication Publication Date Title
US7499819B2 (en) Flow measuring device
JP3421245B2 (en) Heating resistor type air flow measurement device
JPS5827016A (en) Device for controlling engine
US4384484A (en) Gas flow measuring device
JPH0326436B2 (en)
US4437345A (en) Gas flow measuring device
JP2006138688A (en) Fluid flow meter, and engine control system using the same
JPS5827015A (en) Airflow measuring device for automobile
JPH0915013A (en) Heating type measuring method and device for air flow rate
JP3200005B2 (en) Heating resistance type air flow measurement device
JP2004170357A (en) Exhaust gas flow rate measuring device and exhaust gas flow rate measuring method
JP2533479B2 (en) Heating resistance type air flow meter
JPS60225028A (en) Apparatus for measuring flow amount of fluid
JPS59136619A (en) Vortex flowmeter
JPS595842A (en) Fuel controlling apparatus for internal combustion engine
JP2510151B2 (en) Thermal air flow measuring device for engine
JPS59136532A (en) Fuel control apparatus for internal-combustion engine
JPH0143883B2 (en)
JPS6256963B2 (en)
JPH0351710Y2 (en)
JPH0235315A (en) Hot wire type air flowmeter
JP2626628B2 (en) Heating resistance type air flow meter
JPS6013446B2 (en) Gas flow measuring device
JPH07119525A (en) Intake air flow rate detection device of internal combustion engine
JP2003315129A (en) Thermal flow measuring instrument